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Abstract. Machinability evaluation of Al–4%Cu–7.5%SiC metal matrix composite (MMC) prepared by

powder metallurgy (P/M) process is presented. Specimens are prepared with 99.85% pure aluminum added with

4% copper and 7.5% silicon carbide particles by volume fraction. Scanning electron microscope image shows

even distribution of particles in Al-MMC. Turning operation is performed by varying machining parameters and

experiments are designed using Taguchi’s Design of Experiments (DoE), an L9 Orthogonal Array (OA) is

chosen. A hybrid Taguchi–Grey relational approach is used to determine the optimum parameters over measured

responses flank wear, roughness, and material removed. Analysis of Variance (ANOVA) result shows that the

depth of cut is the influential parameter that contributes toward output responses. A metaheuristic evolutionary

algorithm nondominated sorting genetic algorithm (NSGA-II) is applied to optimize the machining parameters

for minimizing wear and maximizing metal removal. Experiments with optimum conditions show a better

improvement in the output conditions.

Keywords. Aluminum MMC; Taguchi’s technique; Grey relational analysis; NSGA-II; ANOVA; Pareto

front.

1. Introduction

Composite materials are heterogeneous solids that consist

of two or more materials, which are different, metallurgi-

cally and mechanically bonded for the purpose of rectifying

the weakness in one material with the better properties of

another material [1]. The materials that were added to form

the composite retain their identity and maintain their

properties and characteristics. To suit the varying needs of

applications requiring materials with enhanced properties at

lighter weight for application in aerospace and automotive

fields, novel materials reinforced with ceramic particles

were developed. However, the performances of these

composites depend on the matrix material, processing

techniques, type of reinforcement, and the processing

parameters [2]. Aluminum-based metal matrix composites

(MMCs) were widely used owing to their light weight,

excellent mechanical properties, and higher wear resis-

tance. Plastic deformation resulting in the aluminum metal

matrix is reduced by the reinforcements used such as SiC,

B4C, TiC, and Al2O3 which is examined through the wear

behavior of the composite [3].

Owing to high strength, wear resistance, impact strength,

and stiffness, ceramic particles reinforced in metal matrix

are becoming attractive materials with increasing applica-

tions in automotive industries, aerospace industries, and

also in sports equipments. Owing to favorable and

enhanced mechanical properties, these particles reinforced

with MMCs are used more among the modern advanced

composite materials. Reinforcement of silicon carbide

particles in the aluminum matrix improves the heat resis-

tance, tensile strength, hardness, and brittleness [4]. With

the addition of SiC particles, the machining characteristics

change abruptly, producing different chips than that of

machining aluminum. High surface roughness and higher

tool wear are common during machining Al–SiC MMCs,

because of built-up-edge chips favored by high feeds and

lower speeds. Machining of MMCs results in excessive

wear on tools and roughness on workpieces due to the

presence of ceramic reinforcing materials in metal matrix.

Hence, tools selected for machining should resist the

abrasive wear action of these ceramics. High-speed steels

cannot be used for machining because of their poor

behavior and therefore advanced tool materials such as

cemented carbide, PCD, and cermets were chosen. Among

these tool materials, carbides cost lesser than cermets and*For correspondence
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PCDs and, hence, cemented carbide cutting tools are cho-

sen to improve productivity at lower cost. In this aspect,

basic machinability tests have to be performed to determine

the cutting conditions that suit the usage of carbide tools in

machining ceramic particles-reinforced MMCs [5].

To understand the performance and behavior of the

prepared composite, mechanical properties and wear

behavior can be determined. Powder Metallurgy (P/M)

technique is a rapidly evolving technology that embraces

most of the metallic and alloy materials. P/M is a highly

reliable method for producing ferrous and nonferrous parts.

Mostly, high-purity aluminum has been used as matrix to

understand the reinforcement and matrix interface rela-

tionship, since the impurities that may be present in the

base matrix material may influence the interface during the

fabrication of the composite. For this purpose, 99.85% pure

aluminum is chosen as the matrix material. Copper is one of

the best alloying elements added to aluminum in order to

increase the conductivity and to increase the strength of the

composite. Silicon carbide, a ceramic particulate material,

was added to the composite to increase its hardness,

strength, and wear resistance.

Pal et al [6] prepared Al–Cu–Mg alloy composite with

various volume fractions of SiC through P/M process and

studied the age-hardening kinetics and indicated that

greater dissolution and lower spacing of interparticles had

shown better hardness. Rajmohan et al [7] investigated the

dry sliding wear behavior and the mechanical behavior of

Al356 reinforced with mica and ceramic particles and

achieved better hardness and strength with 10% addition of

SiC and 3% addition of mica, and wear properties increased

with mica addition. Shorowordi et al [8] developed Al

MMCs reinforced with three ceramic particles by different

volume fractions by hot extrusion process following stir

casting and observed that interfacial bonding tends to

improve with reinforcement of B4C than Al2O3 and SiC

reinforcements.

