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1. Human Face and Its Expression 

The human face is the site for major sensory inputs and major communicative outputs. It 
houses the majority of our sensory apparatus as well as our speech production apparatus.  It 
is used to identify other members of our species, to gather information about age, gender, 
attractiveness, and personality, and to regulate conversation by gazing or nodding. 
Moreover, the human face is our preeminent means of communicating and understanding 
somebody’s affective state and intentions on the basis of the shown facial expression 
(Keltner & Ekman, 2000). Thus, the human face is a multi-signal input-output 
communicative system capable of tremendous flexibility and specificity (Ekman & Friesen, 
1975). In general, the human face conveys information via four kinds of signals. 
(a) Static facial signals represent relatively permanent features of the face, such as the bony 

structure, the soft tissue, and the overall proportions of the face. These signals 
contribute to an individual’s appearance and are usually exploited for person 
identification. 

(b) Slow facial signals represent changes in the appearance of the face that occur gradually 
over time, such as development of permanent wrinkles and changes in skin texture. 
These signals can be used for assessing the age of an individual. Note that these signals 
might diminish the distinctness of the boundaries of the facial features and impede 
recognition of the rapid facial signals. 

(c) Artificial signals are exogenous features of the face such as glasses and cosmetics. These 
signals provide additional information that can be used for gender recognition. Note 
that these signals might obscure facial features or, conversely, might enhance them. 

(d) Rapid facial signals represent temporal changes in neuromuscular activity that may lead 
to visually detectable changes in facial appearance, including blushing and tears. These 
(atomic facial) signals underlie facial expressions. 

All four classes of signals contribute to person identification, gender recognition, 
attractiveness assessment, and personality prediction. In Aristotle’s time, a theory was 
proposed about mutual dependency between static facial signals (physiognomy) and 
personality: “soft hair reveals a coward, strong chin a stubborn person, and a smile a happy 
person”. Today, few psychologists share the belief about the meaning of soft hair and strong 
chin, but many believe that rapid facial signals (facial expressions) communicate emotions 
(Ekman & Friesen, 1975; Ambady & Rosenthal, 1992; Keltner & Ekman, 2000) and 
personality traits (Ambady & Rosenthal, 1992). More specifically, types of messages 
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communicated by rapid facial signals include the following (Ekman & Friesen, 1969; Pantic 
et al., 2006): 
(a) affective / attitudinal states and moods,1 e.g., joy, fear, disbelief, interest, dislike, stress, 
(b) emblems, i.e., culture-specific communicators like wink, 
(c) manipulators, i.e., self-manipulative actions like lip biting and yawns, 
(d) illustrators, i.e., actions accompanying speech such as eyebrow flashes, 
(e) regulators, i.e., conversational mediators such as the exchange of a look, head nodes 

and smiles. 

1.1 Applications of Facial Expression Measurement Technology  

Given the significant role of the face in our emotional and social lives, it is not surprising 
that the potential benefits from efforts to automate the analysis of facial signals, in particular 
rapid facial signals, are varied and numerous (Ekman et al., 1993), especially when it comes 
to computer science and technologies brought to bear on these issues (Pantic, 2006).  
As far as natural interfaces between humans and computers (PCs / robots / machines) are 
concerned, facial expressions provide a way to communicate basic information about needs 
and demands to the machine. In fact, automatic analysis of rapid facial signals seem to have 
a natural place in various vision sub-systems, including automated tools for tracking gaze 
and focus of attention, lip reading, bimodal speech processing, face / visual speech 
synthesis, and face-based command issuing. Where the user is looking (i.e., gaze tracking) 
can be effectively used to free computer users from the classic keyboard and mouse. Also, 
certain facial signals (e.g., a wink) can be associated with certain commands (e.g., a mouse 
click) offering an alternative to traditional keyboard and mouse commands. The human 
capability to “hear” in noisy environments by means of lip reading is the basis for bimodal 
(audiovisual) speech processing that can lead to the realization of robust speech-driven 
interfaces. To make a believable “talking head” (avatar) representing a real person, 
recognizing the person’s facial signals and making the avatar respond to those using 
synthesized speech and facial expressions is important. Combining facial expression 
spotting with facial expression interpretation in terms of labels like “did not understand”, 
“disagree”, “inattentive”, and “approves” could be employed as a tool for monitoring 
human reactions during videoconferences, web-based lectures, and automated tutoring 
sessions. Attendees’ facial expressions will inform the speaker (teacher) of the need to adjust 
the (instructional) presentation. 
The focus of the relatively recently initiated research area of affective computing lies on 
sensing, detecting and interpreting human affective states and devising appropriate means 
for handling this affective information in order to enhance current HCI designs (Picard, 
1997). The tacit assumption is that in many situations human-machine interaction could be 
improved by the introduction of machines that can adapt to their users (think about 
computer-based advisors, virtual information desks, on-board computers and navigation 
systems, pacemakers, etc.). The information about when the existing processing should be 

                                                                 
1
 In contrast to traditional approach, which lists only (basic) emotions as the first type of messages 

conveyed by rapid facial signals (Ekman & Friesen, 1969), we treat this type of messages as being 
correlated not only to emotions but to other attitudinal states, social signals, and moods as well. We do 
so becuase cues identifying attitudinal states like interest and boredom, to those underlying moods, and 
to those disclosing social signaling like empathy and antipathy are all visualy detectable from 
someone’s facial expressions (Pantic et al., 2005, 2006).  
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adapted, the importance of such an adaptation, and how the processing/reasoning should 
be adapted, involves information about the how the user feels (e.g. confused, irritated, 
frustrated, interested). As facial expressions are our direct, naturally preeminent means of 
communicating emotions, machine analysis of facial expressions forms an indispensable 
part of affective HCI designs (Pantic & Rothkrantz, 2003; Maat & Pantic, 2006). 
Automatic assessment of boredom, fatigue, and stress, will be highly valuable in situations 
where firm attention to a crucial but perhaps tedious task is essential, such as aircraft and air 
traffic control, space flight and nuclear plant surveillance, or simply driving a ground 
vehicle like a truck, train, or car. If these negative affective states could be detected in a 
timely and unobtrusive manner, appropriate alerts could be provided, preventing many 
accidents from happening. Automated detectors of fatigue, depression and anxiety could 
form another step toward personal wellness technologies. Automating such assessment 
becomes increasingly important in an aging population to prevent medical practitioners 
from becoming overburdened. 
Monitoring and interpreting facial signals can also provide important information to 
lawyers, police, security, and intelligence agents regarding deception and attitude. 
Automated facial reaction monitoring could form a valuable tool in law enforcement, as 
now only informal interpretations are typically used. Systems that can recognize friendly 
faces or, more importantly, recognize unfriendly or aggressive faces and inform the 
appropriate authorities represent another application of facial measurement technology. 

1.2 Outline of the Chapter 

This chapter introduces recent advances in machine analysis of facial expressions. It first 
surveys the problem domain, describes the problem space, and examines the state of the art. 
Then it describes several techniques used for automatic facial expression analysis that were 
recently proposed by the authors. Four areas will receive particular attention: face detection, 
facial feature extraction, facial muscle action detection, and emotion recognition. Finally, 
some of the scientific and engineering challenges are discussed and recommendations for 
achieving a better facial expression measurement technology are outlined.  

