
Machine-Adaptable Dynamic Binary Translation-
David Ung and Cristina Cifuentes ~

Department of Computer Science and Electrical Engineering

University of Queensland, QLD, Australia

{davidu,cristina}@csee.uq.edu.au

ABSTRACT

Dynamic binary translation is the process of translating and
optimizing executable code for one machine to another at
runtime, while the program is "executing" on the target machine.

Dynamic translation techniques have normally been limited to
two particular machines; a competitors machine and the
hardware manufacturer's machine. This research provides for a
more general framework for dynamic translations, by providing a
framework based on specifications of machines that can be
reused or adapted to new hardware architectures. In this way,
developers of such techniques can isolate design issues from
machine descriptions and reuse many components and analyses.

We describe our dynamic translation framework and provide
some initial results obtained by using this system.

Key-words

Dynamic compilation, emulation, interpretation, dynamic
execution, binary translation.

1. INTRODUCTION
Binary translation is a migration technique that allows software
to run on other machines achieving near native code
performance. Binary translation grew out of emulation
techniques in the late 1980s in order to provide for a migration
path from legacy CISC machines to the newer RISC machines.
Such techniques were developed by hardware manufacturers
interested in marketing their new RISC platforms. From mid
1990, binary translation techniques have been used to translate
competitors' applications to the desired hardware platform. In
the near future, we can expect to see such techniques being used
to optimize progrmns within a family of computers, for example,
by optimizing Spare architecture binaries to UltraSparc
architecture binaries.

UQBT, the University of Queensland Binary Translator, has
developed techniques, specification languages and a complete
framework for performing static translations of code [14,19]. In
static binary translation, the code is translated off-line, before the
program is run, by creating a new program that uses the machine

Permission to make digital or herd copies of ell or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profi t or commercial advan-
tage end that copies bear this notice and the full ci tat ion on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
Dynamo "00 1/00 Boston, Massachusetts, USA
© 2000 ACM ISBN 1-58113-24.1-7/00/0001 . - $ 5 . 0 0

instructions of the target machine. However, static translation
has its limitations. Due to the nature of the yon Neumann
machine, where code and data are represented in the same way,
it is not always possible to discover all the code of a program
statically. For example, the target(s) of indirect transfers of
control such as jumps on registers are sometimes hard to analyse
statically. Therefore, a fall-back mechanism is commonly used
with a statically translated program, in the form of an interpreter.
The interpreter processes any untranslated code at runtime and
returns to translated code once a suitable path is found.

The limitations of static binary translation are overcomed with
dynamic translation, at the expense of performance. In a
dynamic binary translator, code gets translated "on the fly", at
runtime, while the user perceives ordinary execution of the
program on the target machine. As oppossed to emulation,
dynamic translation generates native code and performs on-
demand optimizations of the code. Hot spots in the code are
optimized at runtime to increase the performance of execution of
such code. Further, some optimizations that are not possible
statically are possible dynamically.

In this paper we describe the design of a machine-adaptable
dynamic binary translator based on the static UQBT framework -
UQDBT. A tool is said to be machine-adaptable when it can be
"configured" to handle different source and/or target machines.
In this way, a machine-adaptable dynamic binary translator is
capable of being configured for different source and target
machines through the specification of properties of these
machines and their instruction sets. In other words, the
translator is not bound to two particular machines (as per
existing translators) but is capable of supporting a variety of
source and target machines.

UQDBT differs from other dynamic translators in that it provides
a dean separation of concerns, by allowing machine-dependent
information to be specified, as well as performing machine-
independent analyses to support machine-adaptability. In this
way, UQDBT can support a variety of C/SC and RISC machines
at low cost. To support a new machine, the specifications for
that machine need to be written and most of the UQDBT
framework can be reused. New machine-specific modules may
need to be added i f a particular feature of a machine is not
supported by the UQDBT framework and such feature is not
generic across different architectures.

* The first author has support from an Australian Postgraduate
Award. This work has further support from the Australian
Research Council under grant No. A49702762 and Sun
Mierosystems, Inc.

* On sabbatical leave at Sun Microsystems, Inc.

41

This paper is structured in the following way. Section 2
discusses the static and dynamic frameworks for binary
translation. Section 3 outlines the research problems of machine
adaptable binary translation and what is addressed in UQDBT.
Section 4 provides a case study of translation in the framework
through an example program. Section 5 shows preliminary
results in the use of the framework. Section 6 discusses effects
of changing the granularity of translation and conclusions are
given in Section 7. The work reported herein is work in progress.

1.1 Related work
In an attempt to improve on existing emulation techniques,
companies in the late 1980s began using binary translation to
achieve native code performance. Perhaps the most well known
binary translators are Digitars VEST and rex[1], which translate
VAX and MIPS machine instructions to 64-bit Alpha
instructions. Both of these translators and others, like Apple's
MAE[2] and Digital's Freeport Express[3] have a runtime
environment that reproduces the old machine's operating
environments. The teatime environment offers a fallback
interpreter for processing old machine code that was not
discovered at translation time, for example, due to indirect
transfers of control.

In recent years, we have seen a transition to hybrid translators,
which are proving to be extremely successful. The process of
mixing translation with emulation and runtime profiling brought
about some of the leading performers in the hybrid translation
scene - Digital's FX!3214], Executor by Ardi[5] and Sun's
Wabi[6]. FX[32 emulates the program initially and statically
translates it in the background, using information gathered
during profiling. Embra[7], a machine simulator, is built using
dynamic translation techniques that were developed in Shade; a
fast instruction-set simulator for exeeution profiling [17]. Le[8]
investigates out-of-order execution techniques in dynamic binary
translators, though their results are based on an interpreter-based
implementation. Many of the optimization techniques used in
dynamic translators have been derived from dynamic compilers
such as SELF[9] and tee[10]. Runtime optimizations in such

Ms-RTLs

I
Semantic I
biapper

Ms Assembly [
instructions

Instruction

Decoder

Ms binary T
rucfions stream

Decoder

J a~
-1 Ann

s.,
e~

level I
ysb

s. e~

t.
grq

Mt-RTLs

J

I Efficient bit Assembly
[nS~UC~ons

Instruction [
Baeoder

J bit binary
instrnctions slTeam

Encoder

Figure 1. Static binary translation framework

compilers can provide 0.9x - 2x the performance of statically
compiled programs. Such techniques have also been used in
Just-in-time (J1T) compilers for Java. JITs from Sun[ll],
Intel[12] and others dynamically generate native machine code at
rantime.

