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ABSTRACT 

Dynamic binary translation is the process of translating and 
optimizing executable code for one machine to another at 
runtime, while the program is "executing" on the target machine. 

Dynamic translation techniques have normally been limited to 
two particular machines; a competitors machine and the 
hardware manufacturer's machine. This research provides for a 
more general framework for dynamic translations, by providing a 
framework based on specifications of machines that can be 
reused or adapted to new hardware architectures. In this way, 
developers of  such techniques can isolate design issues from 
machine descriptions and reuse many components and analyses. 

We describe our dynamic translation framework and provide 
some initial results obtained by using this system. 
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1. INTRODUCTION 
Binary translation is a migration technique that allows software 
to run on other machines achieving near native code 
performance. Binary translation grew out of emulation 
techniques in the late 1980s in order to provide for a migration 
path from legacy CISC machines to the newer RISC machines. 
Such techniques were developed by hardware manufacturers 
interested in marketing their new RISC platforms. From mid 
1990, binary translation techniques have been used to translate 
competitors' applications to the desired hardware platform. In 
the near future, we can expect to see such techniques being used 
to optimize progrmns within a family of computers, for example, 
by optimizing Spare architecture binaries to UltraSparc 
architecture binaries. 

UQBT, the University of  Queensland Binary Translator, has 
developed techniques, specification languages and a complete 
framework for performing static translations of code [14,19]. In 
static binary translation, the code is translated off-line, before the 
program is run, by creating a new program that uses the machine 
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instructions of the target machine. However, static translation 
has its limitations. Due to the nature of  the yon Neumann 
machine, where code and data are represented in the same way, 
it is not always possible to discover all the code of a program 
statically. For example, the target(s) of  indirect transfers of 
control such as jumps on registers are sometimes hard to analyse 
statically. Therefore, a fall-back mechanism is commonly used 
with a statically translated program, in the form of  an interpreter. 
The interpreter processes any untranslated code at runtime and 
returns to translated code once a suitable path is found. 

The limitations of static binary translation are overcomed with 
dynamic translation, at the expense of performance. In a 
dynamic binary translator, code gets translated "on the fly", at 
runtime, while the user perceives ordinary execution of  the 
program on the target machine. As oppossed to emulation, 
dynamic translation generates native code and performs on- 
demand optimizations of the code. Hot spots in the code are 
optimized at runtime to increase the performance of execution of 
such code. Further, some optimizations that are not possible 
statically are possible dynamically. 

In this paper we describe the design of  a machine-adaptable 
dynamic binary translator based on the static UQBT framework - 
UQDBT. A tool is said to be machine-adaptable when it can be 
"configured" to handle different source and/or target machines. 
In this way, a machine-adaptable dynamic binary translator is 
capable of being configured for different source and target 
machines through the specification of  properties of  these 
machines and their instruction sets. In other words, the 
translator is not bound to two particular machines (as per 
existing translators) but is capable of supporting a variety of 
source and target machines. 

UQDBT differs from other dynamic translators in that it provides 
a dean separation of  concerns, by allowing machine-dependent 
information to be specified, as well as performing machine- 
independent analyses to support machine-adaptability. In this 
way, UQDBT can support a variety of  C/SC and RISC machines 
at low cost. To support a new machine, the specifications for 
that machine need to be written and most of  the UQDBT 
framework can be reused. New machine-specific modules may 
need to be added i f  a particular feature of a machine is not 
supported by the UQDBT framework and such feature is not 
generic across different architectures. 

* The first author has support from an Australian Postgraduate 
Award. This work has further support from the Australian 
Research Council under grant No. A49702762 and Sun 
Mierosystems, Inc. 

* On sabbatical leave at Sun Microsystems, Inc. 
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This paper is structured in the following way. Section 2 
discusses the static and dynamic frameworks for binary 
translation. Section 3 outlines the research problems of machine 
adaptable binary translation and what is addressed in UQDBT. 
Section 4 provides a case study of translation in the framework 
through an example program. Section 5 shows preliminary 
results in the use of  the framework. Section 6 discusses effects 
of changing the granularity of translation and conclusions are 
given in Section 7. The work reported herein is work in progress. 

1.1 Related work 
In an attempt to improve on existing emulation techniques, 
companies in the late 1980s began using binary translation to 
achieve native code performance. Perhaps the most well known 
binary translators are Digitars VEST and rex[1 ], which translate 
VAX and MIPS machine instructions to 64-bit Alpha 
instructions. Both of these translators and others, like Apple's 
MAE[2] and Digital's Freeport Express[3] have a runtime 
environment that reproduces the old machine's operating 
environments. The teatime environment offers a fallback 
interpreter for processing old machine code that was not 
discovered at translation time, for example, due to indirect 
transfers of control. 

In recent years, we have seen a transition to hybrid translators, 
which are proving to be extremely successful. The process of 
mixing translation with emulation and runtime profiling brought 
about some of  the leading performers in the hybrid translation 
scene - Digital's FX!3214], Executor by Ardi[5] and Sun's 
Wabi[6]. FX[32 emulates the program initially and statically 
translates it in the background, using information gathered 
during profiling. Embra[7], a machine simulator, is built using 
dynamic translation techniques that were developed in Shade; a 
fast instruction-set simulator for exeeution profiling [17]. Le[8] 
investigates out-of-order execution techniques in dynamic binary 
translators, though their results are based on an interpreter-based 
implementation. Many of  the optimization techniques used in 
dynamic translators have been derived from dynamic compilers 
such as SELF[9] and tee[10]. Runtime optimizations in such 
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Figure 1. Static binary translation framework 

compilers can provide 0.9x - 2x the performance of  statically 
compiled programs. Such techniques have also been used in 
Just-in-time (J1T) compilers for Java. JITs from Sun[ll], 
Intel[12] and others dynamically generate native machine code at 
rantime. 