2. Automatic Facial Expression Analysis: Problem Space and State of the Art 

Because of its practical importance explained above and the theoretical interest of cognitive 
and medical scientists (Ekman et al., 1993; Young, 1998; Cohen, 2006), machine analysis of 
facial expressions attracted the interest of many researchers. However, although humans 
detect and analyze faces and facial expressions in a scene with little or no effort, 
development of an automated system that accomplishes this task is rather difficult. 

2.1 Level of Description: Action Units and Emotions 

Two main streams in the current research on automatic analysis of facial expressions 
consider facial affect (emotion) detection and facial muscle action (action unit) detection. For 
exhaustive surveys of the related work, readers are referred to: Samal & Iyengar (1992) for 
an overview of early works, Tian et al. (2005) and Pantic (2006) for surveys of techniques for 
detecting facial muscle actions, and Pantic and Rothkrantz (2000, 2003) for surveys of facial 
affect recognition methods.  
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Figure 1. Prototypic facial expressions of six basic emotions: anger, surprise, sadness, 
disgust, fear, and happiness 

These two streams stem directly from two major approaches to facial expression 
measurement in psychological research (Cohn, 2006): message and sign judgment. The aim 
of message judgment is to infer what underlies a displayed facial expression, such as affect 
or personality, while the aim of sign judgment is to describe the “surface” of the shown 
behavior, such as facial movement or facial component shape. Thus, a brow furrow can be 
judged as “anger” in a message-judgment and as a facial movement that lowers and pulls 
the eyebrows closer together in a sign-judgment approach. While message judgment is all 
about interpretation, sign judgment attempts to be objective, leaving inference about the 
conveyed message to higher order decision making.  
As indicated by Cohn (2006), most commonly used facial expression descriptors in message 
judgment approaches are the six basic emotions (fear, sadness, happiness, anger, disgust, 
surprise; see Figure 1), proposed by Ekman and discrete emotion theorists, who suggest that 
these emotions are universally displayed and recognized from facial expressions (Keltner & 
Ekman, 2000). This trend can also be found in the field of automatic facial expression 
analysis. Most facial expressions analyzers developed so far target human facial affect 
analysis and attempt to recognize a small set of prototypic emotional facial expressions like 
happiness and anger (Pantic et al., 2005a). Automatic detection of the six basic emotions in 
posed, controlled displays can be done with reasonably high accuracy. However detecting 
these facial expressions in the less constrained environments of real applications is a much 
more challenging problem which is just beginning to be explored. There have also been a 
few tentative efforts to detect cognitive and psychological states like interest (El Kaliouby & 
Robinson, 2004), pain (Bartlett et al., 2006), and fatigue (Gu & Ji, 2005). 
In sign judgment approaches (Cohn & Ekman, 2005), a widely used method for manual 
labeling of facial actions is the Facial Action Coding System (FACS; Ekman & Friesen, 1978, 
Ekman et al., 2002). FACS associates facial expression changes with actions of the muscles 
that produce them. It defines 44 different action units (AUs), which are considered to be the 
smallest visually discernable facial movements (e.g, see Figure 2). FACS also provides the 
rules for recognition of AUs’ temporal segments (onset, apex and offset) in a face video. 
Using FACS, human coders can manually code nearly any anatomically possible facial 
display, decomposing it into the AUs and their temporal segments that produced the 
display. As AUs are independent of interpretation, they can be used for any higher order 
decision making process including recognition of basic emotions (Ekman et al., 2002), 
cognitive states like (dis)agreement and puzzlement (Cunningham et al., 2004), 
psychological states like suicidal depression (Heller & Haynal, 1997) or pain (Williams, 2002; 
Craig et al., 1991), and social signals like emblems (i.e., culture-specific interactive signals 
like wink), regulators (i.e., conversational mediators like nod and smile), and illustrators 
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(i.e., cues accompanying speech like raised eyebrows) (Ekman & Friesen, 1969). Hence, AUs 
are very suitable to be used as mid-level parameters in automatic facial behavior analysis, as 
the thousands of anatomically possible expressions (Cohn & Ekman, 2005) can be described 
as combinations of 5 dozens of AUs and can be mapped to any higher order facial display 
interpretation. 

 

Figure 2(a). Examples of facial action units (AUs) and their combinations defined in FACS 

 

Figure 2(b). Example FACS codes for a prototypical expression of fear. FACS provides a 5-
point intensity scale (A-E) to describe AU intensity variation; e.g., 26B stands for a weak jaw 
drop 

FACS provides an objective and comprehensive language for describing facial expressions 
and relating them back to what is known about their meaning from the behavioral science 
literature. Because it is comprehensive, FACS also allows for the discovery of new patterns 
related to emotional or situational states. For example, what are the facial behaviors 
associated with driver fatigue? What are the facial behaviors associated with states that are  
critical for automated tutoring systems, such as interest, boredom, confusion, or 
comprehension? Without an objective facial measurement system, we have a chicken- and-
egg problem. How do we build systems to detect comprehension, for example, when we 
don’t know for certain what faces do when students are comprehending? Having subjects 
pose states such as comprehension and confusion is of limited use since there is a great deal 
of evidence that people do different things with their faces when posing versus during a 
spontaneous experience (Ekman, 1991, 2003). Likewise, subjective labeling of expressions 
has also been shown to be less reliable than objective coding for finding relationships 
between facial expression and other state variables. Some examples of this include the 
failure of subjective labels to show associations between smiling and other measures of 
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happiness, and it was not until FACS coding was introduced that a strong relationship was 
found, namely that expressions containing an eye region movement in addition to the 
mouth movement (AU12+6) were correlated with happiness, but expressions just containing 
the mouth smile (AU12) did not (Ekman, 2003). Another example where subjective 
judgments of expression failed to find relationships which were later found with FACS is 
the failure of naive subjects to differentiate deception and intoxication from facial display, 
whereas reliable differences were shown with FACS (Sayette et al., 1992). Research based 
upon FACS has also shown that facial actions can show differences between those telling the 
truth and lying at a much higher accuracy level than naive subjects making subjective 
judgments of the same faces (Frank & Ekman, 2004).  
Objective coding with FACS is one approach to the problem of developing detectors for 
state variables such as comprehension and confusion, although not the only one. Machine 
learning of classifiers from a database of spontaneous examples of subjects in these states is 
another viable approach, although this carries with it issues of eliciting the state, and 
assessment of whether and to what degree the subject is experiencing the desired state. 
Experiments using FACS face the same challenge, although computer scientists can take 
advantage of a large body of literature in which this has already been done by behavioral 
scientists. Once a database exists, however, in which a state has been elicited, machine 
learning can be applied either directly to image primitives, or to facial action codes. It is an 
open question whether intermediate representations such as FACS are the best approach to 
recognition, and such questions can begin to be addressed with databases such as the ones 
described in this chapter. Regardless of which approach is more effective, FACS provides a 
general purpose representation that can be useful for many applications. It would be time 
consuming to collect a new database and train application-specific detectors directly from 
image primitives for each new application. The speech recognition community has 
converged on a strategy that combines intermediate representations from phoneme 
detectors plus context-dependent features trained directly from the signal primitives, and 
perhaps a similar strategy will be effective for automatic facial expression recognition.  
It is not surprising, therefore, that automatic AU coding in face images and face image 
sequences attracted the interest of computer vision researchers. Historically, the first 
attempts to encode AUs in images of faces in an automatic way were reported by Bartlett et 
al. (1996), Lien et al. (1998), and Pantic et al. (1998). These three research groups are still the 
forerunners in this research field. The focus of the research efforts in the field was first on 
automatic recognition of AUs in either static face images or face image sequences picturing 
facial expressions produced on command. Several promising prototype systems were 
reported that can recognize deliberately produced AUs in either (near-) frontal view face 
images (Bartlett et al., 1999; Tian et al., 2001; Pantic & Rothkrantz, 2004a) or profile view face 
images (Pantic & Rothkrantz, 2004a; Pantic & Patras, 2006). These systems employ different 
approaches including expert rules and machine learning methods such as neural networks, 
and use either feature-based image representations (i.e., use geometric features like facial 
points; see section 5) or appearance-based image representations (i.e., use texture of the 
facial skin including wrinkles and furrows; see section 6). 
One of the main criticisms that these works received from both cognitive and computer 
scientists, is that the methods are not applicable in real-life situations, where subtle changes 
in facial expression typify the displayed facial behavior rather than the exaggerated changes 
that typify posed expressions. Hence, the focus of the research in the field started to shift to 
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automatic AU recognition in spontaneous facial expressions (produced in a reflex-like 
manner). Several works have recently emerged on machine analysis of AUs in spontaneous 
facial expression data (Cohn et al., 2004; Bartlett et al., 2003, 2005, 2006; Valstar et al., 2006). 
These methods employ probabilistic, statistical, and ensemble learning techniques, which 
seem to be particularly suitable for automatic AU recognition from face image sequences 
(Tian et al., 2005; Bartlett et al., 2006).  