To date, none of the emwent binary translators can generate code
for more than one source and target machine pair. The machine-
dependent aspects of the translation are hard coded into the
translator, making it hard to reuse the translator's code for
another set of machines. Our research differs from previous
research in that machine-dependent issues are separated from
machine-independent translation concerns, hence providing a
way of specifying different machines (source and target
machines) and supporting those specifications through reusable
components, which implement the machine-independent
analyses. This paper shows that this process is feasible and
therefore enhances the reuse of code for the creation of dynamic
binary translators. However, the machine-adaptability of the
translator comes at the cost of performance, which is discussed in
Section 5.

2. BINARY TRANSLATION

FRAMEWORKS
Binary translation is a process of low-level re-engineerinff, that
is, decoding to a higher level of abstraction, followed by
encoding to a lower level of abstraction. Figure 1 gives a block-
view of the UQBT static translation framework [14,19]. The re-
engineering process is divided into the initial reverse engineering
phase on the left-hand side and the forward engineering phase on
the fight-hand side. The reverse engineering steps recover the
semantic meaning of the machine instructions by a three-step
process of decoding the binary file, decoding the machine
instructions of the code segment, and mapping such instructions
to their semantic meaning in the form of register transfer lists
(RTLs). The high-level analysis process lifts the level of
representation of the code to a machine-independent form,
performs binary translation specific optimizations on the code,
and then brings down the level of abstraction to RTLs for the
target machine. This is followed by the forward engineering
process of optimizing the code, encoding the instructions into
machine code and storing the code and data of the program in a
binary file. The forward engineering process is standard
optimizing compiler code generation technology.

RTL is a simple, low-level register-transfer representation of the
effects of machine instructions. A single instruction corresponds
to a register-transfer list, which in UQBT is a sequential
composition of effects. Each effect assigns an expression to a
location. All side effects are explicit at the top level; expressions
axe evaluated without side effects, using purely fimetion RTL
operators. An RTL language is a collection of locations and
operators. For a machine M, the sub-language M-RTL is defined
as those RTLs that represent instructions of machine M in a
single RTL.

As previously mentioned, the problems with static binary
translation are the inability to fred all the code that belongs to a
program and the limitation of optimizations to static ones,
without taking advantage of dynamic optimization techniques.
One of the hardest problems to solve during the decoding of the

42

machine instructions is the separation of code from data - any
binary-manipulation tool faces the same problem. Unfortunately,
this problem is not solvable in general as both code and data are
represented in the same way in yon Neumann machines. This
makes static translation incomplete and hence a runtime support
environment is needed in the form of an interpreter, for example.

2.1 Dynamic binary translation framework
In dynamic binary translation, the actual translation process takes
place on an "as needed" basis, whereas static binary translation
attempts to translate the entire program at once. Figure 2
illustrates a typical framework for a dynamic translator that uses
a basic block as the unit of translation (i.e. its granularity). The
left-hand side is similar to that of a static translator, but the
processing of code is done at a different level of granularity
(typically, one basic block at a time). The right-hand side is a
little different to that of static translation. The first time a basic
block is translated, assembly code for the target machine is
emitted and encoded to binary form. This binary form is run
directly on the target machine's memory as well as being kept in
a cache. A mapping of the source and target addresses of the
entire program for that basic block is stored in a map. If a basic
block is executed several times, when the number of executions
reaches a threshold, optimiTations on the code are performed
dynamic, ally to generate better code for that hot spot. Different
levels of optimization are possible depending on the number of
times the code is executed.

Optimized code then replaces the cached version of that basic
block's code. The processing of basic blocks is driven by a
switch manager. The switch manager determines whether a new
translation needs to be performed by determining whether there
is an entry corresponding to a source machine address in the
map. If an entry exists, the corresponding target machine
address is retrieved and its translation is fetched from the cache.
If a match is not found, the switch manager directs the decoding
of another basic block at the required source address.

Ms-RTLs Mt Assembly
~1 Basic block] instructions

Translator '

Ms assembly T c ybly
iostructions

Basic block
I Instruction
[Decoder

mstructionsstreun|

I Sw,,eh I

Figure 2. Dynamic b inary t ranslat ion ~ a m e w o r k

2.2 Machine-adaptable dynamic binary
translation framework
Figure 3 extends Figure 2 to enable a dynamic translator to easily
adapt to different source and target machines. This effort is
achieved by a clean separation of concerns between machine-
dependent information and machine-independent analyses.
Through the use of specifications, a developer is able to
concentrate on writing descriptions of properties of machines
instead of having to (re)write the tool itself. The use of
specifications to support machine-dependent information can also
generate parts of the system automatieaUy and provide a skeleton
for the user to work on.

As seen in Figure 3, the decoding of the binary file to source

S emontic
Mapper

Ms assembly t
instructions /

I Bas~block
~ Instruction

~ Ms binary
h~structions stream |,

~ Basic block
Binary-file
Deeode~

. ,
Ms'RT,~ Ms-RTL ---~ I-RTL

I [, transhtor [

Basic block I

I-RTL Simple
, , Optimizations ,

Mt assembly
hstructions

[Basieblock / ~ [
] Instruction ~ ' ~ I [4

• A Encoder I] Spare
Address I / I , L . I sLz' I

• I - , ~ I M t binary ~

MMsap~ ping r ~ instructions stream

Swkch
Manager

Figure 3. Machine-adaptable dynamic b inary t ranslat ion f ramework

43

machine RTLs (Ms-RTLs) requires the description of the binary-
file format of the program, and the syntax and semantics of the
machine instructions for a particular processor. We have
experimented with three different languages, reusing the SLED
language and developing our own BFF and SSL languages:

* BFF: the binary-file format language supports the
description of a binary-file's structure [15]. Current formats
supported are DOS EXE, Solaris ELF and to a certain
ex ten t , Windows PE. SRL, a simple resourceable loader,
supports the automatic generation of code to decode files
specified using the BFF language.

• SLED: the specification language for encoding and
decoding supports the description of the syntax of machine
instructions; ie. its binary to assembly mnemonic
representation [18]. SLED is supported by the New Jersey
machine-code toolkit [13]. The toolkit provides partial
support for automatically generating an instruction decoder
for a particular SLED specification. Current machines
specified in this form include the Pentium, SPARC, MIPS
and Alpha.