Rajaram et al [9] studied Al–Si–Cu/graphite MMCs

mechanical properties prepared by stir casting technique

and determined that composite tensile strength is more than

its parent alloy but for different strain rates the elongation

of parent alloy is more than its composite counterpart.

Senthilkumar et al [10] investigated mechanical properties

of epoxy polymer reinforced with aluminum oxide particles

through fatigue analysis and investigated the distribution of

particulates inside the matrix using optical microscope.

Pawade and Joshi [11] aimed to minimize cutting forces

and roughness through the application of Taguchi–Grey

relational analysis (GRA) and showed that the depth of cut

is a significant one over the multiple responses on 95% CI.

Senthilkumar and Tamizharasan [12] optimized the cutting

tool geometry using Taguchi’s technique considering

multiple performances of maximum MRR and minimum

roughness and wear and determined the significant contri-

butions using Analysis of Variance (ANOVA).

Yang and Natarajan [13] solved the multiple responses

turning problem by applying differential evolution algo-

rithm and nondominated sorting genetic algorithm (NSGA-

II) toward reducing tool wear and improving MRR and

reported the comparison of the results obtained from the

two techniques used. Srinivas and Deb [14] applied speci-

ation and niche method in Goldberg’s notion using genetic

algorithm with nondominating sorting technique toward

fining pareto-optimal front simultaneously and suggested

that the algorithm can be used for more difficult and higher-

dimensional multi-objective problems for better results.

Palanikumar et al [15] applied NSGA-II for investigating

the machinability evaluation of GFRP composites over

multiple performances and developed second-order

regression models to determine a nondominated solution

for optimizing the conditions.

In this work, aluminum-based MMC is fabricated via

P/M technique, consisting of Al–4%Cu–7.5%SiC compo-

sition to study its machinability behavior during turning the

MMC with uncoated tungsten carbide cutting tool.

Mechanical properties were determined for the MMC to

study its performance and the micrograph is studied

through scanning electron microscope (SEM) to visualize

the distribution of reinforced materials inside the aluminum

matrix. Taguchi’s Design of Experiments (DoE) is applied

to design the experiments and a hybrid Taguchi–GRA is

applied toward optimizing multiple characteristics flank

wear of the carbide tool, surface roughness on workpiece,

and MRR. An evolutionary metaheuristic optimization

technique, NSGA-II developed in Matlab code is also used

to determine the optimum conditions for the determined

multiple characteristics with consideration of surface

roughness as constraint.

2. Material selection

The base material chosen for the preparation of MMC is

aluminum, copper as a secondary material, and silicon car-

bide to reinforce the matrix. Aluminum is chosen to reduce

the weight of the material, copper is added to increase the

thermal conductivity of the material, and silicon carbide is

added to improve the strength and hardness of the MMC.

The base materials SEM are shown in figure 1.

The cutting tool insert chosen for machining the P/M

MMC is uncoated cemented carbide of ISO designation

TNMG 120404, as shown in figure 2. The SEM image of

carbide cutting insert shows the particles of tungsten car-

bide (WC) that are predominant. The structure consists of

varying composition of tungsten carbide and titanium car-

bide phases of solid solution. Voids present in the structure

are seen as black area and cobalt solid solution is observed

between the voids, which are used as a binder. The mar-

ginal dendritic solid solution of cobalt is seen at the

extreme right.
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3. Techniques applied for experimentation
and analysis

3.1 Powder metallurgy route

The process of P/M consists of identifying the required base

material, weighing the ingredients in proper proportions by

volume fractions, and then mixing the materials well for

uniformity. The mixed powders were compacted at 20 tons

in a closed die. Compacting the mixed materials was car-

ried out using a die for the required shape and size in a

universal testing machine. The compacted sample was

sintered at 500 �C for 3 hours. The furnace was maintained

with nitrogen atmosphere of 0.5 liters per minute. Figure 3

outlines the procedure of P/M process used in the prepa-

ration of the composite material as a flow chart.

The microstructure of the P/M specimen, shown in fig-

ure 4, shows some unfused/undissolved free copper in the

matrix. The percentage of free copper is about 0.6% in

volume. The rest of the matrix shows fine fused Cu–Al2 in

aluminum solid solution. The particles of SiC present are

uniformly distributed in the matrix. The SiC particles are

shown as dark gray particles in the Al–Cu matrix.