2.2 Posed vs. Spontaneous Facial Displays 

The importance of making a clear distinction between spontaneous and deliberately 
displayed facial behavior for developing and testing computer vision systems becomes 
apparent when we examine the neurological substrate for facial expression. There are two 
distinct neural pathways that mediate facial expressions, each one originating in a different 
area of the brain. Volitional facial movements originate in the cortical motor strip, whereas 
the more involuntary, emotional facial actions, originate in the subcortical areas of the brain 
(e.g. Meihlke, 1973). Research documenting these differences was sufficiently reliable to 
become the primary diagnostic criteria for certain brain lesions prior to modern imaging 
methods (e.g. Brodal, 1981.) The facial expressions mediated by these two pathways have 
differences both in which facial muscles are moved and in their dynamics (Ekman, 1991; 
Ekman & Rosenberg, 2005). Subcortically initiated facial expressions (the involuntary group) 
are characterized by synchronized, smooth, symmetrical, consistent, and reflex-like facial 
muscle movements whereas cortically initiated facial expressions are subject to volitional 
real-time control and tend to be less smooth, with more variable dynamics (Rinn, 1984; 
Ekman & Rosenberg, 2005). However, precise characterization of spontaneous expression 
dynamics has been slowed down by the need to use non-invasive technologies (e.g. video), 
and the difficulty of manually coding expression intensity frame-by-frame. Thus the 
importance of video based automatic coding systems.  
Furthermore, the two pathways appear to correspond to the distinction between biologically 
driven versus socially learned facial behavior (Bartlett et al., 2006). Researchers agree, for the 
most part, that most types of facial expressions are learned like language, displayed under 
conscious control, and have culturally specific meanings that rely on context for proper 
interpretation (Ekman, 1989). Thus, the same lowered eyebrow expression that would 
convey “uncertainty” in North America might convey ”no” in Borneo (Darwin, 1872/1998). 
On the other hand, there are a limited number of distinct facial expressions of emotion that 
appear to be biologically wired, produced involuntarily, and whose meanings are similar 
across all cultures; for example, anger, contempt, disgust, fear, happiness, sadness, and 
surprise (see section 2.1). There are also spontaneous facial movements that accompany 
speech. These movements are smooth and ballistic, and are more typical of the subcortical 
system associated with spontaneous expressions (e.g. Rinn, 1984). There is some evidence 
that arm-reaching movements transfer from one motor system when they require planning 
to another when they become automatic, with different dynamic characteristics between the 
two (Torres & Anderson, 2006). It is unknown whether the same thing happens with learned 
facial displays. An automated system would enable exploration of such research questions.  
As already mentioned above, few works have been recently reported on machine analysis of 
spontaneous facial expression data (Cohn et al., 2004; Bartlett et al., 2003, 2005, 2006; Valstar 
et al., 2006). Except of the method for discerning genuine from fake facial expressions of 
pain described in section 7.3, the only reported effort to automatically discern spontaneous 
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from deliberately displayed facial behavior is that of Valstar et al. (2006). It concerns an 
automated system for distinguishing posed from spontaneous brow actions (i.e. AU1, AU2, 
AU4, and their combinations). Conforming with the research findings in psychology, the 
system was built around characteristics of temporal dynamics of brow actions and employs 
parameters like speed, intensity, duration, and the occurrence order of brow actions to 
classify brow actions present in a video as either deliberate or spontaneous facial actions. 