• SSL: the semantic specification language allows for the
description of the semantics of machine instructions. SSL is
supported by SRD [16]. SRD is the semantic mapper
component, which supports the parsing of SSL files and the
storing of such information in the form of a dictionary,
which can be instantiated dynamically. The output of this
stage is Ms-RTLs.

Ms-RTLs are converted to machine-independent RTLs (I-RTLs)
through analyses, which remove machine dependent concepts of
the source machine. This process identifies source machine's
control transfers and maps it to the more general forms in I-RTL.
For example: the following SPARC Ms-RTL for a call instruction

32 %07 = %pc

32 %pc = %npc

32 %npc = Ox40000

is associated as a high-level call instruction in I-RTL. Other
forms of transfers of control that exist in I-RTL are jumps,
returns, conditional and unconditional branches. I-RTL supports
register transfers, stack pushes and pops, high-level control
transfers, and condition code functions. Some of these higher-
level instructions allow for abstraction from the underlying
machine. I-RTLs are converted into Mr-assembly instructions by
mapping the functionality of such register transfers to the
instructions available on the target machine, assisted by the SSL
specifications. The instruction encoding process is supported by
the SLED specification language, which maps assembly
instructions into binary form. This code is then stored in the
translator's cache for later reference.

As an example, Figure 4 shows the various instruction
transformations during the translation of a Pentimn machine
instruction to a SPARC machine instruction. The reverse-
engineering stage decodes the Pentium binary code (0000 0010
1101 1000) to produce Pentium assembly code, which is then
lifted to Pentimn-RTLs and finally abstracted to I-RTL by
replacing machine-dependent registers with virtual registers.
The forward-engineering phase encodes the I-RTL to SPARC-
RTL, SPARC assembly instructions and finally SPARC binary
code.

v[lO0] := v[98] + v[99]

r[l] := r[O] + r[l] r[9] := fifO] + r[91

l ,l
addl %ebx, %eax add %oi, %o2, %ol

l ,l
0000 0010 ii01 i000 I001 0010 0000 0010

0100 0000 0000 I010

Figure 4. Pentium to SPARC example

2.3 Specification requirements in dynamic
binary translation
Dynamic translation cannot afford time-consuming analyses to
lift the level of representation to a stage that resembles a high-
level language, as per UQBT [14]. In UQBT, static analyses
recover procedure call signatures including parameters and
return values, thereby allowing the generated code to use native
calling and parameter conventions on the target machine. If such
analyses were used in dynamic translation, high performance
degradation would be experienced during the translation.

The alternative to costly analyses to remove properties of the
underlying source machine is to go halfway to a high-level
representation. We support inexpensive analyses to recover a
basic form of high-level instructions (such as conditional
branches and calls without parameters) and we emulate (rather
than abstract away from) conventions used by the hardware and
operating system in the source machine (i.e. without using the
native conventions on the target machine). Both these steps are
possible through the specification of features of the underlying
hardware. For example, we emulate the SPARC architecture
register windowing mechanism on a Pentium machine by
specifying how this mechanism works. On a SPARC machine,
we emulate the Pentinm stack parameter passing convention.
However, we do not emulate the SPARC processor delayed
transfers of control as we support higher level branching
instructions. Clearly, this compromise has a performance impact
on the translated code, but it provides a fast way of translating
code, which can then be optimized at nmtime if it becomes a
hotspot in the program.

In order to support the translation of Ms-RTLs to I-RTLs, the
SSL language has been extended from machine instruction level
semantics to include hardware semantics as well. For example,
for the SPARC architecture, the effects of changing register
windows and how each register in the current window is
accessed were specified, and for the Pentium architecture,
properties about the stack movement were specified. This
information is currently not used by UQBT; only by UQDBT.
UQBT relies on costly analysis to abstract higher-level
information, without depending on very low-level details of the

underlying hardware.

44

3. RESEARCH PROBLEMS
Unlike other dynamic binary translators that are written with a
fixed set of source and destination machines in mind, UQDBT is
designed to handle a wide range of CISC and RISC machine
architectures. While some translators can directly map source
machine-specific idioms to the target machine, such translators
are bound to work only under that source/target pair. To extend
those translators to support different machines, extensive
rewriting of the code is needed, as the direct idiom mapping
between machines is different. The goal of UQDBT is to provide
a framework that can be modified and extended with ease to
support additional source and target machines without the need
to rewrite a new translator from scratch. The process of finding a
generalization of all existing (and future) machines is non-trivial
and cannot be fully predicted. UQDBT uses UQBT's approach
of specifying properties of machine instruction sets that are
widely available in today's machines and allowing the user to
extend the specification language to support new features of
(future) machines to reuse the rest of the translation framework.
As with UQBT, we use multi-platform operating systems to
concentrate on the more fundamental issues of instruction
translations.

UQDBT's goal was to address the following types of research
problems in dynamic machine-adaptable binary translation:

1. What is the best way of supporting the machine-dependent
to machine-independent RTL translation? The main criteria in
the translation is efficiency, hence expensive analyses are not an
option. Further, the translation needs to be supported by the
underlying specification language, in order to generate Ms-RTLs
that contain enough information about the underlying Ms
machine,

2. How much state of the source machine is needed for
dynamic translation and what effects does this have on
specification of such properties of the machine?

3. What is the best way of automating the transformation of I-
RTLs down to Mt-assembly code? Can a code selector be
automatically generated from a target machine specification?

4. Is it possible to efficiently use specifications that contain
information about operating system conventions, such as calling
and parameter conventions used by the OS to communicate with
the program? For example, in order to use Pentium's stack
parameter convention in code that was translated from a SPARC
architecture binary (which passes parameters on registers),
analysis to determine the parameters needs first to be performed.

3.1 Implementation of UQDBT
We have been experimenting with the right level of description
required in order to support dynamic translation based on
specifications. In our experience, too low-level or high-level a
description of the underlying machine is unsuitable. We view
UQBT's semantic specifications of machines as a high-level
description, as they only describe the machine instruction
semantics but do not specify the underlying hardware that
supports the control transfer instructions (e.g. the register
windows and delayed instructions on the SPARC architecture).
In UQBT, such detailed level of information is not needed
because of the specification and use of calling conventions and

control transfer instruction. Further, other semantic description
languages are used to describe all the low-level details of the
underlying machine; such languages are suitable for emulation
purposes but contain too much information for dynamic
translation.