The mechanical properties of the cast Al–4%Cu–

7.5%SiC were characterized by means of hardness test,

compression test, and wear test. The hardness value is

42.93 HR, when done with Rockwell hardness test (T-

Scale) performed with 15 kgf load and with 1/16-inch

diameter indenter. The compressive test yields an ultimate

strength of 19.96 kN and the ultimate stress as 0.062 kN/

mm2. The wear rate of the MMC obtained from the pin-on-

disc apparatus test is 6.82E-8 g/cm. The maximum coeffi-

cient of friction and frictional force for the MMC is 0.66

and 1.99 N, and the minimum coefficient of friction and

frictional force is 0.13 and 0.4 N, respectively.

3.2 Design of experiments

Process parameters were optimized with a powerful tool,

Taguchi’s DoE [16], making use of special design of

orthogonal arrays (OAs) with a minimum number of

experiments for evaluating the outputs. Outputs obtained

during the experiments are then converted for further

evaluation to signal-to-noise (S/N) ratio [17, 18] based on

the conditions that it should be minimum or maximum. In

this work, experimental array was designed considering

feed rate, cutting speed, and depth of cut. These inputs are

varied through three levels and the values chosen for level

conditions are shown in table 1.

Using Minitab-16, statistical package, for the selected

input parameters and their value range, an L9 is selected

from the array selector for three parameters three levels.

OA from Taguchi’s DoE for varying combinations of

machining conditions is shown in table 2.

CNC turning center with two axes is used to conduct the

experiments with swing diameter of 350 mm, distance

between centers as 600 mm and with maximum spindle

speed of 4500 rpm. After completion of the experiments,

tool wear at flank face was measured using Mitutoyo make

Figure 1. SEM image of base materials.

Figure 2. Cutting tool insert used and its SEM image.
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Tool makers microscope (digital type), with eyepiece

magnification of 159, maximum 13 mm field diameter, 29

objective lens magnification with total magnification of

309, and maximum working distance of 67 mm. Kosaka

Laboratory make Surfcorder SE1200 is used to measure

surface roughness in the specimen surface whose

specifications were 520 lm and 25 mm in both vertical and

horizontal ranges, 0.8 mm cutoff values with Gaussian fil-

ter. The rate at which the material is removed from the

workpiece is calculated by weighting the workpiece before

and after machining; the difference is determined and

divided by the time taken for machining. In Taguchi’s

technique, there are three categories for analyzing the

outputs: larger-the-better, nominal-the-better, and smaller-

the-better concepts [19]. Process will be more robust

against the external noises if the S/N ratio is larger, for

undesired output, the chosen category is smaller-the-better.

Larger-the-better category is chosen for desired, and for a

nominal output, nominal-the-better category is selected.

Minimize (Smaller-the-better):

S=N ¼ �10 log
1

n

Xn
i¼1

y2i

 !
: ð1Þ

Maximize (Larger-the-better):

S=N ¼ �10 log
1

n

Xn
i¼1

1

y2i

 !
: ð2Þ

Nominal-the-better:

S=N ¼ 10 log
�y

s2y

 !
ð3Þ

Figure 3. Flow chart of MMC preparation by P/M route.

Figure 4. SEM image of P/M MMC.

Table 1. Level values of control parameters.

Parameter/level Notation Level 1 (-1) Level 2 (0) Level 3 (?1)

Cutting speed (m/min) A 120 150 180

Feed rate (mm/rev) B 0.05 0.07 0.09

Depth of cut (mm) C 0.15 0.30 0.45

1222 V Selvakumar et al



where yi represents the values observed experimentally of

ith experiment and replications or repetition of experiments

is given as n.

3.3 Grey relational analysis

Optimization of multiple responses can be simultaneously

performed with GRA to find out the optimal levels that

consists of many outputs [20–22]. With the meager infor-

mation available, GRA can judge or evaluate the perfor-

mances of complex process that involves more than one

output. In GRA, the raw data have to be preprocessed into a

quantitative index for subsequent analysis [23–25]. Pre-

processing raw data involves conversion or raw data into

decimal sequence that lies between 0.00 and 1.00, which is

useful for comparison. The sequence can be normalized for

the condition Higher-the-better as

x�i ðkÞ ¼
x0i ðkÞ �minx0i ðkÞ

maxx0i ðkÞ �minx0i ðkÞ
ð4Þ

xi* (k) represents the data sequence after preprocessing, xi
o

(k) represents the original sequence, largest value of xi
o (k)