To date, none of the emwent binary translators can generate code 
for more than one source and target machine pair. The machine- 
dependent aspects of the translation are hard coded into the 
translator, making it hard to reuse the translator's code for 
another set of machines. Our research differs from previous 
research in that machine-dependent issues are separated from 
machine-independent translation concerns, hence providing a 
way of  specifying different machines (source and target 
machines) and supporting those specifications through reusable 
components, which implement the machine-independent 
analyses. This paper shows that this process is feasible and 
therefore enhances the reuse of code for the creation of  dynamic 
binary translators. However, the machine-adaptability of  the 
translator comes at the cost of performance, which is discussed in 
Section 5. 

2. BINARY TRANSLATION 

FRAMEWORKS 
Binary translation is a process of low-level re-engineerinff, that 
is, decoding to a higher level of abstraction, followed by 
encoding to a lower level of abstraction. Figure 1 gives a block- 
view of the UQBT static translation framework [14,19]. The re- 
engineering process is divided into the initial reverse engineering 
phase on the left-hand side and the forward engineering phase on 
the fight-hand side. The reverse engineering steps recover the 
semantic meaning of the machine instructions by a three-step 
process of decoding the binary file, decoding the machine 
instructions of the code segment, and mapping such instructions 
to their semantic meaning in the form of register transfer lists 
(RTLs). The high-level analysis process lifts the level of 
representation of the code to a machine-independent form, 
performs binary translation specific optimizations on the code, 
and then brings down the level of  abstraction to RTLs for the 
target machine. This is followed by the forward engineering 
process of optimizing the code, encoding the instructions into 
machine code and storing the code and data of the program in a 
binary file. The forward engineering process is standard 
optimizing compiler code generation technology. 

RTL is a simple, low-level register-transfer representation of the 
effects of machine instructions. A single instruction corresponds 
to a register-transfer list, which in UQBT is a sequential 
composition of effects. Each effect assigns an expression to a 
location. All side effects are explicit at the top level; expressions 
axe evaluated without side effects, using purely fimetion RTL 
operators. An RTL language is a collection of  locations and 
operators. For a machine M, the sub-language M-RTL is defined 
as those RTLs that represent instructions of machine M in a 
single RTL. 

As previously mentioned, the problems with static binary 
translation are the inability to fred all the code that belongs to a 
program and the limitation of optimizations to static ones, 
without taking advantage of  dynamic optimization techniques. 
One of the hardest problems to solve during the decoding of  the 
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machine instructions is the separation of  code from data - any 
binary-manipulation tool faces the same problem. Unfortunately, 
this problem is not solvable in general as both code and data are 
represented in the same way in yon Neumann machines. This 
makes static translation incomplete and hence a runtime support 
environment is needed in the form of an interpreter, for example. 

2.1 Dynamic binary translation framework 
In dynamic binary translation, the actual translation process takes 
place on an "as needed" basis, whereas static binary translation 
attempts to translate the entire program at once. Figure 2 
illustrates a typical framework for a dynamic translator that uses 
a basic block as the unit of translation (i.e. its granularity). The 
left-hand side is similar to that of a static translator, but the 
processing of code is done at a different level of  granularity 
(typically, one basic block at a time). The right-hand side is a 
little different to that of static translation. The first time a basic 
block is translated, assembly code for the target machine is 
emitted and encoded to binary form. This binary form is run 
directly on the target machine's memory as well as being kept in 
a cache. A mapping of the source and target addresses of the 
entire program for that basic block is stored in a map. If a basic 
block is executed several times, when the number of executions 
reaches a threshold, optimiTations on the code are performed 
dynamic, ally to generate better code for that hot spot. Different 
levels of optimization are possible depending on the number of 
times the code is executed. 

Optimized code then replaces the cached version of that basic 
block's code. The processing of  basic blocks is driven by a 
switch manager. The switch manager determines whether a new 
translation needs to be performed by determining whether there 
is an entry corresponding to a source machine address in the 
map. If an entry exists, the corresponding target machine 
address is retrieved and its translation is fetched from the cache. 
If a match is not found, the switch manager directs the decoding 
of another basic block at the required source address. 
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2.2 Machine-adaptable dynamic binary 
translation framework 
Figure 3 extends Figure 2 to enable a dynamic translator to easily 
adapt to different source and target machines. This effort is 
achieved by a clean separation of  concerns between machine- 
dependent information and machine-independent analyses. 
Through the use of specifications, a developer is able to 
concentrate on writing descriptions of properties of  machines 
instead of having to (re)write the tool itself. The use of 
specifications to support machine-dependent information can also 
generate parts of the system automatieaUy and provide a skeleton 
for the user to work on. 

As seen in Figure 3, the decoding of the binary file to source 
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machine RTLs (Ms-RTLs) requires the description of the binary- 
file format of  the program, and the syntax and semantics of the 
machine instructions for a particular processor. We have 
experimented with three different languages, reusing the SLED 
language and developing our own BFF and SSL languages: 

* BFF: the binary-file format language supports the 
description of  a binary-file's structure [15]. Current formats 
supported are DOS EXE, Solaris ELF and to a certain 
ex ten t ,  Windows PE. SRL, a simple resourceable loader, 
supports the automatic generation of code to decode files 
specified using the BFF language. 

• SLED: the specification language for encoding and 
decoding supports the description of the syntax of machine 
instructions; ie. its binary to assembly mnemonic 
representation [18]. SLED is supported by the New Jersey 
machine-code toolkit [13]. The toolkit provides partial 
support for automatically generating an instruction decoder 
for a particular SLED specification. Current machines 
specified in this form include the Pentium, SPARC, MIPS 
and Alpha. 

• SSL: the semantic specification language allows for the 
description of the semantics of machine instructions. SSL is 
supported by SRD [16]. SRD is the semantic mapper 
component, which supports the parsing of  SSL files and the 
storing of  such information in the form of a dictionary, 
which can be instantiated dynamically. The output of this 
stage is Ms-RTLs. 