The first problem above has been addressed by specifying how
the hardware works in relation to control transfer instructions;
this provides for a fast translation of Ms-assembly instructions
into information-rich Ms-RTLs (the extended ones), avoiding the
need to recover information at runtime. The following are the
types of information that have been described for SPARC and
Pentium processors:

• The effects of the SPARC register windowing mechanism

• Stack properties
• Memory alignment
• Parameters and return locations.

The SPARC machine allocates a new set of working registers
each time a SAVE instruction is called. In other words, it
effectively provides an infinite number of registers for program
use. The effect of the SPARC register windows is captured by
extending SSL to specifying how each of the registers are
accessed and how the register windows change during each
s a v e and r e s t o r e instruction, hence providing a different set
of working registers. This provides accurate simulation on target
machines that only have a limited amount of usable registers.

The effects of the stack pointer are different on different types of
machines. On Pentium machines, the stack pointer can change
indefinitely within a given procedure. On RISC machines, the
stack pointer is normally constrained to a pre-allocated stack
frame's fixed size that includes enough space for all register
spills of that procedure. Specifying how the stack changes in the
original machine suggests ways for the code generator to
generate stack manipulation instruction on the target machine.
For example, simulating stack pushing and popping on a SPARC
machine.

Memory a l i~ment places constraints on how the machine state
at a particular point in the program should be. In SPARC, the
frame pointer and stack pointer need to be double word aligned.
Thus, the code generator needs to enforce such conditions before
entry to or exit from a call.
Differences in machine calling conventions, namely how the
parameters are passed and where return values are stored, play a
crucial part on how the code generator constructs the right setup
when calling native library functions. SPARC generally passes
parameters in registers while Pentium pushes them on the stack.
This information is needed for both source and target machines
to identify the transformation of parameters and return values.
Differences in endianness between source and target machines
requires byte swapping to be performed when loading and storing
data. Byte swapping is an expensive process. Although the
Pentium can do byte swapping quite easily, it takes about 10
SPARC V8 instructions for a 32-bit swap. This is an expensive
process and should be avoided i f possible. In particular, when
running a Pentium binary on a SPARC, every push and pop
instruction (which appears quite often in Pentium programs) will
require byte swapping. Heuristics are used in UQDBT to avoid
byte swapping on pushing and popping to the stack.

45

main()

8048918~

8048919:

804891b:

8048920:

8048925:

80489281

804892a:

804892c:

804892d:

55

8b ec

68 f8 93 04 08

e8 9b fe ff ff

83 c4 04

33 cO

eb 00

c9

c3

pushl %ebp

movl %esp,%ebp

pushl $0xS0493f8

call 0xfffffe9b <printf>

addl $Ox4,%esp

xorl %eax,%eax

jmp 0x0

leave

ret

Figure 5. "Hello World" x86 disassembly

The second problem above is related to the first one. The
amount of source machine state that is carried across depends on
the effectiveness of translation in the first problem. For areas
that are not easily specified or unspecified, they are carried
across and are apparent within the maehine-independant RTL. In
UQDBT, control transfer instructions will contain a tag
indicating how to process its delayed slot instruction (in
architectures that support delayed slots).
The third problem above is current work in progress. The goal is
not only to automatically construct the code generator, but also
determine the best performance heuristics for selecting target
machine instruction when encountering similar patterns. Some
patterns may never be matched or may be nearly impossible to
match. For example, trying to pattern match a SPARC s a v e
instrnction with some Pentium-RTLs.

Our experiences with the fourth problem above suggest that
performance can be gain by using native OS conventions.
UQDBT currently simulates the calling convention for Pentium
programs on a SPARC machine, i.e. parameters are passed on
the stack instead of in registers. To remove this simulated effect
and convert it to use native conventions, one needs know:

• How much improvement does it offer over direct machine
simulation?

* At what level should this conversion occur?

* Is it worth while doing such analysis in a dynamic binary
translation environment?

4. CASE STUDY
In this section we show an example of a small Pentium program
converted by UQDBTps (the "ps" postfix indicates translations
from Pentium to SPARC architectures) to run on a SPARC

8048918: PUSH r[29]

8048919: *32* r[29] 1 = r[28]

804891b: PUSH 134517752

8048920: *32* r[28] := r[28] - 4

32 m[r[28]] := ~pc

CALL 0X80487c0

8048925:

8048928:

804892a:

804892c1

804892d:

32 r[tmpl] := r[28]

32 r[28] := r[28] + 4

ADDFLAGS32(r[tmpl], 4, r[28])

32 r[24] := r[24] ^ r[24]

LOGICALFLAGS32(r[24])

JUMP 0x804892c

32 r[28] := r[29]

32 r[29] := POP 32

BET

Fimxre 6: I-RTLs for '~fIello World"

machine. Both programs are for the Solaris operating system.
The main differences of the two test machines are:

1. SPARC is a RISC architecture, whereas Pentium is CISC.

2. SPARC is big-endian, while Pentium is little-endian.

3. SPARC passes parameters in registers (and sometimes on
the stack as well), while Pentium normally passes them on
the stack.

4.1 Basic block translations and address

mappings
Figure 5 is the disassembly of a q-Iello World" binary program
compiled for the Pentium machine running Solaris. The first
column is the source address seen by the Pentium processor. The
second and third columns are the actual Pentium binaries and its
corresponding assembly representation. There are 3 basic blocks

0X43676c81 save %sp, -132, %sp

0x43676cc: add %sp, -4, %sp

0x43676d0: add %i7, 8, %10

0x43676d4: st %10, [%sp + 0x84]

0x43676d81 mov %sp, %10

0x43676dc: subcc %10, 4, %10

0x43676e01 mov %10, %sp

Ox43676e41 mov %fp, %10

0x43676e8: st %10, [%sp + 0x84]

0x43676ec: mov %sp, %10

0x43676f01 mov %10, %fp

0x43676f4: mov %sp, %10

0x43676f81 subcc %10, 4, %10

0x43676fc: mov %10, %sp

0x4367700: sethi %hi(0x8049000), %10

0x43677041 add %10, 0x3f8, %10 ! 0x80493f8

0x4367708: at %10, [%sp + 0x84]