2.3 Facial Expression Configuration and Dynamics 

Automatic recognition of facial expression configuration (in terms of AUs constituting the 
observed expression) has been the main focus of the research efforts in the field. However, 
both the configuration and the dynamics of facial expressions (i.e., the timing and the 
duration of various AUs) are important for interpretation of human facial behavior. The 
body of research in cognitive sciences, which argues that the dynamics of facial expressions 
are crucial for the interpretation of the observed behavior, is ever growing (Basilli, 1978; 
Russell & Fernandez-Dols, 1997; Ekman & Rosenberg, 2005; Ambadar et al., 2005). Facial 
expression temporal dynamics are essential for categorization of complex psychological 
states like various types of pain and mood (Williams, 2002). They represent a critical factor 
for interpretation of social behaviors like social inhibition, embarrassment, amusement, and 
shame (Keltner, 1997; Costa t al., 2001). They are also a key parameter in differentiation 
between posed and spontaneous facial displays (Ekman & Rosenberg, 2005). For instance, 
spontaneous smiles are smaller in amplitude, longer in total duration, and slower in onset 
and offset time than posed smiles (e.g., a polite smile) (Ekman, 2003). Another study showed 
that spontaneous smiles, in contrast to posed smiles, can have multiple apexes (multiple 
rises of the mouth corners – AU12) and are accompanied by other AUs that appear either 
simultaneously with AU12 or follow AU12 within 1s (Cohn & Schmidt, 2004). Similarly, it 
has been shown that the differences between spontaneous and deliberately displayed brow 
actions (AU1, AU2, AU4) is in the duration and the speed of onset and offset of the actions 
and in the order and the timing of actions’ occurrences (Valstar et al. 2006).   
In spite of these findings, the vast majority of the past work in the field does not take 
dynamics of facial expressions into account when analyzing shown facial behavior. Some of 
the past work in the field has used aspects of temporal dynamics of facial expression such as 
the speed of a facial point displacement or the persistence of facial parameters over time 
(e.g., Zhang & Ji, 2005; Tong et al., 2006; Littlewort et al., 2006). However, only three recent 
studies analyze explicitly the temporal dynamics of facial expressions. These studies explore 
automatic segmentation of AU activation into temporal segments (neutral, onset, apex, 
offset) in frontal- (Pantic & Patras, 2005; Valstar & Pantic, 2006a) and profile-view (Pantic & 
Patras, 2006) face videos. The works of Pantic & Patras (2005, 2006) employ rule-based 
reasoning to encode AUs and their temporal segments. In contrast to biologically inspired 
learning techniques (such as neural networks), which emulate human unconscious problem 
solving processes, rule-based techniques are inspired by human conscious problem solving 
processes. However, studies in cognitive sciences, like the one on “thin slices of behavior” 
(Ambady & Rosenthal, 1992), suggest that facial displays are neither encoded nor decoded 
at an intentional, conscious level of awareness. They may be fleeting changes in facial 
appearance that we still accurately judge in terms of emotions or personality even from very 
brief observations. In turn, this finding suggests that learning techniques inspired by human 
unconscious problem solving may be more suitable for facial expression recognition than 
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those inspired by human conscious problem solving (Pantic et al., 2005a). Experimental 
evidence supporting this assumption for the case of prototypic emotional facial expressions 
was recently reported (Valstar & Pantic, 2006b). Valstar & Pantic (2006a) also presented 
experimental evidence supporting this assumption for the case of expression configuration 
detection and its temporal activation model (neutral → onset → apex → offset) recognition.  

2.4 Facial Expression Intensity, Intentionality and Context Dependency 

Facial expressions can vary in intensity. By intensity we mean the relative degree of change 
in facial expression as compared to a relaxed, neutral facial expression. In the case of a smile, 
for example, the intensity of the expression can be characterized as the degree of upward 
and outward movement of the mouth corners, that is, as the degree of perceivable activity in 
the Zygomaticus Major muscle (AU12) away from its resting, relaxed state (Duchenne, 
1862/1990; Ekman & Friesen, 1978). It has been experimentally shown that the expression 
decoding accuracy and the perceived intensity of the underlying affective state vary linearly 
with the physical intensity of the facial display (Hess et al., 1997). Hence, explicit analysis of 
expression intensity variation is very important for accurate expression interpretation, and 
is also essential to the ability to distinguish between spontaneous and posed facial behavior 
discussed in the previous sections. While FACS provides a 5-point intensity scale to describe 
AU intensity variation and enable manual quantification of AU intensity (Ekman et al. 2002; 
Figure 2(b)), fully automated methods that accomplish this task are yet to be developed. 
However, first steps toward this goal have been made. Some researchers described changes 
in facial expression that could be used to represent intensity variation automatically (Essa & 
Pentland, 1997; Kimura & Yachida, 1997; Lien et al., 1998), and an effort toward implicit 
encoding of intensity was reported by Zhang & Ji (2005). Automatic coding of intensity 
variation was explicitly compared to manual coding in Bartlett et al. (2003a; 2006). They 
found that the distance to the separating hyperplane in their learned classifiers correlated 
significantly with the intensity scores provided by expert FACS coders.   
Rapid facial signals do not usually convey exclusively one type of messages but may convey 
any of the types (e.g., blinking is usually a manipulator but it may be displayed in an 
expression of confusion). It is crucial to determine which type of message a shown facial 
expression communicates since this influences the interpretation of it (Pantic & Rothkrantz, 
2003). For instance, squinted eyes may be interpreted as sensitivity of the eyes to bright light 
if this action is a reflex (a manipulator), as an expression of disliking if this action has been 
displayed when seeing someone passing by (affective cue), or as an illustrator of friendly 
anger on friendly teasing if this action has been posed (in contrast to being unintentionally 
displayed) during a chat with a friend, to mention just a few possibilities. To interpret an 
observed facial signal, it is important to know the context in which the observed signal has 
been displayed – where the expresser is (outside, inside, in the car, in the kitchen, etc.), what 
his or her current task is, are other people involved, and who the expresser is. Knowing the 
expresser is particularly important as individuals often have characteristic facial expressions 
and may differ in the way certain states (other than the basic emotions) are expressed. Since 
the problem of context-sensing is extremely difficult to solve (if possible at all) for a general 
case, pragmatic approaches (e.g., activity/application- and user-centered approach) should 
be taken when learning the grammar of human facial behavior (Pantic et al., 2005a, 2006). 
However, except for a few works on user-profiled interpretation of facial expressions like 
those of Fasel et al. (2004) and Pantic & Rothkrantz (2004b), virtually all existing automated 
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facial expression analyzers are context insensitive. Although machine-context sensing, that 
is, answering questions like who is the user, where is he or she, and what is he or she doing, 
has witnessed recently a number of significant advances (Nock et al., 2004, Pantic et al. 
2006), the complexity of this problem makes context-sensitive facial expression analysis a 
significant research challenge. 

2.5 Facial Expression Databases and Ground Truth 

To develop and evaluate facial behavior analyzers capable of dealing with different 
dimensions of the problem space as defined above, large collections of training and test data 
are needed (Pantic & Rothkrantz, 2003; Pantic et al., 2005a; Tian et al., 2005; Bartlett et al., 
2006).  
Picard (1997) outlined five factors that influence affective data collection: 
(a) Spontaneous versus posed: Is the emotion elicited by a situation or stimulus that is 

outside the subject's control or the subject is asked to elicit the emotion? 
(b) Lab setting versus real-world: Is the data recording taking place in a lab or the emotion 

is recorded in the usual environment of the subject? 
(c) Expression versus feeling: Is the emphasis on external expression or on internal feeling? 
(d) Open recording versus hidden recording: Is the subject aware that he is being recorded? 
(e) Emotion-purpose versus other-purpose: Does the subject know that he is a part of an 