is max xi
o (k), smallest value of xi

o (k) is min xi
o (k) imply

the. Normalizing the data for lower-the-better condition is

given as

x�i ðkÞ ¼
maxx0i ðkÞ � x0i ðkÞ

maxx0i ðkÞ �minx0i ðkÞ
: ð5Þ

After completing data preprocessing, in order to express

a relationship between actual and ideal normalized values, a

Grey relational coefficient is determined, as expressed in

Eq. (6):

fiðkÞ ¼
Dmin þ f:Dmax

D0iðkÞ þ f:Dmax

ð6Þ

Doi (k) represents the deviation sequence, which is calcu-

lated by

D0iðkÞ ¼ x�0ðkÞ � x�i ðkÞ
���� ð7Þ

Dmax ¼ max
8jei

max
8k

x�0ðkÞ � x�j ðkÞ
������ ;

Dmin ¼ min
8jei

min
8k

x�0ðkÞ � x�j ðkÞ
������ ð8Þ

f is known as identification coefficient: f lies between the

values 0 and 1. Normally f is chosen as 0.5 [26]. Grey

relational grade is calculated for optimizing multiple

responses by the method of calculating average values of

Grey relational coefficient for each response level values,

as given in Eq. (9).

ci ¼
1

n

Xn
k¼1

ifiðkÞ: ð9Þ

3.4 Empirical modeling and analysis of variance

Evaluating the difference between the set of scores is per-

formed by means of ANOVA, which can be applied over the

raw data that is used to divide the total measured variance

into different component parts [27]. The total measured

variance of the data set is the variance of individual data

scores obtained while measuring over the dependent indi-

vidual variable. ANOVA is necessary to find out the input

parameters that have significant influence over the measured

responses and amount of contribution toward it.

Regression models have a strong relationship with

experimental design to emphasize the importance of

quantitative expression of results by means of empirical

modeling for better implementation, interpretation, and

understanding [28]. Experimental models, appearing more

complex in nature, can be analyzed by means of multiple

linear or nonlinear regression techniques. In this analysis, a

first-order model is formulated for the measured output

responses in terms of input parameters as shown in

Eq. (10):

Table 2. Formulated L9 inner array.

Trial

no.

Coded values Actual values

Cutting speed (m/

min)

Feed rate (mm/

rev)

Depth of cut

(mm)

Cutting speed (m/

min)

Feed rate (mm/

rev)

Depth of cut

(mm)

1 -1 -1 -1 120 0.05 0.15

2 -1 0 0 120 0.07 0.30

3 -1 ?1 ?1 120 0.09 0.45

4 0 -1 0 150 0.05 0.30

5 0 0 ?1 150 0.07 0.45

6 0 ?1 -1 150 0.09 0.15

7 ?1 -1 ?1 180 0.05 0.45

8 ?1 0 -1 180 0.07 0.15

9 ?1 ?1 0 180 0.09 0.30
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Y ¼ a0 þ
Xn
i¼1

aiXi þ
Xn
i¼1

aijXiXj þ e: ð10Þ

3.5 Nondominated sorting genetic algorithm

Kalyanmoy Deb proposed NSGA-II [29–32], which is the

new revised format of the previous version of NSGA-I. The

updated version is more efficient computationally by the

usage of elitism and crowded method of comparison

operator. In NSGA-II, elitist mechanism combines the best

offspring from the best parents, which assures the preser-

vation of best global solutions. The procedure for sorting

nondominated solution is faster in this version. Most

importantly, this new version does not require any param-

eter to be tuned, making this algorithm user independent.

Figure 5 shows how the elites are preserved in NSGA-II.

During preserving the elites, NSGA-II develops a com-

peting population of individuals, then ranks it according to

its nondomination level values, and then sorts it out thereby

creating a new pool of better offspring for the next stage,

thus producing a new combined pool of population by

combining the parents and offspring [33]. By adding a

crowding distance to each member of the newly generated

population, NSGA-II then conducts niching. To explore the

fitness landscape and to keep each individual to stay at

some crowding distance apart from other individuals,

NSGA-II uses crowding distance in its selection operator

[34]. Figure 6 outlines the improved NSGA-II as a

flowchart [30].

In the first step, random population of parents Po is

developed and is sorted on nondomination basis and to

reduce the complexity in computation, a special procedure

of O(MN2) is done. A fitness value of nondominated level

(normally 1) is assigned to each of the solution, thereby

assuming fitness minimization. Child population Qo of size

N is created using binary tournament method, crossover and

mutation operators.