Ms-RTLs are converted to machine-independent RTLs (I-RTLs) 
through analyses, which remove machine dependent concepts of 
the source machine. This process identifies source machine's 
control transfers and maps it to the more general forms in I-RTL. 
For example: the following SPARC Ms-RTL for a call instruction 

*32* %07 = %pc 

*32* %pc = %npc 

*32* %npc = Ox40000 

is associated as a high-level call instruction in I-RTL. Other 
forms of transfers of control that exist in I-RTL are jumps, 
returns, conditional and unconditional branches. I-RTL supports 
register transfers, stack pushes and pops, high-level control 
transfers, and condition code functions. Some of  these higher- 
level instructions allow for abstraction from the underlying 
machine. I-RTLs are converted into Mr-assembly instructions by 
mapping the functionality of such register transfers to the 
instructions available on the target machine, assisted by the SSL 
specifications. The instruction encoding process is supported by 
the SLED specification language, which maps assembly 
instructions into binary form. This code is then stored in the 
translator's cache for later reference. 

As an example, Figure 4 shows the various instruction 
transformations during the translation of a Pentimn machine 
instruction to a SPARC machine instruction. The reverse- 
engineering stage decodes the Pentium binary code (0000 0010 
1101 1000) to produce Pentium assembly code, which is then 
lifted to Pentimn-RTLs and finally abstracted to I-RTL by 
replacing machine-dependent registers with virtual registers. 
The forward-engineering phase encodes the I-RTL to SPARC- 
RTL, SPARC assembly instructions and finally SPARC binary 
code. 

v[lO0] := v[98] + v[99] 

r[l] := r[O] + r[l] r[9] := fifO] + r[91 

l ,l 
addl %ebx, %eax add %oi, %o2, %ol 

l ,l 
0000 0010 ii01 i000 I001 0010 0000 0010 

0100 0000 0000 I010 

Figure 4. Pentium to SPARC example 

2.3 Specification requirements in dynamic 
binary translation 
Dynamic translation cannot afford time-consuming analyses to 
lift the level of  representation to a stage that resembles a high- 
level language, as per UQBT [14]. In UQBT, static analyses 
recover procedure call signatures including parameters and 
return values, thereby allowing the generated code to use native 
calling and parameter conventions on the target machine. If such 
analyses were used in dynamic translation, high performance 
degradation would be experienced during the translation. 

The alternative to costly analyses to remove properties of the 
underlying source machine is to go halfway to a high-level 
representation. We support inexpensive analyses to recover a 
basic form of high-level instructions (such as conditional 
branches and calls without parameters) and we emulate (rather 
than abstract away from) conventions used by the hardware and 
operating system in the source machine (i.e. without using the 
native conventions on the target machine). Both these steps are 
possible through the specification of  features of the underlying 
hardware. For example, we emulate the SPARC architecture 
register windowing mechanism on a Pentium machine by 
specifying how this mechanism works. On a SPARC machine, 
we emulate the Pentinm stack parameter passing convention. 
However, we do not emulate the SPARC processor delayed 
transfers of control as we support higher level branching 
instructions. Clearly, this compromise has a performance impact 
on the translated code, but it provides a fast way of  translating 
code, which can then be optimized at nmtime if  it becomes a 
hotspot in the program. 

In order to support the translation of Ms-RTLs to I-RTLs, the 
SSL language has been extended from machine instruction level 
semantics to include hardware semantics as well. For example, 
for the SPARC architecture, the effects of changing register 
windows and how each register in the current window is 
accessed were specified, and for the Pentium architecture, 
properties about the stack movement were specified. This 
information is currently not used by UQBT; only by UQDBT. 
UQBT relies on costly analysis to abstract higher-level 
information, without depending on very low-level details of  the  

underlying hardware. 
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3. RESEARCH PROBLEMS 
Unlike other dynamic binary translators that are written with a 
fixed set of source and destination machines in mind, UQDBT is 
designed to handle a wide range of CISC and RISC machine 
architectures. While some translators can directly map source 
machine-specific idioms to the target machine, such translators 
are bound to work only under that source/target pair. To extend 
those translators to support different machines, extensive 
rewriting of the code is needed, as the direct idiom mapping 
between machines is different. The goal of UQDBT is to provide 
a framework that can be modified and extended with ease to 
support additional source and target machines without the need 
to rewrite a new translator from scratch. The process of finding a 
generalization of  all existing (and future) machines is non-trivial 
and cannot be fully predicted. UQDBT uses UQBT's approach 
of specifying properties of machine instruction sets that are 
widely available in today's machines and allowing the user to 
extend the specification language to support new features of 
(future) machines to reuse the rest of the translation framework. 
As with UQBT, we use multi-platform operating systems to 
concentrate on the more fundamental issues of instruction 
translations. 

UQDBT's goal was to address the following types of research 
problems in dynamic machine-adaptable binary translation: 

1. What is the best way of supporting the machine-dependent 
to machine-independent RTL translation? The main criteria in 
the translation is efficiency, hence expensive analyses are not an 
option. Further, the translation needs to be supported by the 
underlying specification language, in order to generate Ms-RTLs 
that contain enough information about the underlying Ms 
machine, 

2. How much state of the source machine is needed for 
dynamic translation and what effects does this have on 
specification of such properties of  the machine? 

3. What is the best way of automating the transformation of I- 
RTLs down to Mt-assembly code? Can a code selector be 
automatically generated from a target machine specification? 

4. Is it possible to efficiently use specifications that contain 
information about operating system conventions, such as calling 
and parameter conventions used by the OS to communicate with 
the program? For example, in order to use Pentium's stack 
parameter convention in code that was translated from a SPARC 
architecture binary (which passes parameters on registers), 
analysis to determine the parameters needs first to be performed. 