experiment and the experiment is about emotion? 
A complete overview of existing, publicly available datasets that can be used in research on 
automatic facial expression analysis is given by Pantic et al. (2005b). In general, there is no 
comprehensive reference set of face images that could provide a basis for all different efforts 
in the research on machine analysis of facial expressions. Only isolated pieces of such a 
facial database exist. An example is the unpublished database of Ekman-Hager Facial Action 
Exemplars (Ekman et al., 1999). It has been used by several research groups (e.g., Bartlett et 
al., 1999; Tian et al., 2001) to train and test their methods for AU detection from frontal-view 
facial expression sequences. Another example is JAFFE database (Lyons et al., 1999), which 
contains in total 219 static images of 10 Japanese females displaying posed expressions of six 
basic emotions and was used for training and testing various existing methods for 
recognition of prototypic facial expressions of emotions (Pantic et al., 2003). An important 
recent contribution to the field is the Yin Facial Expression Database (Yin et al., 2006), which 
contains 3D range data for prototypical expressions at a variety of intensities. 
The Cohn-Kanade facial expression database (Kanade et al., 2000) is the most widely used 
database in research on automated facial expression analysis (Tian et al., 2005; Pantic et al., 
2005a). This database contains image sequences of approximately 100 subjects posing a set 
of 23 facial displays, and contains FACS codes in addition to basic emotion labels. The 
release of this database to the research community enabled a large amount of research on 
facial expression recognition and feature tracking. Two main limitations of this facial 
expression data set are as follows. First, each recording ends at the apex of the shown 
expression, which limits research of facial expression temporal activation patterns (onset  
apex  offset). Second, many recordings contain the date/time stamp recorded over the 
chin of the subject. This makes changes in the appearance of the chin less visible and 
motions of the chin difficult to track.  
To fill this gap, the MMI facial expression database was developed (Pantic et al., 2005b). It 
has two parts: a part containing deliberately displayed facial expressions and a part 
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containing spontaneous facial displays. The first part contains over 4000 videos as well as 
over 600 static images depicting facial expressions of single AU activation, multiple AU 
activations, and six basic emotions. It has profile as well as frontal views, and was FACS 
coded by two certified coders. The second part of the MMI facial expression database 
contains currently 65 videos of spontaneous facial displays, that were coded in terms of 
displayed AUs and emotions by two certified coders. Subjects were 18 adults 21 to 45 years 
old and 11 children 9 to 13 years old; 48% female, 66% Caucasian, 30% Asian and 4% 
African. The recordings of 11 children were obtained during the preparation of a Dutch TV 
program, when children were told jokes by a professional comedian or were told to mimic 
how they would laugh when something is not funny. The recordings contain mostly facial 
expressions of different kinds of laughter and were made in a TV studio, using a uniform 
background and constant lighting conditions. The recordings of 18 adults were made in 
subjects’ usual environments (e.g., home), where they were shown segments from comedies, 
horror movies, and fear-factor series. The recordings contain mostly facial expressions of 
different kinds of laughter, surprise, and disgust expressions, which were accompanied by 
(often large) head motions, and were made under variable lighting conditions. Although the 
MMI facial expression database is the most comprehensive database for research on 
automated facial expression analysis, it still lacks metadata for the majority of recordings 
when it comes to frame-based AU coding. Further, although the MMI database is probably 
the only publicly available dataset containing recordings of spontaneous facial behavior at 
present, it still lacks metadata about the context in which these recordings were made such 
the utilized stimuli, the environment in which the recordings were made, the presence of 
other people, etc. 
Another database of spontaneous facial expressions was collected at UT Dallas (O’Toole et 
al., 2005). Similarly to the second part of the MMI facial expression database, facial displays 
were elicited using film clips. In the case of the UT Dallas database, however, there is no 
concurrent measure of expression content beyond the stimulus category. Yet, since subjects 
often do not experience the intended emotion and sometimes experience another one (e.g., 
disgust or annoyance instead of humor), concurrent measure of expression content beyond 
the stimulus category is needed. In other words, as in the case of the second part of the MMI 
facial expression database, coding in terms of displayed AUs and emotions independently 
of the stimulus category is needed.  
Mark Frank, in collaboration with Javier Movellan and Marian Bartlett, has collected a 
dataset of spontaneous facial behavior in an interview paradigm with rigorous FACS coding 
(Bartlett et al. 2006). This datased, called the RU-FACS Spontaneous Expression Dataset, 
consists of 100 subjects participating in a ’false opinion’ paradigm. In this paradigm, subjects 
first fill out a questionnaire regarding their opinions about a social or political issue. Subjects 
are then asked to either tell the truth or take the opposite opinion on an issue where they 
rated strong feelings, and convince an interviewer they are telling the truth. Interviewers 
were retired police and FBI agents. A high-stakes paradigm was created by giving the 
subjects $50 if they succeeded in fooling the interviewer, whereas if they were caught they 
were told they would receive no cash, and would have to fill out a long and boring 
questionnaire. In practice, everyone received a minimum of $10 for participating, and no 
one had to fill out the questionnaire. This paradigm has been shown to elicit a wide range of 
emotional expressions as well as speech-related facial expressions. This dataset is 
particularly challenging both because of speech-related mouth movements, and also because 
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of out-of-plane head rotations which tend to be present during discourse. Subjects faces 
were digitized by four synchronized Dragonfly cameras from Point Grey (frontal, two 
partial profiles at 30 degrees, and one view from below). Two minutes of each subject’s 
behavior is being FACS coded by two certified FACS coders. FACS codes include the apex 
frame as well as the onset and offset frame for each action unit (AU). To date, 33 subjects 
have been FACS-coded. This dataset will be made available to the research community once 
the FACS coding is completed. 
With the exception of these problems concerned with acquiring valuable data and the 
related ground truth, another important issue is how does one construct and administer 
such a large facial expression benchmark database. Except of the MMI facial expression 
database (Pantic et al., 2005b), which was built as a web-based direct-manipulation 
application, allowing easy access and easy search of the available images, the existing facial 
expression databases are neither easy to access nor easy to search. In general, once the 
permission for usage is issued, large, unstructured files of material are sent. Other related 
questions are the following. How does one facilitate reliable, efficient, and secure inclusion 
of objects constituting this database? How could the performance of a tested automated 
system be included into the database? How should the relationship between the 
performance and the database objects used in the evaluation be defined? Pantic et al. (2003, 
2005a, 2005b) emphasized a number of specific, research and development efforts needed to 
address the aforementioned problems. Nonetheless, note that their list of suggestions and 
recommendations is not exhaustive of worthwhile contributions. 

3. Face Detection 

The first step in facial information processing is face detection, i.e., identification of all 
regions in the scene that contain a human face. The problem of finding faces should be solved 
regardless of clutter, occlusions, and variations in head pose and lighting conditions. The 
presence of non-rigid movements due to facial expression and a high degree of variability in 
facial size, color and texture make this problem even more difficult. Numerous techniques 
have been developed for face detection in still images (Yang et al., 2002; Li & Jain, 2005). 
However, most of them can detect only upright faces in frontal or near-frontal view. The 
efforts that had the greatest impact on the community (as measured by, e.g., citations) 
include the following. 
Rowley et al. (1998) used a multi-layer neural network to learn the face and non-face 
patterns from the intensities and spatial relationships of pixels in face and non-face images. 
Sung and Poggio (1998) proposed a similar method. They used a neural network to find a 
discriminant function to classify face and non-face patterns using distance measures. 
Moghaddam and Pentland (1997) developed a probabilistic visual learning method based 
on density estimation in a high-dimensional space using an eigenspace decomposition. The 
method was applied to face localization, coding and recognition. Pentland et al. (1994) 
developed a real-time, view-based and modular (by means of incorporating salient features 
such as the eyes and the mouth) eigenspace description technique for face recognition in 
variable pose. Another method that can handle out-of-plane head motions is the statistical 
method for 3D object detection proposed by Schneiderman and Kanade (2000). Other such 
methods, which have been recently proposed, include those of Huang and Trivedi (2004) 
and Wang and Ji (2004). Most of these methods emphasize statistical learning techniques 
and use appearance features. 
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Arguably the most commonly employed face detector in automatic facial expression 
analysis is the real-time face detector proposed by Viola and Jones (2004). This detector 
consists of a cascade of classifiers trained by AdaBoost. Each classifier employs integral 
image filters, also called “box filters,” which are reminiscent of Haar Basis functions, and 
can be computed very fast at any location and scale. This is essential to the speed of the 
detector. For each stage in the cascade, a subset of features is chosen using a feature 
selection procedure based on AdaBoost. 
There are several adapted versions of the Viola-Jones face detector and the one that is 
employed by the systems discussed in detail in this chapter was proposed by Fasel et al. 
(2005). It uses GentleBoost instead of AdaBoost. GentleBoost uses the continuous output of 
each filter rather than binarizing it. A description of Gentle Boost classification can be found 
in Friedman et al. (2000). 