0x436770c: id [%sp + 0x84], %00

0x4367710z mov %fp, %10

0x43677141 mov %sp, %11

0x4367718: sethi %hi(0xfffffc00), %12

0x436771c: add %12, 0x3f8, %12 ! 0xfffffff8

0x4367720: and %sp, %12, %sp

0x43677241 and %fp, %12, %fp

0x4367728: sethi %hi(0xef663400), %96

0x436772c: call %96 + 0xlb8] <printf>

0x4367730: nop

0x4367734: mov %11, %sp

0x43677381 mov %10, %fp

0x436773c: sethi %hi(0xS048800), %95

0x43677401 add %95, 0x125, %95

0x43677441 sethi %hi(0x41bfc00), %96

0x4367748: call %96 + 0x370 !<switch_3nanager>

0x436774c: nop

Figure 7. Generated Spare assembly for the I st BB o f

Figure 6

46

Simulated

Stack pointer

The next 16

param eters

First six

parameters

Register Spill area

%sp + 0x84

%sp + 0x5¢

% sp

Figure 8. Sparc stack frame

(BBs) in this program:

, first BB - 4 instructions (0x8048918 to 0x8048920)

• second BB - 3 instructions (0x8048925 to 0x804892a)

• third BB - 2 instructions (oxso4892e to 0xao4892d)

Figure 6 shows the intermediate representation (I-RTLs) for
these BBs. Note that the translation is done incrementally, i.e.

each BB is decoded separately at runtime.

UQDBTps works in the source machine's address space and
translates a basic block at a time. Both the data and text from

the source Pentium program are mapped to the actual machine's
source address space even though it is actually running on a
SPARC machine. For example, a Pen!turn program with data
and text sections located at 0x8040000 and 0x8048000 will be

mapped exactly at these addresses even though a typical SPARC
program expects the text and data at addresses 0xl0000 and
0x20000. UQDBTps also simulates the Pen!turn machine's
environment in the SPARC generated code, i.e. the pushing and
popping of temporaries and parameters from the Pen!turn
machine is preserved in the generated code. UQDBTps tries to
generate code as quickly as it possibly can with little or no

optimization.

4.2 Pentium stack simulation
Figure 7 is the SPARC code generated for the first BB of Figure
6. The first four instructions simulate the Pentium main
prologue by setting up the stack and storing the return address

(obtained bythe value of%£7 + 8). 132 bytes of stack space

are reserved in the initial save %sp, -132, %sp. This

space is used by the SPARC processor to store parameters, return
structttres, local variables and register spills. Hence the aetnal
simulated Pentium stack pointer %esp starts at %sp+0x84 (see
Figure 8), while Pentium's %ebp is mapped to the SPARC
register %fp. Pushing is handled by subtracting the size of the
value pushed from %sp and storing the result in [%sp+0x84].
Popping removes from [%sp+0x84] and increments %sp by the
appropriate size.

4.3 Function calls and stack alignments
In Pentium, actual parameters to function calls are passed on the
stack while SPARC parameters are passed in registers. The

Ox435ff58: sethi %hi(Ox4485cO0), %10

Ox435ff5c: add %10, Ox3eS, %10 ! Ox4485fe8

Ox435ff60: mov %sp, %11

Ox435ff64: st %11, [%10]

Ox435ff68= mov %sp, %10

Ox435ff6c: addcc %10, 4, %10

Ox435ff70: mov %10, %sp

Ox435ff74= sethi %hi(Ox4267000), %10

Ox435ff78: add %10, Ox3d4, %10 ! Ox42b73d4

Ox435ff7c: rd %ccr, %11

Ox435ffSO: st %11, [%10]

Ox435ff84: sethi %hi(Ox4486000), %10

Ox435ff88: add %10, 0x18, %10 ! 0x4486018

Ox435ffSc: sethi %hi(Ox4486000), %11

Ox435ffgo: add %11, OxlS, %11 ! 0x4486018

Ox435ff94: ld [%11], %11

Ox435ff98: sethi %hi(Ox4486000), %12

Ox435ffgc: add %12, OxlS, %12 ! 0x4486018

Ox435ffaO: id [%12], %12

Ox435ffa4: xorcc %11, %12, %11

Ox435ffa8: st %11, [%10]

Ox435ffac: sethi %hi(Ox42b7000), %10

Ox435ffbO: add %10, Ox3d4, %10 ! Ox42673d4

Ox435ffb4: rd %ccr, %11

Ox435ffbS: st %11, [%10]

Ox435ffbc: sethi %hi(OxS048800), %95

Ox435ffcO: add %95, Oxl2c, %95 ! 0x804892c

Ox435ffc4: sethi %hi(Ox41bfcO0), %96

Ox435ffcS: call %g6 + 0x370 !<switch_manager>

Ox435ffcc: sop

Figure 9. Generated Sparc assembly for the 2 "a BB of

figure 6

printf format string to "Hello World" is at address

$Ox80493f8 and is pushed by the instruction 804891b (see
Figure 5). To successfully call the native SPARC p r i n t f

function, this address must be stored in register %00 (instruction

0x436770c in Figure 7). The equivalent p r i n t f in SPARC
is at 0 x e f 6 6 3 5 b 8 and a call to this function is made

(instruction 0x436772c) . Calls to library functions such as

p r i n t f are assumed by UQDBTps to exist on the source as
well as the target machine. This assumption is not restrictive as
long as there is a mapping from the source library function to an
equivalent function on the target machine; i.e. libraries can be
reproduced on the target machine by translation or rewriting to
produce such a mapping. Translators such as FX!32 make the
same assumption.

SPARC machines expect %sp and %fp to be aligned to double

word (64 bits) boundaries. Therefore, before calling a native
SPARC library function, %sp and %fp need to be 8-byte

aligned. The current values are restored after the function call
returns (instructions 0x4367734 and 0x4367738) .

At the end of a basic block, control is passed back to UQDBTps'
switch manager, with the indication of the next basic block
address to be processed in %95 (0x8048925 in the above
case). It is the role of the switch manager to decide whether to
start the translation indicated in %05 or fetch an already
translated BB from the translation cache. In the above ease
(where the next BB starts at 0x8048925) , the address is not in

the translation map, hence the translation starts at that new
address. Figure 9 shows the generated SPARC assembly for the
next BB for the Pentium program.