3.1 Implementation of UQDBT 
We have been experimenting with the right level of description 
required in order to support dynamic translation based on 
specifications. In our experience, too low-level or high-level a 
description of the underlying machine is unsuitable. We view 
UQBT's semantic specifications of machines as a high-level 
description, as they only describe the machine instruction 
semantics but do not specify the underlying hardware that 
supports the control transfer instructions (e.g. the register 
windows and delayed instructions on the SPARC architecture). 
In UQBT, such detailed level of information is not needed 
because of  the specification and use of  calling conventions and 

control transfer instruction. Further, other semantic description 
languages are used to describe all the low-level details of the 
underlying machine; such languages are suitable for emulation 
purposes but contain too much information for dynamic 
translation. 

The first problem above has been addressed by specifying how 
the hardware works in relation to control transfer instructions; 
this provides for a fast translation of  Ms-assembly instructions 
into information-rich Ms-RTLs (the extended ones), avoiding the 
need to recover information at runtime. The following are the 
types of information that have been described for SPARC and 
Pentium processors: 

• The effects of the SPARC register windowing mechanism 

• Stack properties 
• Memory alignment 
• Parameters and return locations. 

The SPARC machine allocates a new set of  working registers 
each time a SAVE instruction is called. In other words, it 
effectively provides an infinite number of  registers for program 
use. The effect of the SPARC register windows is captured by 
extending SSL to specifying how each of the registers are 
accessed and how the register windows change during each 
s a v e  and r e s t o r e  instruction, hence providing a different set 
of working registers. This provides accurate simulation on target 
machines that only have a limited amount of  usable registers. 

The effects of the stack pointer are different on different types of  
machines. On Pentium machines, the stack pointer can change 
indefinitely within a given procedure. On RISC machines, the 
stack pointer is normally constrained to a pre-allocated stack 
frame's fixed size that includes enough space for all register 
spills of that procedure. Specifying how the stack changes in the 
original machine suggests ways for the code generator to 
generate stack manipulation instruction on the target machine. 
For example, simulating stack pushing and popping on a SPARC 
machine. 

Memory a l i~ment  places constraints on how the machine state 
at a particular point in the program should be. In SPARC, the 
frame pointer and stack pointer need to be double word aligned. 
Thus, the code generator needs to enforce such conditions before 
entry to or exit from a call. 
Differences in machine calling conventions, namely how the 
parameters are passed and where return values are stored, play a 
crucial part on how the code generator constructs the right setup 
when calling native library functions. SPARC generally passes 
parameters in registers while Pentium pushes them on the stack. 
This information is needed for both source and target machines 
to identify the transformation of parameters and return values. 
Differences in endianness between source and target machines 
requires byte swapping to be performed when loading and storing 
data. Byte swapping is an expensive process. Although the 
Pentium can do byte swapping quite easily, it takes about 10 
SPARC V8 instructions for a 32-bit swap. This is an expensive 
process and should be avoided i f  possible. In particular, when 
running a Pentium binary on a SPARC, every push and pop 
instruction (which appears quite often in Pentium programs) will 
require byte swapping. Heuristics are used in UQDBT to avoid 
byte swapping on pushing and popping to the stack. 
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main() 

8048918~ 

8048919: 

804891b: 

8048920: 

8048925: 

80489281 

804892a: 

804892c: 

804892d: 

55 

8b ec 

68 f8 93 04 08 

e8 9b fe ff ff 

83 c4 04 

33 cO 

eb 00 

c9 

c3 

pushl %ebp 

movl %esp,%ebp 

pushl $0xS0493f8 

call 0xfffffe9b <printf> 

addl $Ox4,%esp 

xorl %eax,%eax 

jmp 0x0 

leave 

ret 

Figure 5. "Hello World" x86 disassembly 

The second problem above is related to the first one. The 
amount of source machine state that is carried across depends on 
the effectiveness of translation in the first problem. For areas 
that are not easily specified or unspecified, they are carried 
across and are apparent within the maehine-independant RTL. In 
UQDBT, control transfer instructions will contain a tag 
indicating how to process its delayed slot instruction (in 
architectures that support delayed slots). 
The third problem above is current work in progress. The goal is 
not only to automatically construct the code generator, but also 
determine the best performance heuristics for selecting target 
machine instruction when encountering similar patterns. Some 
patterns may never be matched or may be nearly impossible to 
match. For example, trying to pattern match a SPARC s a v e  
instrnction with some Pentium-RTLs. 

Our experiences with the fourth problem above suggest that 
performance can be gain by using native OS conventions. 
UQDBT currently simulates the calling convention for Pentium 
programs on a SPARC machine, i.e. parameters are passed on 
the stack instead of  in registers. To remove this simulated effect 
and convert it to use native conventions, one needs know: 

• How much improvement does it offer over direct machine 
simulation? 

* At what level should this conversion occur? 

* Is it worth while doing such analysis in a dynamic binary 
translation environment? 

4. CASE STUDY 
In this section we show an example of a small Pentium program 
converted by UQDBTps (the "ps" postfix indicates translations 
from Pentium to SPARC architectures) to run on a SPARC 

8048918: PUSH r[29] 

8048919: *32* r[29] 1 = r[28] 

804891b: PUSH 134517752 

8048920: *32* r[28] := r[28] - 4 

*32* m[r[28]] := ~pc 

CALL 0X80487c0 

8048925: 

8048928: 

804892a: 

804892c1 

804892d: 

*32* r[tmpl] := r[28] 

*32* r[28] := r[28] + 4 

ADDFLAGS32( r[tmpl], 4, r[28] ) 

*32* r[24] := r[24] ^ r[24] 

LOGICALFLAGS32( r[24] ) 

JUMP 0x804892c 

*32* r[28] := r[29] 

*32* r[29] := POP 32 

BET 

Fimxre 6: I-RTLs for '~fIello World" 

machine. Both programs are for the Solaris operating system. 
The main differences of the two test machines are: 

1. SPARC is a RISC architecture, whereas Pentium is CISC. 

2. SPARC is big-endian, while Pentium is little-endian. 

3. SPARC passes parameters in registers (and sometimes on 
the stack as well), while Pentium normally passes them on 
the stack. 