4. Facial Feature Extraction  

After the presence of a face has been detected in the observed scene, the next step is to 
extract the information about the displayed facial signals. The problem of facial feature 
extraction from regions in the scene that contain a human face may be divided into at least 
three dimensions (Pantic & Rothkrantz, 2000): 
(a) Is temporal information used? 
(b) Are the features holistic (spanning the whole face) or analytic (spanning subparts of the 

face)? 
(c) Are the features view- or volume based (2D/3D)? 
Given this glossary and if the goal is face recognition, i.e., identifying people by looking at 
their faces, most of the proposed approaches adopt 2D holistic static facial features. On the 
other hand, many approaches to automatic facial expression analysis adopt 2D analytic 
spatio-temporal facial features (Pantic & Rothkrantz, 2003). This finding is also consistent 
with findings from psychological research suggesting that the brain processes faces 
holistically rather than locally whilst it processes facial expressions locally (Bassili, 1978). 
What is, however, not entirely clear yet is whether information on facial expression is 
passed to the identification process to aid person recognition or not. Some experimental data 
suggest this (Martinez, 2003; Roark et al., 2003). For surveys of computer vision efforts 
aimed at face recognition, the readers are referred to: Zhao et al. (2003), Bowyer (2004), and 
Li and Jain (2005). 
Most of the existing facial expression analyzers are directed toward 2D spatiotemporal facial 
feature extraction, including the methods proposed by the authors and their respective 
research teams. The usually extracted facial features are either geometric features such as the 
shapes of the facial components (eyes, mouth, etc.) and the locations of facial fiducial points 
(corners of the eyes, mouth, etc.) or appearance features representing the texture of the facial 
skin including wrinkles, bulges, and furrows. Typical examples of geometric-feature-based 
methods are those of Gokturk et al. (2002), who used 19 point face mesh, of Chang et al. 
(2006), who used a shape model defined by 58 facial landmarks, and of Pantic and her 
collegues (Pantic & Rothkrantz, 2004; Pantic & Patras, 2006; Valstar & Pantic, 2006a), who 
used a set of facial characteristic points like the ones illustrated in Figure 3. Typical 
examples of hybrid, geometric- and appearance-feature-based methods are those of Tian et 
al. (2001), who used shape-based models of eyes, eyebrows and mouth and transient 
features like crows-feet wrinkles and nasolabial furrow, and of Zhang and Ji (2005), who 
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used 26 facial points around the eyes, eyebrows, and mouth and the same transient features 
as Tian et al (2001). Typical examples of appearance-feature-based methods are those of 
Bartlett et al. (1999, 2005, 2006) and Guo and Dyer (2005), who used Gabor wavelets, of 
Anderson and McOwen (2006), who used a holistic, monochrome, spatial-ratio face 
template, and of Valstar et al. (2004), who used temporal templates. It has been reported that 
methods based on geometric features are often outperformed by those based on appearance 
features using, e.g., Gabor wavelets or eigenfaces (Bartlett et al., 1999). Certainly, this may 
depend on the classification method and/or machine learning approach which takes the 
features as input. Recent studies like that of Pantic & Patras (2006), Valstar and Pantic 
(2006a), and those presented in this chapter, show that in some cases geometric features can 
outperform appearance-based ones. Yet, it seems that using both geometric and appearance 
features might be the best choice in the case of certain facial expressions (Pantic & Patras, 
2006). 
Few approaches to automatic facial expression analysis based on 3D face modelling have 
been recently proposed. Gokturk et al. (2002) proposed a method for recognition of facial 
signals like brow flashes and smiles based upon 3D deformations of the face tracked on 
stereo image streams using a 19-point face mesh and standard optical flow techniques. The 
work of Cohen et al. (2003) focuses on the design of Bayesian network classifiers for emotion 
recognition from face video based on facial features tracked by a method called Piecewise 
Bezier Volume Deformation tracking (Tao & Huang, 1998). This tracker employs an explicit 
3D wireframe model consisting of 16 surface patches embedded in Bezier volumes. Cohn et 
al. (2004) focus on automatic analysis of brow actions and head movements from face video 
and use a cylindrical head model to estimate the 6 degrees of freedom of head motion (Xiao 
et al., 2003). Baker and his colleagues developed several algorithms for fitting 2D and 
combined 2D+3D Active Appearance Models to images of faces (Xiao et al., 2004; Gross et 
al., 2006), which can be used further for various studies concerning human facial behavior. 
3D face modeling is highly relevant to the present goals due to its potential to produce view-
independent facial signal recognition systems. The main shortcomings of the current 
methods concern the need of a large amount of manually annotated training data and an 
almost always required manual selection of landmark facial points in the first frame of the 
input video based on which the face model will be warped to fit the face. Automatic facial 
feature point detection of the kind explained in section 5 offers a solution to these problems. 

5. Geometric Facial Feature Extraction and Tracking 

5.1 Facial Characteristic Point Detection 

Previous methods for facial feature point detection can be classified as either texture-based 
methods (modeling local texture around a given facial point) or texture- and shape-based 
methods (regarding the constellation of all facial points as a shape, which is learned from a 
set of labeled faces, and trying to fit the shape to any unknown face). A typical texture-based 
method is that of Holden & Owens (2002), who used log-Gabor wavelets, while a typical 
texture- and shape-based method is that of Chen et al. (2004), who applied AdaBoost to 
determine facial feature point candidates for each pixel in an input image and used a shape 
model as a filter to select the most possible position of feature points.  
Although these detectors can be used to localize 20 facial characteristic points illustrated in 
Figure 3, which are used by the facial expression analyzers developed by Pantic and her 
team (e.g., Pantic & Patras, 2006; Valstar & Pantic, 2006a), none performs the detection with 
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high accuracy. They usually regard the localization of a point as a SUCCESS if the distance 
between the automatically labeled point and the manually labeled point is less than 30% of 
the true inter-ocular distance (the distance between the eyes). However, 30% of the true 
inter-ocular value is at least 30 pixels in the case of the Cohn-Kanade database samples 
(Kanade et al., 2000). This means that a bias of 30 pixels for an eye corner would be regarded 
as SUCCESS even though the width of the whole eye is approximately 60 pixels. This is 
problematic in the case of facial expression analysis, since subtle changes in the facial 
expression will be missed due to the errors in facial point localization.  