Initially to ensure elitism, to compare the parent solu-

tions with child population, a population combining parents

and offspring is formed by Rt = PtUQt. The size of the

population Rt is 2N. Then, according to nondominated

fronts sorting of population, Rt is done. The working of

NSGA-II algorithm is as follows.

From the chosen population, solutions obtained from the

nondominated front are added to develop a new population

of parents Pt?1 until the population size is reached.

Crowding distance is calculated from the individuals of

nondominated fronts. Comparing the crowded distance,

sorting of solutions are carried out for N points. Criteria

used by crowding distance comparison uses the relationship

as: In an relationship ith solution is better than jth solution

if the condition (idistance [ jdistance)) and (irank B jrank) is

reached, thereby importance is given to solutions derived

from search space having less-dense regions to select from

Rt, which forms the new population Pt?1. To apply the

operators, such as binary tournament selection method,

crossover, and mutation for creating new population of

Qt?1, this population is used. This procedure should be

continued for the number of generations selected. The

parameter values used during simulation of iteration of

NSGA-II algorithm is real variable type with population

size of 100, 0.9 crossover probability, and mutation prob-

ability of real parameter is 1, SBX parameter value of 10,

mutation parameter value of 100 with number of itera-

tions/generations of 100.

4. Results and discussion

With the experimental setup in CNC turning center,

experiments were conducted as per the designed OA.

During the turning process, a separate workpiece and
Figure 5. Preservation of elites in NSGA-II.

Figure 6. NSGA-II flow chart.
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cutting tool insert is used for every experiment and the

corresponding output responses were measured, which is

provided in table 3. The experiments are conducted twice

R1 and R2 (replications) in order to minimize the experi-

mental error and the average of the values are taken for

analysis.

Observations made from the experimental results show

that an increase in cutting speed increases flank wear and

MRR increases with decrease in surface roughness.

Excessive tool wear is experienced along with severe

deformation rate with larger cutting speeds [35]. With

increase in flank wear, cutting forces also increases.

Selection of higher depth of cut and feed rates will result

in unexpected effect on surface quality [36]. Higher

cutting speed tends to improve the surface finish,

whereas poor surface finish can be observed with lower

cutting speed, which leads to the fracturing of developed

chips leading to surface imperfections. Thermal softening

occurs at higher cutting speeds, which removes the built-

up edge on the tool thereby reducing the surface

roughness [37]. With lower feed rates, lower surface

roughness is observed due to the less fracture rate in the

surface. When the feed rate is increased, cutting forces

increases, chatter is observed and machining at faster

rate results in incompleteness. When depth of cut

increases, built-up edge on cutting tool increases due to

high pressure between the tool and workpiece [38]. With

increase in feed rate, flank wear reduces but at the same

time higher material is removed from the workpiece,

thereby making the surface wavy. All the outputs MRR,

surface roughness, and flank wear increase when the

depth of cut is increased. Tool wear of the cemented

carbide tools increases when cutting speeds are

increased, owing to the abrasion action of the chips on

the flank face of tool insert [39]. Flank wear surfaces

were produced due to the abrasion action of the produced

chips. Resistance to abrasion is related to tool hardness

[40]. Increasing the depth of cut does not make any sense

toward the tool wear, so it is suggested to utilize higher

depth of cuts to achieve high production rates without

any tool wears. Increasing the feed rate for a specific

amount of material removed from the stock reduced the

tool wear. Hence, an effective way to improve material

removal and tool life is to increase the feed rate.

Exploring the potential relationship that exists between

three variables is possible with contour plots, displaying the

three-dimensional relationship in a two-dimensional way

with variables plotted on x and y axes and response values

represented by contour lines. Typical applications of these

contour plots are useful in determining the settings of

parameters that will minimize or maximize the measured

responses.

Determination of variable settings that will result in a

predetermined response variable target value can be visu-

alized through these contour plots. The information that can

be derived from the contour plots includes the significance

of interactions between the two variables and best data

setting for obtaining the better output response. The influ-

ence of control variables on the output responses is shown

in figures 7, 8, 9. The contour plot of variables over the

responses is also shown, from which the desired combina-

tion of input variables can be chosen for a specific target

value of response.

For optimizing the average value of measured output

responses, hybrid Taguchi–Grey technique is applied to

convert the individual single objectives into a multi-ob-

jective problem [41]. Initially, with the nature of mea-

sured responses, S/N ratio formulae for smaller-the-better

or larger-the-better of Taguchi’s technique are applied to

the output values to determine the individual S/N ratio

for responses. Lower values of flank wear at tool face

and roughness at workpiece surface are desirable, for that

Eq. (1) is applied. Higher material removal is desirable,

and hence Eq. (2) is applied. After determining the S/N

Table 3. Measured output responses.