4.1 Basic block translations and address 

mappings 
Figure 5 is the disassembly of a q-Iello World" binary program 
compiled for the Pentium machine running Solaris. The first 
column is the source address seen by the Pentium processor. The 
second and third columns are the actual Pentium binaries and its 
corresponding assembly representation. There are 3 basic blocks 

0X43676c81 save %sp, -132, %sp 

0x43676cc: add %sp, -4, %sp 

0x43676d0: add %i7, 8, %10 

0x43676d4: st %10, [ %sp + 0x84 ] 

0x43676d81 mov %sp, %10 

0x43676dc: subcc %10, 4, %10 

0x43676e01 mov %10, %sp 

Ox43676e41 mov %fp, %10 

0x43676e8: st %10, [ %sp + 0x84 ] 

0x43676ec: mov %sp, %10 

0x43676f01 mov %10, %fp 

0x43676f4: mov %sp, %10 

0x43676f81 subcc %10, 4, %10 

0x43676fc: mov %10, %sp 

0x4367700: sethi %hi(0x8049000), %10 

0x43677041 add %10, 0x3f8, %10 ! 0x80493f8 

0x4367708: at %10, [ %sp + 0x84 ] 

0x436770c: id [ %sp + 0x84 ], %00 

0x4367710z mov %fp, %10 

0x43677141 mov %sp, %11 

0x4367718: sethi %hi(0xfffffc00), %12 

0x436771c: add %12, 0x3f8, %12 ! 0xfffffff8 

0x4367720: and %sp, %12, %sp 

0x43677241 and %fp, %12, %fp 

0x4367728: sethi %hi(0xef663400), %96 

0x436772c: call %96 + 0xlb8 ] <printf> 

0x4367730: nop 

0x4367734: mov %11, %sp 

0x43677381 mov %10, %fp 

0x436773c: sethi %hi(0xS048800), %95 

0x43677401 add %95, 0x125, %95 

0x43677441 sethi %hi(0x41bfc00), %96 

0x4367748: call %96 + 0x370 !<switch_3nanager> 

0x436774c: nop 

Figure  7. Generated Spare assembly  for the  I st BB o f  

Figure  6 
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Figure 8. Sparc stack frame 

(BBs) in this program: 

, first BB - 4 instructions (0x8048918 to 0x8048920) 

• second BB - 3 instructions (0x8048925 to 0x804892a) 

• third BB - 2 instructions (oxso4892e to 0xao4892d) 

Figure 6 shows the intermediate representation (I-RTLs) for 
these BBs. Note that the translation is done incrementally, i.e. 

each BB is decoded separately at runtime. 

UQDBTps works in the source machine's address space and 
translates a basic block at a time. Both the data and text from 

the source Pentium program are mapped to the actual machine's 
source address space even though it is actually running on a 
SPARC machine. For example, a Pen!turn program with data 
and text sections located at 0x8040000 and 0x8048000 will be 

mapped exactly at these addresses even though a typical SPARC 
program expects the text and data at addresses 0xl0000 and 
0x20000. UQDBTps also simulates the Pen!turn machine's 
environment in the SPARC generated code, i.e. the pushing and 
popping of temporaries and parameters from the Pen!turn 
machine is preserved in the generated code. UQDBTps tries to 
generate code as quickly as it possibly can with little or no 

optimization. 

4.2 Pentium stack simulation 
Figure 7 is the SPARC code generated for the first BB of Figure 
6. The first four instructions simulate the Pentium main 
prologue by setting up the stack and storing the return address 

(obtained bythe value of%£7 + 8). 132 bytes of stack space 

are reserved in the initial save %sp, -132, %sp. This 

space is used by the SPARC processor to store parameters, return 
structttres, local variables and register spills. Hence the aetnal 
simulated Pentium stack pointer %esp starts at %sp+0x84 (see 
Figure 8), while Pentium's %ebp is mapped to the SPARC 
register %fp. Pushing is handled by subtracting the size of the 
value pushed from %sp and storing the result in [%sp+0x84]. 
Popping removes from [%sp+0x84] and increments %sp by the 
appropriate size. 

4.3 Function calls and stack alignments 
In Pentium, actual parameters to function calls are passed on the 
stack while SPARC parameters are passed in registers. The 

Ox435ff58: sethi %hi(Ox4485cO0), %10 

Ox435ff5c: add %10, Ox3eS, %10 ! Ox4485fe8 

Ox435ff60: mov %sp, %11 

Ox435ff64: st %11, [ %10 ] 

Ox435ff68= mov %sp, %10 

Ox435ff6c: addcc %10, 4, %10 

Ox435ff70: mov %10, %sp 

Ox435ff74= sethi %hi(Ox4267000), %10 

Ox435ff78: add %10, Ox3d4, %10 ! Ox42b73d4 

Ox435ff7c: rd %ccr, %11 

Ox435ffSO: st %11, [ %10 ] 

Ox435ff84: sethi %hi(Ox4486000), %10 

Ox435ff88: add %10, 0x18, %10 ! 0x4486018 

Ox435ffSc: sethi %hi(Ox4486000), %11 

Ox435ffgo: add %11, OxlS, %11 ! 0x4486018 

Ox435ff94: ld [ %11 ], %11 

Ox435ff98: sethi %hi(Ox4486000), %12 

Ox435ffgc: add %12, OxlS, %12 ! 0x4486018 

Ox435ffaO: id [ %12 ], %12 

Ox435ffa4: xorcc %11, %12, %11 

Ox435ffa8: st %11, [ %10 ] 

Ox435ffac: sethi %hi(Ox42b7000), %10 

Ox435ffbO: add %10, Ox3d4, %10 ! Ox42673d4 

Ox435ffb4: rd %ccr, %11 

Ox435ffbS: st %11, [ %10 ] 