47

4.4 Register mapping and condition codes
During the translation, all Pentium registers are mapped to
virtual registers (i.e. memory locations). To access a virtual
register on a SPARC machine, a sethi and an add instruction
are used. For example, instructions Ox435ffB4 and
0 x 4 3 5 f f 8 8 in Figure 9 are used to access the virtual register

representing the x86 register %eax.

While most instructions on SPARC do not affect condition codes
(flags) unless explicitly indicated by the instruction, almost all
Pentium instructions affect the flags. Each Pentium instruction
that affects the status of the flags is simulated using the
equivalent condition code version of the same instruction on the
SPARC machine (instructions 0 x 4 3 5 £ £ 6 c and 0x435f~:a4) .
The condition codes are read (instruction 0 x 4 3 5 f t : 7 c) and
saved to the virtual flag register (instruction 0x435 ~: f 80) after
these instructions, to preserve its current value, which can be
retrieved later i f required.

A closer look at the above example shows that the generated
code is not very efficient. Simple optimizations such as forward
substitutions and dead code elimination can greatly reduce the
size of the generated code. Such optimizations can yield better
code but will take longer to generate - a trade off between code
quality and speed. The code generator hack-end of UQDBTps is
very fast despite the poor quality of the generated code. We are
currently implementing on-demand optimizations, to the hotspots
in the program, as well as performing register allocation.

5. PRELIMINARY RESULTS
UQDBT is based on the UQBT framework, as such, its front-end
is re-used from UQBT, changing its granularity of decoding from
the procedure level to the basic block level. The front-end uses
the extended SSL specifications and generates Ms-RTLs. The
machine instruction encoding routines of the back-end are
automatically generated from SLED specifications using the
NJMC toolkit.

This section shows some preliminary results obtained by two
dynamic translators instantiated from the UQDBT framework;
UQDBTps (Pentium to SPARC) and UQDBTss (SPARC to
SPARC). It then looks at the types of optimizations that need to
be introduced in order to improve the performance of frequently
executed code, and it gives the reader an idea of effort gone into
the development of the framework and the amount of reuse
expected.

5.1 Performance
Micro-benchmark results were obtained using a Pentium MMX
250 MHz machine and an UltraSparc 1T 250 MHz machine, both
running the Solaris operating system. The results reported
herein are those of the translation overhead and do not currently
make use of dynamic optimizations, only register caching within
basic blocks. Clearly, the performance of generated binaries
from UQDBT without optimization is inferior to direct native
compilation. A typical 1:10 ratio (i.e. 1 source machine
instruction to 10 target machine instructions) is expected in a
typical emulator/interpreter without caching. UQDBTps gives
figures close to this ratio. For example, for the 9 Pentium
instructions of Figure 5, 95 SPARC instructions were generated.
While this ratio is similar to that of emulation, the speed up
gained from UQDBT comes from reusing already translated BBs

from the translation cache when the same piece of code is
executed again.

In its present form, UQDBT is still in its early development and
hence we provide preliminary results for UQDBTps, a Penfium
to SPARC translator, and UQDBTss, a SPARC to SPARC
translator. It is undoubtedly true that there is little practical use
for SPARC to SPARC translation unless runtime optimizations
can significantly speed up translated programs. The inclusion of
this translation is to show the effect of machine-adaptability in
UQDBT. Further, the translation from SPARC binaries to I-RTL
removes any machine dependencies and thus, during I-RTL to
SPARC code generation, the UQDBTss is unaware of the fact
that the source machine is SPARC. This is also true for
UQDBTps. Since little analysis is done to the decoded
instructions and processing is concentrated on decoding and code
generation requested by the switch manager, it better reflects the
performance impact on the use of on-demand techniques prior to
introducing optimizations.

The test programs showed in the tables are:

• Sieve 3000 (prints the first 3,000 prime numbers),

• Fibonacci of 40, and
• Mhanner (prints the banner for the "ELF" string

500,000 times).

Sieve mainly contains register to register manipulation, while
Fibonacci has a lot of recursive calls and Mbanner has a lot of
stack operations and accesses to an array of data.

Tables 1 and 2 show the times of translation and execution of
programs using UQDBTps and UQDBTss, compared to natively
gcc O0 compiled programs. The source programs were also O0
compiled. Column 2 shows the preprocessing time that is
needed before the actual translation takes place. Note that
UQDBTps takes longer to start than UQDBTss. This is because
Pentium has a larger instruction set (hence a larger SSL
specification file) which takes longer to process. It is also caused
by different page aliEnment sizes between the Pentium and
SPARC; as a result, extra steps are taken to ensure that both text
and data sections are loaded correctly on the SPARC machine.
Column 3 shows the total time spent decoding the source
instructions, transforming them to I-RTLs and generating the
final SPARC code. Column 4 shows the execution time in the
generated SPARC code without using register caching, i.e. every
register access was done through virtual registers. Column 5
shows the execution time of the generated SPARC code with
register caching, which yields between 15 to 50 percent
performance gain. Column 6 is the natively compiled gcc version
of the same program on SPARC. Comparing columns 5 and 6
gives the relative performance of the translators. The figures
suggest 2 to 6 times slowdown when nmnlng programs using
UQDBTps and UQDBTss. The slow performance of the
translated Fibonacci program under UQDBTss is caused by the
effects of the register windowing mechanism in SPARC, which
are carried forth to the I-RTLs. Since the I-RTLs are unaware of
the fact that the source and target machines are the same, this
causes the entire register windowing system to be simulated in
the generated code. Given that on-demand optimizations have
not been performed yet, the quality of the generated code is
comparable to O0 optimization level of a traditional compiler.

Tables 3 and 4 show the efficiency of the translators relative to
the size of the original program. Column 2 is the size of the

48

~ •,-I $4 . ~ $4

Sieve3000 0.52 0.12 79.95 66.98 29.22

Fibonacci 0.52 0.07 162.23 139.35 41.18

mbanner 0.50 0.34 191.00 126.28 22.85

Table 1: LE;KBTps - Pentium to SPARC translation (second)

~g
E~ O

$4

Sieve3000

Fibonacci

mbauner

o ~ ~

r--I

~ 8 "~'~ ~ ='~ , ~ ~

0 . 2 0 0 . 1 7 7 7 . 3 8 5 6 . 8 9 2 9 . 2 2

i

0.22 0.12 256.05 198.97 41.18

0.21 0.50 204.09 97.09 22.85

Table 2: UfX~Tss - SPARC to SPARC translation (seconds)

$4

Sieve3000!