 

Figure 3. Outline of the fully automated facial point detection method (Vukadinovic & 
Pantic, 2005) 

To handle this, Vukadinovic and Pantic (2005) developed a novel, robust, fully automated 
facial point detector. The method is illustrated in Figure 3. It is a texture based method – it 
models local image patches using Gabor wavelets and builds GentleBoost-based point 
detectors based on these regions. The method operates on the face region detected by the 
face detector described in section 3. The detected face region is then divided in 20 regions of 
interest (ROIs), each one corresponding to one facial point to be detected. A combination of 
heuristic techniques based on the analysis of the vertical and horizontal histograms of the 
upper and the lower half of the face region image is used for this purpose (Figure 3).  
The method uses further individual feature patch templates to detect points in the relevant 
ROI. These feature models are GentleBoost templates built from both gray level intensities 
and Gabor wavelet features. Previous work showed that Gabor features were among the 
most effective texture-based features for face processing tasks (Donato et al., 1999). This 
finding is also consistent with our experimental data that show the vast majority of features 
(over 98%) that were selected by the utilized GentleBoost classifier were from the Gabor 
filter components rather than from the gray level intensities. The essence of the success of 
Gabor filters is that they remove most of the variability in image due to variation in lighting 
and contrast, at the same time being robust against small shift and deformation (e.g., Lades 
et al., 1992; Osadchy et al., 2005). For a thorough analysis of Gabor filters for image 
representation see (Daugman, 1988).  
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Feature vector for each facial point is extracted from the 13×13 pixel image patch centered 
on that point. This feature vector is used to learn the pertinent point’s patch template and, in 
the testing stage, to predict whether the current point represents a certain facial point or not. 
In total, 13×13×(48+1)=8281 features are used to represent one point (Figure 3). Each feature 
contains the following information: (i) the position of the pixel inside the 13×13 pixels image 
patch, (ii) whether the pixel originates from a grayscale or from a Gabor filtered 
representation of the ROI, and (iii) if appropriate, which Gabor filter has been used (we used 
a bank of 48 Gabor filters at 8 orientations and 6 spatial frequencies). 

 

Figure 4. Examples of first-effort results of the facial point detector of Vukadinovic and 
Pantic (2005) for samples from (left to right): the Cohn-Kanade dataset, the MMI database 
(posed expressions), the MMI database (spontaneous expressions), and a cell-phone camera 

In the training phase, GentleBoost feature templates are learned using a representative set of 
positive and negative examples. In the testing phase, for a certain facial point, an input 
13×13 pixel window (sliding window) is slid pixel by pixel across 49 representations of the 
relevant ROI (grayscale plus 48 Gabor filter representations). For each position of the sliding 
window, GentleBoost outputs the similarity between the 49-dimensional representation of 
the sliding window and the learned feature point model. After scanning the entire ROI, the 
position with the highest similarity is treated as the feature point in question. 
Vukadinovic and Pantic trained and tested the facial feature detection method on the first 
frames of 300 Cohn-Kanade database samples (Kanade et al., 2000), using leave-one-subset-out 
cross validation. To evaluate the performance of the method, each of the automatically located 
facial points was compared to the true (manually annotated) point. The authors defined errors 
with respect to the inter-ocular distance measured in the test image (80 to 120 pixels in the case 
of image samples from the Cohn-Kanade database). An automatically detected point displaced 
in any direction, horizontal or vertical, less than 5% of inter-ocular distance (i.e., 4 to 6 pixels in 
the case of image samples from the Cohn-Kanade database) from the true facial point is 
regarded as SUCCESS. Overall, an average recognition rate of 93% was achieved for 20 facial 
feature points using the above described evaluation scheme. Typical results are shown in 
Figure 4. Virtually all misclassifications (most often encountered with points F1 and M) can be 
attributed to the lack of consistent rules for manual annotation of the points. For details about 
this method, see (Vukadinovic & Pantic, 2005). 
Fasel and colleagues developed a real-time feature detector using a GentleBoost approach 
related to the one used for their face detector (Fasel et al., 2005) and combined with a 
Bayesian model for feature positions (Fasel, 2006). The face is first detected and then the 
location and scale of the face is used to generate a prior probability distribution for each 
facial feature. The approach is similar in spirit to that of Vukadinovic and Pantic, but it was 
trained on 70,000 face snapshots randomly selected from the web. These web images contain 
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greater pose and lighting variation than typical posed expression datasets, and were 
selected so that the machine learning systems could learn to be robust to such variations, 
and perform well in the less controlled image conditions of practical applications. When 
tested on such snapshots, the system obtains a median error of less than 0.05 interocular 
distance for eye positions, 0.06 for the nose tip, and 0.07 for the mouth center. For the strictly 
frontal subset of these web snapshots, which still contain substantial lighting variation, 
median error was 0.04, 0.045, and 0.05 interocular distance for eye, nose, and mouth 
position. This system could be combined with an approach such as that of Vukadinovic and 
Pantic to provide more robust initialization for the additional facial feature points.  