Ox435ffbc: sethi %hi(OxS048800), %95 

Ox435ffcO: add %95, Oxl2c, %95 ! 0x804892c 

Ox435ffc4: sethi %hi(Ox41bfcO0), %96 

Ox435ffcS: call %g6 + 0x370 !<switch_manager> 

Ox435ffcc: sop 

Figure 9. Generated Sparc assembly for the 2 "a BB of 

figure 6 

printf format string to "Hello World" is at address 

$Ox80493f8 and is pushed by the instruction 804891b (see 
Figure 5). To successfully call the native SPARC p r i n t f  

function, this address must be stored in register %00 (instruction 

0x436770c  in Figure 7). The equivalent p r i n t f  in SPARC 
is at 0 x e f 6 6 3 5 b 8  and a call to this function is made 

(instruction 0x436772c) .  Calls to library functions such as 

p r i n t f  are assumed by UQDBTps to exist on the source as 
well as the target machine. This assumption is not restrictive as 
long as there is a mapping from the source library function to an 
equivalent function on the target machine; i.e. libraries can be 
reproduced on the target machine by translation or rewriting to 
produce such a mapping. Translators such as FX!32 make the 
same assumption. 

SPARC machines expect %sp and %fp to be aligned to double 

word (64 bits) boundaries. Therefore, before calling a native 
SPARC library function, %sp and %fp need to be 8-byte 

aligned. The current values are restored after the function call 
returns (instructions 0x4367734 and 0x4367738) .  

At the end of a basic block, control is passed back to UQDBTps' 
switch manager, with the indication of the next basic block 
address to be processed in %95 (0x8048925  in the above 
case). It is the role of the switch manager to decide whether to 
start the translation indicated in %05 or fetch an already 
translated BB from the translation cache. In the above ease 
(where the next BB starts at 0x8048925) ,  the address is not in 

the translation map, hence the translation starts at that new 
address. Figure 9 shows the generated SPARC assembly for the 
next BB for the Pentium program. 
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4.4 Register mapping and condition codes 
During the translation, all Pentium registers are mapped to 
virtual registers (i.e. memory locations). To access a virtual 
register on a SPARC machine, a sethi and an add instruction 
are used. For example, instructions Ox435ffB4 and 
0 x 4 3 5 f f 8 8  in Figure 9 are used to access the virtual register 

representing the x86 register %eax. 

While most instructions on SPARC do not affect condition codes 
(flags) unless explicitly indicated by the instruction, almost all 
Pentium instructions affect the flags. Each Pentium instruction 
that affects the status of the flags is simulated using the 
equivalent condition code version of the same instruction on the 
SPARC machine (instructions 0 x 4 3 5 £ £ 6 c  and 0x435f~:a4) .  
The condition codes are read (instruction 0 x 4 3 5 f t : 7 c )  and 
saved to the virtual flag register (instruction 0x435 ~: f 80) after 
these instructions, to preserve its current value, which can be 
retrieved later i f  required. 

A closer look at the above example shows that the generated 
code is not very efficient. Simple optimizations such as forward 
substitutions and dead code elimination can greatly reduce the 
size of the generated code. Such optimizations can yield better 
code but will take longer to generate - a trade off between code 
quality and speed. The code generator hack-end of UQDBTps is 
very fast despite the poor quality of the generated code. We are 
currently implementing on-demand optimizations, to the hotspots 
in the program, as well as performing register allocation. 

5. PRELIMINARY RESULTS 
UQDBT is based on the UQBT framework, as such, its front-end 
is re-used from UQBT, changing its granularity of decoding from 
the procedure level to the basic block level. The front-end uses 
the extended SSL specifications and generates Ms-RTLs. The 
machine instruction encoding routines of  the back-end are 
automatically generated from SLED specifications using the 
NJMC toolkit. 

This section shows some preliminary results obtained by two 
dynamic translators instantiated from the UQDBT framework; 
UQDBTps (Pentium to SPARC) and UQDBTss (SPARC to 
SPARC). It then looks at the types of optimizations that need to 
be introduced in order to improve the performance of frequently 
executed code, and it gives the reader an idea of effort gone into 
the development of the framework and the amount of  reuse 
expected. 

5.1 Performance 
Micro-benchmark results were obtained using a Pentium MMX 
250 MHz machine and an UltraSparc 1T 250 MHz machine, both 
running the Solaris operating system. The results reported 
herein are those of  the translation overhead and do not currently 
make use of  dynamic optimizations, only register caching within 
basic blocks. Clearly, the performance of generated binaries 
from UQDBT without optimization is inferior to direct native 
compilation. A typical 1:10 ratio (i.e. 1 source machine 
instruction to 10 target machine instructions) is expected in a 
typical emulator/interpreter without caching. UQDBTps gives 
figures close to this ratio. For example, for the 9 Pentium 
instructions of Figure 5, 95 SPARC instructions were generated. 
While this ratio is similar to that of emulation, the speed up 
gained from UQDBT comes from reusing already translated BBs 

from the translation cache when the same piece of code is 
executed again. 

In its present form, UQDBT is still in its early development and 
hence we provide preliminary results for UQDBTps, a Penfium 
to SPARC translator, and UQDBTss, a SPARC to SPARC 
translator. It is undoubtedly true that there is little practical use 
for SPARC to SPARC translation unless runtime optimizations 
can significantly speed up translated programs. The inclusion of 
this translation is to show the effect of machine-adaptability in 
UQDBT. Further, the translation from SPARC binaries to I-RTL 
removes any machine dependencies and thus, during I-RTL to 
SPARC code generation, the UQDBTss is unaware of  the fact 
that the source machine is SPARC. This is also true for 
UQDBTps. Since little analysis is done to the decoded 
instructions and processing is concentrated on decoding and code 
generation requested by the switch manager, it better reflects the 
performance impact on the use of on-demand techniques prior to 
introducing optimizations. 