IFibonacci

mbanner

-,=1

118 145 1560 1472 206

102 94 1188 1104 186

483 467 4548 3816 182

a)
N

o
}'4

Sieve3000 216

Fibonacci 220

mbanner 748

r,3

260 2256 1716 163

176 1764 1468 170

760 7112 5032 164

Table 3: UCEBTps - Pentium to SPARC translation

program's text area. Note that not all bytes necessarily represent
instructions and that not all code is necessarily reachable or
executed at rtmtime. Col-ran 3 shows the actual bytes decoded
by the translator at rtmtime. This number varies from Column 2
since only valid paths at rtmtime are translated, and sometimes
re-translation is needed when a jump into the middle of a BB is
made. Columns 4 and 5 show the number of bytes of code
generated by the translator without/with register caching.
Register caching has been done at a basic block level; cached
registers are copied back to their memory locations at the end of
each basic block. Comparing column 5 with column 3 gives the
relative ratio of bytes generated versus bytes decoded. The
above figures suggest that on average, each byte from the source
machine translates to around 7 to 10 bytes of target SPARC code.
The last column is the ratio of machine cycles to bytes of source
code. It gives a rough indication of the performance of the
translation. On an UltraSparc I1250MI-IZ, the translators require
about 180,000 machine cycles per byte of input source, which is
about 10 times more cycles used than in a traditional O0
compiler•

5 . 2 0 p t l m l z a t i o n s - fu ture w o r k
Most programs spend 90% of the time in a small section of the
code. It is these hotspots that are worthwhile for a dynamic
binary translator to spend time optimizing. UQDBT currently
does not perform any optimizations. The next revision of
UQDBT will contain optimizations that axe triggered by
counters. Counters are inserted in basic blocks to indicate the
number of times a particular basic block is executed at rumime.
When a certain threshold is reached (indicating that the program
spends significant time in a piece of code), the optimizer will be
invoked in an attempt to produce efficient code• Four levels of

Table 4: LE:KBTss - SPARC to SPARC translation

optimization will be provided by UQDBT progressively when
certain thresholds are reached:

1. Register liveness analysis, forward substitution,
constant p ropaga t ion- improves the quality of the
generated code and reduces the number of instructions
executed.

2. Register a l l o c a t i o n - a more rigorous process for
removing access to virtual registers and replacement
with allocation to hardware registers on the target
machine, assisted by liveness information, rather than
just caching registers at a basic block level.

3. Code movement - moving and joining frequently
executed BBs closer together, thus reducing transition
costs (calls and jumps).

4. Customization- create specialized versions of the BBs
that are found to have a fixed range of runtime values
within the BB, e.g. on repeated entry to a BB, a
register or variable contains the same value 90% of the
time.

5.3 Effort
In order to give the reader an idea of the effort that has gone into
the development of UQDBT and the effort of reusing the system,
we quantify such effort as follows.

UQDBT has been the effort of 1 person over a period of 1.5
years, experimenting with the amount of specification required at
the semantic level for different machines. This effort was
performed by a person who was already familiar with the UQBT
framework; having worked on SSL in the past.

UQDBT's current implementation size is of 18,500 lines of
source code in C++, 3,300 lines of partially-generated code, and
3,500 lines (1,000 for SPARC and 2,500 for Pemium) of

49

specification files. A user of the UQDBT framework would be
able to reuse most of this source code and would need to write
syntax and semantics specification files for new machines (or
reuse existing ones). These figures are not final at this stage, as
most dynamic optimizations have not been implemented yet, It
nevertheless gives an indication of the amount of reuse of code in
the system.

6. DISCUSSION
The preliminary results of UQDBT point at the tradeoffs of
machine-adaptability. In return for writing less code to support
two particular machines, a performance penalty in the generated
code is seen at this stage. A binary translation writer would be
expected to write specifications for new machines, which are in
the order of a few thousand lines of code, and reuse a good part
of 18,500 lines of code, reaping the benefits of reuse and time
efficiency. However, at this stage, UQDBT generates code that
performs at about the same speed as emulated code, therefore a
user seeing a 10x performance degradation in their translated
programs. The introduction of register caching in the generated
code has brought down this factor to 6. We expect that the
introduction of on-demand optimizations on hotspots of the
program will improve the performance of the generated code,
bringing down the performance factor to 2x-3x.

One of the main questions we have dealt with throughout
experiments in this area has been how much should be specified
and how much should be supported by hand. The level of detail
in a specification can make a translator faster or slower. If the
full details of a machine are specified, the specification is
suitable for generating an emulator that supports 100% that
machine. However, i f we can provide a means for eliminating
part of that emulation process, then a different type of
specification is needed. This is what we have tried to achieve
through our semantic specifications and the use of two
intermediate languages. The RTL language describes low-level
and machine specific aspects of a machine, and UQDBT f'mds
support in the specifications to perform simple analyses to lift the
level of the representation to I-RTL. The aim is to perform
simple transformations of the code that are not expensive on time
and that are generic enough to be suitable for our intermediate
representations. This is why I-RTL is different to HRTL, the
high-level intermediate representation used by the static UQBT
framework. In HRTL, expensive analyses recover parameters to
procedures and return values, hence allowing the code generator
to use native calling conventions on the target machine. In I-
RTL, the code generator makes use of the specification of a stack
for example, in order to pass parameters on the stack, without
ever determining which locations are parameters to procedure
calls. However, some notion of parameters is needed in order to
interface correctly to native library functions, and to pass
parameters in the right locations.

It has also been our experience that some modules may be better
off written by hand, without specifying the complete semantics of
features of a machine that are too unique. For example, one
could consider implementing an SPARC-specific module for
supporting the register windowing semantics, so that better
register allocation is performed in this case. At present, we have
specified the register windowing mechanism and generated code
that puts all these registers in virtual (memory) locations.

Through the use of register caching, some of the memory
locations are mirrored to hardware registers of the target
machine, improving somewhat the performance of the program.
However, there is still a large overhead in the copying of the
registers to virtual locations at each call and return. This can be
reduced with dead code elimination, but perhaps hand written
code would have achieved better code.