Trial no.

Flank wear (mm) Surface roughness (lm) MRR (g/min)

R1 R2 Average R1 R2 Average R1 R2 Average

1 0.254 0.244 0.249 0.321 0.331 0.326 1.746 1.756 1.751

2 0.291 0.301 0.296 0.404 0.416 0.410 4.026 4.014 4.020

3 0.487 0.479 0.483 0.719 0.701 0.710 7.826 7.842 7.834

4 0.286 0.282 0.284 0.381 0.359 0.370 4.123 4.097 4.110

5 0.742 0.752 0.747 0.498 0.488 0.493 6.272 6.254 6.263

6 0.299 0.305 0.302 0.558 0.542 0.550 3.581 3.591 3.586

7 0.923 0.909 0.916 0.411 0.433 0.422 5.178 5.208 5.193

8 0.287 0.295 0.291 0.446 0.466 0.456 3.227 3.213 3.220

9 0.416 0.424 0.420 0.498 0.514 0.506 6.768 6.776 6.772
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ratio, the values have to be normalized based on the

lower or higher desirable concept of GRA, as given in

Eqs. (4) and (5), which are given in table 4.

After the normalizing procedure, the deviation

sequence of the responses is determined. A Grey rela-

tional coefficient is determined for individual responses

and then a common Grey relational grade has to be

calculated in order to convert the single objective opti-

mization into multi-objective optimization by considering

the average values of individual Grey coefficients of

outputs. Ranking is given based on the higher Grey grade

and experiment number 3 ranks first and experiment

number 1 ranks last (table 5).

To derive the response table of Grey grade, shown in

table 6, average values of each parameter level is consid-

ered and from that the optimum conditions are evolved by

choosing the level values with larger Grey grade. The best/

optimal parameter levels are identified from the response

table as 180 m/min cutting speed; 0.09 mm/rev feed rate,

and 0.45 mm depth of cut, represented as A3B3C3.

Response plot of Grey relational grade is drawn based on

response table, which is shown in figure 10.

Influence of parameters on the output response can be

easily studied by means of the linear graph, also known as

interaction plot. Figure 11 shows the influence of various

inputs over the output Grey relational grade. If the rela-

tionship between two input parameters over the output

parameter is represented as parallel lines, then it is con-

cluded that no interaction exists between the two inputs. If

their relationship is represented as nonparallel lines, then it

is concluded that a prominent relationship exists between

the two inputs. From the interaction plot drawn, it is

obvious that a significant interaction exists between the

feed rate and all level values of cutting speed. In between

Figure 7. Influence of control variables on flank wear.
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depth of cut and chosen values of cutting speed, consider-

able amount of interaction exist. But in between depth of

cut and feed rate no interaction effect exists.

The statistical way of determining the significant

parameter and quantification of its contribution toward the

output is ANOVA. From the ANOVA we can determine

the most influential parameter that contributes toward the

output, by controlling that parameter the outputs can be

controlled. Results of ANOVA method are given in

table 7.

From the ANOVA table of S = 0.0225191, R2 value =

99.53% and R2 (Adj) = 98.13%, it is understood that the

model developed is better since the R2 and R2 (Adj) values

are close to 100% and are closer to each other. Nearly

77.67% contribution by depth of cut makes it the most

influential parameter, followed by 20.12% of feed rate and

the contribution of cutting speed is negligible since it

contributes only by 1.74%. The error obtained during the

analysis is 0.47%.

4.1 Validation experiment for Taguchi–Grey

analysis

On the basis of identified optimal input parameters, a val-

idation experiment is performed with the said experimental

setup to validate the results. The outputs obtained are flank

wear of 0.359 mm, 0.418 lm surface roughness, and 5.124

g/min of material removal, which are considerably better

than that of the values observed and recorded. With the

measured output of confirmation experiment, reduction in

flank wear by 18.98%, surface roughness by 11.34% with

an increase in MRR by 7.88% is observed. From the results

obtained, the efficiency of the Taguchi–GRA technique is

better understood.

4.2 Development of empirical models

Multiple nonlinear first-order regression models are devel-

oped for individual measured responses using statistical

Figure 8. Influence of control variables on surface roughness.
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Figure 9. Influence of control variables on MRR.

Table 4. Calculated S/N ratio and GRA normalizing sequence of responses.

Trial no.