The test programs showed in the tables are: 

• Sieve 3000 (prints the first 3,000 prime numbers), 

• Fibonacci of  40, and 
• Mhanner (prints the banner for the "ELF" string 

500,000 times). 

Sieve mainly contains register to register manipulation, while 
Fibonacci has a lot of recursive calls and Mbanner has a lot of  
stack operations and accesses to an array of data. 

Tables 1 and 2 show the times of translation and execution of  
programs using UQDBTps and UQDBTss, compared to natively 
gcc O0 compiled programs. The source programs were also O0 
compiled. Column 2 shows the preprocessing time that is 
needed before the actual translation takes place. Note that 
UQDBTps takes longer to start than UQDBTss. This is because 
Pentium has a larger instruction set (hence a larger SSL 
specification file) which takes longer to process. It is also caused 
by different page aliEnment sizes between the Pentium and 
SPARC; as a result, extra steps are taken to ensure that both text 
and data sections are loaded correctly on the SPARC machine. 
Column 3 shows the total time spent decoding the source 
instructions, transforming them to I-RTLs and generating the 
final SPARC code. Column 4 shows the execution time in the 
generated SPARC code without using register caching, i.e. every 
register access was done through virtual registers. Column 5 
shows the execution time of  the generated SPARC code with 
register caching, which yields between 15 to 50 percent 
performance gain. Column 6 is the natively compiled gcc version 
of the same program on SPARC. Comparing columns 5 and 6 
gives the relative performance of  the translators. The figures 
suggest 2 to 6 times slowdown when nmnlng programs using 
UQDBTps and UQDBTss. The slow performance of  the 
translated Fibonacci program under UQDBTss is caused by the 
effects of the register windowing mechanism in SPARC, which 
are carried forth to the I-RTLs. Since the I-RTLs are unaware of  
the fact that the source and target machines are the same, this 
causes the entire register windowing system to be simulated in 
the generated code. Given that on-demand optimizations have 
not been performed yet, the quality of  the generated code is 
comparable to O0 optimization level of  a traditional compiler. 

Tables 3 and 4 show the efficiency of  the translators relative to 
the size of  the original program. Column 2 is the size of  the 
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~ •,-I $4 . ~  $4 

Sieve3000 0.52 0.12 79.95 66.98 29.22 

Fibonacci 0.52 0.07 162.23 139.35 41.18 

mbanner 0.50 0.34 191.00 126.28 22.85 

Table 1: LE;KBTps - Pentium to SPARC translation (second) 
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E~ O 
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Sieve3000 

Fibonacci 

mbauner 

o ~ ~ 

r--I 

~ 8  "~'~ ~ ='~ , ~ ~ 

0 . 2 0  0 . 1 7  7 7 . 3 8  5 6 . 8 9  2 9 . 2 2  

i 

0.22 0.12 256.05 198.97 41.18 

0.21 0.50 204.09 97.09 22.85 

Table 2: UfX~Tss - SPARC to SPARC translation (seconds) 

$4 

Sieve3000! 

IFibonacci 

mbanner 

-,=1 

118 145 1560 1472 206 

102 94 1188 1104 186 

483 467 4548 3816 182 

a) 
N 

o 
}'4 

Sieve3000 216 

Fibonacci 220 

mbanner 748 

r,3 

260 2256 1716 163 

176 1764 1468 170 

760 7112 5032 164 

Table 3: UCEBTps - Pentium to SPARC translation 

program's text area. Note that not all bytes necessarily represent 
instructions and that not all code is necessarily reachable or 
executed at rtmtime. Col-ran 3 shows the actual bytes decoded 
by the translator at rtmtime. This number varies from Column 2 
since only valid paths at rtmtime are translated, and sometimes 
re-translation is needed when a jump into the middle of a BB is 
made. Columns 4 and 5 show the number of bytes of code 
generated by the translator without/with register caching. 
Register caching has been done at a basic block level; cached 
registers are copied back to their memory locations at the end of 
each basic block. Comparing column 5 with column 3 gives the 
relative ratio of  bytes generated versus bytes decoded. The 
above figures suggest that on average, each byte from the source 
machine translates to around 7 to 10 bytes of target SPARC code. 
The last column is the ratio of  machine cycles to bytes of  source 
code. It gives a rough indication of the performance of the 
translation. On an UltraSparc I1250MI-IZ, the translators require 
about 180,000 machine cycles per byte of input source, which is 
about 10 times more cycles used than in a traditional O0 
compiler• 

5 . 2 0 p t l m l z a t i o n s -  fu ture  w o r k  
Most programs spend 90% of the time in a small section of the 
code. It is these hotspots that are worthwhile for a dynamic 
binary translator to spend time optimizing. UQDBT currently 
does not perform any optimizations. The next revision of 
UQDBT will contain optimizations that axe triggered by 
counters. Counters are inserted in basic blocks to indicate the 
number of  times a particular basic block is executed at rumime. 
When a certain threshold is reached (indicating that the program 
spends significant time in a piece of code), the optimizer will be 
invoked in an attempt to produce efficient code• Four levels of 

Table 4: LE:KBTss - SPARC to SPARC translation 

optimization will be provided by UQDBT progressively when 
certain thresholds are reached: 

1. Register liveness analysis, forward substitution, 
constant p ropaga t ion-  improves the quality of the 
generated code and reduces the number of  instructions 
executed. 

2. Register a l l o c a t i o n -  a more rigorous process for 
removing access to virtual registers and replacement 
with allocation to hardware registers on the target 
machine, assisted by liveness information, rather than 
just caching registers at a basic block level. 

3. Code movement - moving and joining frequently 
executed BBs closer together, thus reducing transition 
costs (calls and jumps). 