Another aspect to take into consideration is the granularity of
translation. In UQDBT, the granularity unit for processing is a
basic block (BB) at a time. Just after code generation, a link is
made to the switch manager at the exit of each BB and flushing
of cached registers to virtual registers is performed. This is
needed to keep data accurately stored and consistent across
transitions from one BB to another. Transitions from one BB to
the next will go via the switch manager i f the next BB has not
been translated yet. Using BB as the unit of translation restricts
the effectiveness of register allocation. Since BBs are relatively
small, it is difficult to determine register live-hess information,
as data is not collected across BB boundaries. If the unit of
granularity is changed, this could yield better code in some cases
while worse code in others. For example, the translation unit
might be changed from a BB to a procedure at a time. This
would allow the code generator to reduce the amount of flushing
of cached registers and hence reduce the number of instructions
that need to be executed at runtime. It would improve the
effectiveness of allocating registers during code generation since
more live-hess information could be collected. But using a larger
unit of translation such as a procedure may involve decoding
paths that may not be ever taken at rtmtime, thus generating code
that is not executed. It is not obvious what the granularity unit
should be since some types of programs will benefit by using a
particular granularity unit while others may suffer. Program with
a lot of small procedures will benefit i f the unit of translation is a
procedure, but suffer i f the program has a lot of conditional
branches.

7. CONCLUSION
UQDBT is a machine-adaptable dynamic binary translator
framework that is capable of being configured for different
source and target machines through specifications of properties
of those machines. The UQDBT framework can be modified and
extended with ease to support additional source and target
machine architectures without the need to write a new translator
from scratch.

Our ease study shows that the translation process between two
different architectures is both complex and challenging using
machine-adaptable dynamic translation techniques.
Nevertheless, preliminary results suggest that performance of
implementing on-demand processing in a dynamic system can be
done efficiently. Despite that, some research problems remain in
building a fully machine-adaptable dynamic translation
framework. UQDBT appears to be a promising model to provide
a genetic dynamic binary translation framework.

8. ACKNOWLEDGMENTS
The authors wish to thank Mike Van Emmerik for his helpful
discussions in implementation and testing strategies and the
members of the Kanban group at Sun Microsystems, Inc.; whose

50

Self system motivated some of this work. This work is part of
the University of Queensland Binary Translation (UQBT)
project. More information can be obtained about the project by
visiting the following URL:

http://www.csee.uq.edu.au/esm/uqbt.html.

9. REFERENCES
1. R.L. Sites, A. Chernoff, M.B. Kirk, M.P. Marks, and

S.G. Robinson. Binary translation. Communications
of the ACM, 36(2):69-81, February 1993.

2. Apple Corporation. Macintosh application

environment, http://www.mae.apple.com/, 1994.

3. Digital. Freeport express.

http://www.digital.corn/amt/fr eeport/, 1995.

4. R.J. Hookwayand M.A. Herdeg. DigitaIFXf32:

Combining emulation and binary translation. Digital
Technical Journal, 9(1):3-12, 1997.

5. ARDI. Executor Internals: How to Efficiently Run

Mac Programs on PCs.
http://www.ardi.com/MacHack/machack.html, 1996.

6. SunSoft. IVabi.
http://www.sun.com/sunsoiUProducts/PC-Int egration-
products/, 1994.

7. Emmett Witchel and Mendel Rosenblum, Embra: Fast

and Flexible Machine Simulation. The proceedings of
ACM SIGMETRICS '96: Conference on Measurement
and Modeling of Computer Systems, Philadelphia,
1996.

8. Bich C. Le. An out-of-order execution technique for

runtime binary translators. In Proceedings of the 8th
international conference on Architectural support for
programming languages and operating systems, pages
151-158, San Jose, CA. Oct 1998.

9. D. Ungar and tLB. Smith. SELF: The power of

simplicity. In Conference on Object-Oriented
Programming Systems, Languages and Applications,
pages 227-241. ACM Press, October 1987.

10. Massimiliano Poletto, Dawson R. Engler and M.
Frans Kaashoek. tcc: A System for Fast, Flexible, and

High-level Dynamic Code Generation. In PLDI '97.
Proceedings of the 1997 ACM SIGPLAN conference
on Programming language design and
implementation, pages 109-121, Las Vegas, NV, June
1997.

11. Sun, Java JTT compiler,
http://www.sun.com/solaris/jit.

12. Ali-Reza Adl-Tabatabai, Michał Cierniak,
Guei-Yuan Lueh, Vishesh M. Parikh and James M.
Stichnoth. Fast, effective code generation in a just-in-
time Java compiler, In PLDI '98, Proceedings of the
ACM SIGPLAN '98 conference on Programming

language design and implementation, pages 280-290,
Montreal, Canada, June 1998.

13. Norman Ramsey and Mary Fernhndez. The New

Jersey Machine-Code Toolkit. Proceedings of the
1995 USENIX Technical Conference, pages 289-302,
New Orleans, LA, January 1995.

14. C. Cifuentes, M. Van Emmerik and N. Ramsey, The
Design of a Resourceable and Retargetable Binary

Translator. In Proceedings of the Working
Conference on Reverse Engineering, pages 280-291,
Atlanta, USA, Oct 1999. IEEE CS Press.

15. D. Ung and C. Cifuentes. S R L - a simple

retargetable loader. In Proceedings of the Australia
Software Engineering Conference, pages 60-69,
Sydney, Australia, Sept 1997. IEEE CS Press.

16. C. Cifuentes and S. Sendall. Specifying the semantics

of machine instructions. In Proceedings of the
International Workshop on program comprehension,
pages 126-133, Ischia, Italy, 24-26 June 1998, IEEE
CS Press.

17. B. Cmelik and D. Keppel. Shade: A Fast Instruction-

Set Simulated for Execution Profiling.

SIGMETRICS, Nashville, TN, 1994.

18. Norman Ramsey and Mary Fern~indez. Specifying

representation of machine instructions. ACM
Transactions of Programming Languages and
Systems, 19(3):492-524, 1997.

19. C. Cifuentes, M. Van Emmerik, D. Ling, D. Simon
and T. Waddington, Preliminary Experiences with the

Use of the UQBT Binary Translation Framework. In

Proceedings of the Workshop on Binary Translation,
Newport Beach, USA, Oct 1999. Published in
Technical Committee on Computer Architecture
News, pages 12-22, Dec 1999, IEEE CS Press.

51