S/N ratio Normalizing sequence

Flank wear Surface roughness MRR Flank wear Surface roughness MRR

1 12.076 9.736 4.866 0.000 0.000 0.000

2 10.574 7.744 12.085 0.133 0.295 0.555

3 6.321 2.975 17.880 0.509 1.000 1.000

4 10.934 8.636 12.277 0.101 0.163 0.569

5 2.534 6.143 15.936 0.843 0.531 0.851

6 10.400 5.193 11.092 0.148 0.672 0.478

7 0.762 7.494 14.308 1.000 0.332 0.726

8 10.722 6.821 10.157 0.120 0.431 0.407

9 7.535 5.917 16.614 0.401 0.565 0.903
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software Minitab-17. The fitted model empirical equations

for quality characteristics are given in Eqs. (11)–(13).

Flank wear ¼ � 0:665746 þ 0:00603016 speed þ 26:8381 feed

� 5:44683 depth � 0:19 speed � feed þ 0:0374603speed � depth
þ 12:8095 feed � depth

ð11Þ

Surface roughness ¼ � 1:05356 þ 0:0102437 speed þ 24 feed

� 2:31683 depth � 0:16119 speed � feed
þ 0:00577778 speed � depth þ 20:7619 feed � depth

ð12Þ
MRR ¼ 0:122079 þ 0:00526587 speed � 32:3381 feed

þ 0:659365 depth þ 0:227381 speed � feed

� 0:00990476 speed � depth þ 188:667 feed � depth:
ð13Þ

The plot of normal probability obtained during devel-

oping first-order nonlinear regression models for flank

wear, MRR, and surface roughness is shown in figure 12.

The residuals of probability plot for output responses fol-

low a straight line with the values situated nearby and no

evidence of skewness, outliers, nonnormality, and uniden-

tified existing of variables are seen, which provides as

better fit. The surface plot shows the relationship between

the three outputs: higher removal of material facilitates

wear and roughness.

4.3 Application of NSGA-II algorithm

The objective of this present investigation and analysis is to

lower the wear at flank face and to increase the amount of

material removed with the aim of keeping the surface

roughness within a desired value, that is, minimize flank

wear, maximize MRR with surface roughness as constraint.

The nontraditional metaheuristic algorithm used is NSGA-

II. The formulation of objective function is as follows:

Objective function formulation: Minimize (flank wear) ?

Maximize (MRR).

Constraint: Roughness B 0.3 lm.
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Figure 10. Response plot for Grey relational grade.

Table 5. GRA deviation sequence and Grey grade of responses.

Trial no.

Deviation sequence Grey relational coefficient

Grey relational grade RankingFlank wear Surface roughness MRR Flank wear Surface Roughness MRR

1 1.000 1.000 1.000 0.333 0.333 0.333 0.333 9

2 0.867 0.705 0.445 0.366 0.415 0.529 0.436 6

3 0.491 0.000 0.000 0.504 1.000 1.000 0.835 1

4 0.899 0.837 0.431 0.357 0.374 0.537 0.423 8

5 0.157 0.469 0.149 0.762 0.516 0.770 0.683 3

6 0.852 0.328 0.522 0.370 0.604 0.489 0.488 5

7 0.000 0.668 0.274 1.000 0.428 0.646 0.691 2

8 0.880 0.569 0.593 0.362 0.468 0.457 0.429 7

9 0.599 0.435 0.097 0.455 0.535 0.837 0.609 4

Table 6. Response table for weighted Grey grade.

Level/parameter Cutting speed Feed rate Depth of cut

Level 1 0.535 0.482 0.417

Level 2 0.531 0.516 0.489

Level 3 0.576 0.644 0.736

Bold values indicate the maximum values that corresponds to the optimum

condition
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Equal weightage (50%) is considered for flank wear and

MRR in this work. Maximization problem is converted in

to minimization problem by negating the maximization

equation; the objective function can be reformulated as

Objective function = (50% flank wear) – (50% MRR);

Subject to the constraint: Surface roughness B 0.3 lm.

The lower limit and upper limit of the parametric

constraints are given as

120 B cutting speed B 180

0.05 B feed rate B 0.09

0.15 B depth of cut B 0.45

From the simulation results obtained from NSGA-II,

the optimum machining conditions obtained are: 136

m/min of cutting speed, 0.057 mm/rev of feed rate, and

0.45 mm of depth of cut. The predicted output responses

during the optimization procedure are: flank wear of

0.378 mm, MRR of 5.231 g/min, and surface roughness

of 0.2995 lm, which is well within the set constraint

value.

The combined objective function obtained during simu-

lation for all iterations is shown in figure 13. It is observed

that initially the objective function is close to higher and as

the iteration progresses, the value of objective function

converges toward the lower value. It is also observed that

the convergence of combined objective function is faster

toward the final optimum result.