4. Customization- create specialized versions of the BBs 
that are found to have a fixed range of  runtime values 
within the BB, e.g. on repeated entry to a BB, a 
register or variable contains the same value 90% of  the 
time. 

5.3 Effort  
In order to give the reader an idea of the effort that has gone into 
the development of UQDBT and the effort of  reusing the system, 
we quantify such effort as follows. 

UQDBT has been the effort of 1 person over a period of  1.5 
years, experimenting with the amount of  specification required at 
the semantic level for different machines. This effort was 
performed by a person who was already familiar with the UQBT 
framework; having worked on SSL in the past. 

UQDBT's current implementation size is of  18,500 lines of  
source code in C++, 3,300 lines of  partially-generated code, and 
3,500 lines (1,000 for SPARC and 2,500 for Pemium) of  
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specification files. A user of  the UQDBT framework would be 
able to reuse most of  this source code and would need to write 
syntax and semantics specification files for new machines (or 
reuse existing ones). These figures are not final at this stage, as 
most dynamic optimizations have not been implemented yet, It 
nevertheless gives an indication of the amount of reuse of code in 
the system. 

6. DISCUSSION 
The preliminary results of UQDBT point at the tradeoffs of 
machine-adaptability. In return for writing less code to support 
two particular machines, a performance penalty in the generated 
code is seen at this stage. A binary translation writer would be 
expected to write specifications for new machines, which are in 
the order of a few thousand lines of code, and reuse a good part 
of 18,500 lines of code, reaping the benefits of  reuse and time 
efficiency. However, at this stage, UQDBT generates code that 
performs at about the same speed as emulated code, therefore a 
user seeing a 10x performance degradation in their translated 
programs. The introduction of register caching in the generated 
code has brought down this factor to 6. We expect that the 
introduction of  on-demand optimizations on hotspots of the 
program will improve the performance of the generated code, 
bringing down the performance factor to 2x-3x. 

One of the main questions we have dealt with throughout 
experiments in this area has been how much should be specified 
and how much should be supported by hand. The level of detail 
in a specification can make a translator faster or slower. If the 
full details of a machine are specified, the specification is 
suitable for generating an emulator that supports 100% that 
machine. However, i f  we can provide a means for eliminating 
part of that emulation process, then a different type of 
specification is needed. This is what we have tried to achieve 
through our semantic specifications and the use of  two 
intermediate languages. The RTL language describes low-level 
and machine specific aspects of a machine, and UQDBT f'mds 
support in the specifications to perform simple analyses to lift the 
level of  the representation to I-RTL. The aim is to perform 
simple transformations of  the code that are not expensive on time 
and that are generic enough to be suitable for our intermediate 
representations. This is why I-RTL is different to HRTL, the 
high-level intermediate representation used by the static UQBT 
framework. In HRTL, expensive analyses recover parameters to 
procedures and return values, hence allowing the code generator 
to use native calling conventions on the target machine. In I- 
RTL, the code generator makes use of the specification of a stack 
for example, in order to pass parameters on the stack, without 
ever determining which locations are parameters to procedure 
calls. However, some notion of  parameters is needed in order to 
interface correctly to native library functions, and to pass 
parameters in the right locations. 

It has also been our experience that some modules may be better 
off written by hand, without specifying the complete semantics of 
features of a machine that are too unique. For example, one 
could consider implementing an SPARC-specific module for 
supporting the register windowing semantics, so that better 
register allocation is performed in this case. At present, we have 
specified the register windowing mechanism and generated code 
that puts all these registers in virtual (memory) locations. 

Through the use of register caching, some of  the memory 
locations are mirrored to hardware registers of  the target 
machine, improving somewhat the performance of  the program. 
However, there is still a large overhead in the copying of  the 
registers to virtual locations at each call and return. This can be 
reduced with dead code elimination, but perhaps hand written 
code would have achieved better code. 

Another aspect to take into consideration is the granularity of 
translation. In UQDBT, the granularity unit for processing is a 
basic block (BB) at a time. Just after code generation, a link is 
made to the switch manager at the exit of each BB and flushing 
of  cached registers to virtual registers is performed. This is 
needed to keep data accurately stored and consistent across 
transitions from one BB to another. Transitions from one BB to 
the next will go via the switch manager i f  the next BB has not 
been translated yet. Using BB as the unit of  translation restricts 
the effectiveness of register allocation. Since BBs are relatively 
small, it is difficult to determine register live-hess information, 
as data is not collected across BB boundaries. If  the unit of  
granularity is changed, this could yield better code in some cases 
while worse code in others. For example, the translation unit 
might be changed from a BB to a procedure at a time. This 
would allow the code generator to reduce the amount of  flushing 
of cached registers and hence reduce the number of instructions 
that need to be executed at runtime. It would improve the 
effectiveness of allocating registers during code generation since 
more live-hess information could be collected. But using a larger 
unit of translation such as a procedure may involve decoding 
paths that may not be ever taken at rtmtime, thus generating code 
that is not executed. It is not obvious what the granularity unit 
should be since some types of programs will benefit by using a 
particular granularity unit while others may suffer. Program with 
a lot of  small procedures will benefit i f  the unit of translation is a 
procedure, but suffer i f  the program has a lot of conditional 
branches. 

7. CONCLUSION 
UQDBT is a machine-adaptable dynamic binary translator 
framework that is capable of being configured for different 
source and target machines through specifications of properties 
of those machines. The UQDBT framework can be modified and 
extended with ease to support additional source and target 
machine architectures without the need to write a new translator 
from scratch. 

Our ease study shows that the translation process between two 
different architectures is both complex and challenging using 
machine-adaptable dynamic translation techniques. 
Nevertheless, preliminary results suggest that performance of 
implementing on-demand processing in a dynamic system can be 
done efficiently. Despite that, some research problems remain in 
building a fully machine-adaptable dynamic translation 
framework. UQDBT appears to be a promising model to provide 
a genetic dynamic binary translation framework. 
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