The variation of cutting speed during each iteration of

the simulation process is presented in figure 14. From the

graph, initially the cutting speed is around 123 m/min, and

as the simulation continues, cutting speed settles down to

136 m/min.
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Figure 11. Interaction plot for Grey relational grade.

Table 7. Analysis of variance for Grey grade.

Parameter DF Seq SS Adj MS F P % Contribution

Cutting speed 2 0.003772 0.001886 3.72 0.212 1.74

Feed rate 2 0.043654 0.021827 43.04 0.023 20.12

Depth of cut 2 0.168476 0.084238 166.11 0.006 77.67
Error 2 0.001014 0.000507 0.47

Total 8 0.216916 100

Bold value indicates the most significant factor (depth of cut) that contributes by an higher percentage
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Figure 12. Normal probability plot for output responses and its surface plot.
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Figure 13. Variation of objective function with iterations.
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Figure 14. Variation of cutting speed with iterations.
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The varying values of feed rate while simulating NSGA-

II are given in figure 15. It is observed that the feed rate

varies from 0.0527 and finally settles around 0.0567 mm/

rev, which is on the lower side of the chosen limits.

The variation of depth of cut value obtained during

iteration of algorithm is given in figure 16. During the

iterations, the depth of cut varies between 0.44 and 0.49

mm and finally settles around 0.4467 mm, which is on the

higher side of the parametric limits.

The nondominated solution set in the entire search space

is the pareto-optimal front [42]. Many solutions that trade-

off between the two chosen objectives, namely, mini-

mization of flank wear and maximization of MRR, are

shown in figure 17. In nondominated solution, one solution

will be better than the other solution in both the objectives,

whereas for other condition, one solution will be better than

the other solution in one objective, and it can be a wrong

solution for the another objective.

4.4 Validation experiment for NSGA-II

Another validation experiment is carried out with optimum

parametric values obtained from the metaheuristic algo-

rithm with input values of 136 m/min cutting speed, 0.057

mm/rev feed rate, and 0.45 mm depth of cut. The measured

outputs are tabulated in table 8.

From the validation experimental results, observation

highlights that simulation results of NSGA-II are nearer to

the predicted values thereby a better optimization is pos-

sible with the algorithm. The flank wear at the cutting insert

flank face and profile of surface roughness of machined

surface obtained from the validation experiment of the P/M

MMC specimen is given in figure 18. The surface rough-

ness profile shows a better profile, which varies very low

with respect to the mean line.

5. Conclusions

The conclusions derived by applying an hybrid Taguchi–

GRA and an metaheuristic nontraditional algorithm NSGA-

II during machining P/M prepared Al–4%Cu–7.5%SiC

with uncoated cemented carbide inserts are as follows:

• The optimum machining condition obtained with

application of hybrid Taguchi–GRA is cutting speed:

180 m/min, feed rate: 0.09 mm/rev, and depth of cut:

0.45 mm.
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Figure 15. Variation of feed rate with iterations.
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Figure 16. Variation of depth of cut with iterations.

Table 8. Predicted and experimental results of NSGA-II.

Flank wear

(mm)

Surface

roughness (lm)

MRR

(g/min)

Predicted 0.378 0.299 5.231

Experimental 0.397 0.391 5.617

% Deviation 4.79 23.40 6.87

4 4.5 5 5.5
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Flank Wear (mm)

M
at

er
ia

l R
em

ov
al

 R
at

e 
(g

m
./m

in
)

Figure 17. Pareto-optimal front developed for objective

function.
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• A significant relationship/interaction exists between

the feed rate and cutting speed and also between depth

of cut and cutting speed, when all the selected level

values of cutting speed is considered. But no interac-

tion exists between feed rate and depth of cut.

• Statistical results of ANOVA outlines that 77.67% of

the process is mainly controlled by the parameter depth

of cut and 20.12% process is controlled by feed rate.

With meager contribution, cutting speed does not show

any influence on the output of the machining process.

• Machining with optimum condition reached with

hybrid Taguchi–GRA approach reduces flank wear

by 18.98% and surface roughness by 11.34% with an

increase in MRR by 7.88%.

• Using Minitab-17 statistical software, nonlinear empir-

ical models are developed, which are fed into the

NSGA-II algorithm. The optimum machining param-

eters obtained from NSGA-II are cutting speed of 136

m/min, depth of cut of 0.45 mm, and feed rate of 0.057

mm/rev.

• From the confirmation experimental results of NSGA-

II, observation proves that NSGA-II simulation results

are well nearer to the predicted values, thereby a better

optimization is possible with the algorithm. Pareto

front developed will be useful in effective choosing of

parameters for maximum MRR and minimum flank

wear.
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