5.2 Facial Point Tracking 

Contractions of facial muscles induce movements of the facial skin and changes in the 
appearance of facial components such as the eyebrows, nose, and mouth. Since motion of 
the facial skin produces optical flow in the image, a large number of researchers have 
studied optical flow tracking (Pantic & Rothkrantz, 2000; 2003; Tian et al., 2005). The optical 
flow approach to describing face motion has the advantage of not requiring a facial feature 
extraction stage of processing. Dense flow information is available throughout the entire 
facial area, regardless of the existence of facial components, even in the areas of smooth 
texture such as the cheeks and the forehead. Because optical flow is the visible result of 
movement and is expressed in terms of velocity, it can be used to represent directly facial 
actions. One of the first efforts to utilize optical flow for recognition of facial expressions 
was the work of Mase (1991). Thereafter, many other researchers adopted this approach 
(Pantic & Rothkrantz, 2000; 2003; Tian et al., 2005). 
Standard optical flow techniques (e.g., Lucas & Kanade, 1981; Shi & Tomasi, 1994; Barron et 
al., 1994) are also most commonly used for tracking facial feature points. DeCarlo and 
Metaxas (1996) presented a model-based tracking algorithm in which a face shape model 
and motion estimation are integrated using optical flow and edge information. Gokturk et 
al. (2002) track the points of their 19-point face mesh on the stereo image streams using the 
standard Lucas-Kanade optical flow algorithm (Lucas & Kanade, 1981). To achieve facial 
feature point tracking Lien et al. (1998), Tian et al. (2001), and Cohn et al. (2004) used the 
standard Lucas-Kanade optical flow algorithm too. To realize fitting of 2D and combined 
2D+3D Active Appearance Models to images of faces, Xiao et al. (2004) use an algorithm 
based on an "inverse compositional" extension to the Lucas-Kanade algorithm. 
To address the limitations inherent in optical flow techniques such as the accumulation of 
error and the sensitivity to noise, occlusion, clutter, and changes in illumination, several 
researchers used sequential state estimation techniques to track facial feature points in 
image sequences. Both, Zhang and Ji (2005) and Gu and Ji (2005) used facial point tracking 
based on a Kalman filtering scheme, which is the traditional tool for solving sequential state 
problems. The derivation of the Kalman filter is based on a state-space model (Kalman, 
1960), governed by two assumptions: (i) linearity of the model and (ii) Gaussianity of both 
the dynamic noise in the process equation and the measurement noise in the measurement 
equation. Under these assumptions, derivation of the Kalman filter leads to an algorithm 
that propagates the mean vector and covariance matrix of the state estimation error in an 
iterative manner and is optimal in the Bayesian setting. To deal with the state estimation in 
nonlinear dynamical systems, the extended Kalman filter was proposed, which is derived 
through linearization of the state-space model. However, many of the state estimation 
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problems, including human facial expression analysis, are nonlinear and quite often non-
Gaussian too. Thus, if the face undergoes a sudden or rapid movement, the prediction of 
features positions from Kalman filtering will be significantly off. To handle this problem, 
Zhang and Ji (2005) and Gu and Ji (2005) used the information about the IR-camera detected 
pupil location together with the output of Kalman filtering to predict facial features 
positions in the next frame of an input face video. To overcome these limitations of the 
classical Kalman filter and its extended form in general, particle filters wereproposed. For an 
extended overview of the various facets of particle filters see (Haykin & de Freitas, 2004). 
The facial points tracking schemes employed by facial expression analyzers proposed by 
Pantic and colleagues (e.g., Pantic & Patras, 2006; Valstar & Pantic, 2006a) are based upon 
particle filtering.  
The main idea behind particle filtering is to maintain a set of solutions that are an efficient 
representation of the conditional probability p(α |Y ), where α  is the state of a temporal 
event to be tracked given a set of noisy observations Y = {y1,…, y¯, y} up to the current time 
instant. This means that the distribution p(α |Y ) is represented by a set of pairs {( sk , πk)} 
such that if sk is chosen with probability equal to πk , then it is as if sk was drawn from p(α | 
Y). By maintaining a set of solutions instead of a single estimate (as is done by Kalman 
filtering), particle filtering is able to track multimodal conditional probabilities p(α |Y ) , and 
it is therefore robust to missing and inaccurate data and particularly attractive for estimation 
and prediction in nonlinear, non-Gaussian systems. In the particle filtering framework, our 
knowledge about the a posteriori probability p(α |Y ) is updated in a recursive way. Suppose 
that at a previous time instance we have a particle-based representation of the density p(α¯ 
|Y ¯ ) , i.e., we have a collection of K particles and their corresponding weights (i.e. {(sk ¯, 
πk¯)} ). Then, the classical particle filtering algorithm, so-called Condensation algorithm, can 
be summarized as follows (Isard & Blake, 1998). 
1. Draw K particles sk

¯ from the probability density that is represented by the collection 
{(sk

¯, πk¯)}. 
2. Propagate each particle sk

¯ with the transition probability p(α | α¯ ) in order to arrive at 
a collection of K particles sk. 

3. Compute the weights πk for each particle as πk = p(y |sk ) and then normalize so that ∑k 
πk = 1. 

This results in a collection of K particles and their corresponding weights {(sk, πk)}, which is 
an approximation of the density p(α |Y ). 
The Condensation algorithm has three major drawbacks. The first one is that a large amount 
of particles that result from sampling from the proposal density p(α |Y¯ ) might be wasted 
because they are propagated into areas with small likelihood. The second problem is that 
the scheme ignores the fact that while a particle sk = 〈sk1, sk2,…, skN〉 might have low 
likelihood, it can easily happen that parts of it might be close to the correct solution. Finally, 
the third problem is that the estimation of the particle weights does not take into account the 
interdependences between the different parts of the state α. 
Various extensions to classical Condensation algorithm have been proposed and some of 
those were used to track facial features. For example, Pitt and Shepard (1999) introduced 
Auxiliary Particle Filtering, which addresses the first drawback of the Condensation 
algorithm by favoring particles that end up in areas with high likelihood when propagated 
with the transition density p(α |α¯ ). Pantic and Patras employed this algorithm to track 
facial characteristic points in either face-profile- (Pantic & Patras, 2006) or in frontal-face 
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image sequences (Pantic & Patras, 2005). To address the third drawback of the Condensation 
algorithm for the case of simultaneous tracking of facial components (eyes, eyebrows, nose, 
and mouth), Su et al. (2004) combined it with spatial belief propagation in order to enforce 
(pre-learned) spatial correlations between parameterizations of facial components. The 
extension to the Condensation algorithm used by Valstar and Pantic (2006a) for facial point 
tracking is the so-called Particle Filtering with Factorized Likelihoods (PFFL) proposed in 
(Patras & Pantic, 2004) combined with a robust color-based observation model (Patras & 
Pantic, 2005). This algorithm addresses the aforementioned problems inherent in the 
Condensation algorithm by extending the Auxiliary Particle Filtering to take into account 
the interdependences between the different parts of the state α. More specifically, the PFFL 
tracking scheme assumes that the state α can be partitioned into sub-states αi (which, in our 
case, correspond to the different facial points), such that α = 〈α1, …, αn〉. The density p(α |α¯ ), 
that captures the interdependencies between the locations of the facial features is estimated 
using a set of training data and a kernel-based density estimation scheme. As the collection 
of training data in question, four sets of annotated data were used containing the 
coordinates of facial salient points belonging to four facial components: eyebrows, eyes, 
nose-chin, and mouth (Patras & Pantic, 2004; Valstar & Pantic, 2006a). The underlying 
assumption is that correlations between the points belonging to the same facial components 
are more important for facial expression recognition than correlations between the points 
belonging to different facial components. This is consistent with psychological studies that 
suggest that: a) the brain processes facial expressions locally/ analytically rather than 
holistically whilst it identifies faces holistically (Bassili, 1978), and b) dynamic cues 
(expressions) are computed separately from static cues (facial proportions) (Humphreys et 
al., 1993). This dataset is based on 66 image sequences of 3 persons (33% female) showing 22 
AUs that the facial expression analyzer proposed by Valstar and Pantic (2006a) is able to 
recognize. The utilized sequences are from the MMI facial expression database, part 1 
(posed expressions), and they have not been used to train and test the performance of the 
system as a whole. Typical results of the PFFL, applied for tracking color-based templates of 
facial points in image sequences of faces in frontal-view are shown in Figure 5. 

 

Figure 5. Example of first-effort results of the PFFL tracking scheme of Patras and Pantic 
(2004, 2005) for samples from  the Cohn-Kanade dataset (1st row) and the MMI database 
(posed expressions) (2nd row) 
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6. Appearance-based Facial Features and Emotion Recognition 

6.1 Appearance-based Facial Features 

Most computer vision researchers think of motion when they consider the problem of facial 
expression recognition. An often cited study by Bassili (1978) shows that humans can 
recognize facial expressions above chance from motion, using point-light displays. 
However, the role of appearance-based texture information in expression recognition is like 
the proverbial elephant in the living room2. In contrast to the Bassili study in which humans 
were barely above chance using motion without texture, humans are nearly at ceiling for 
recognizing expressions from texture without motion (i.e. static photographs).  
Appearance-based features include Gabor filters, integral image filters (also known as box-
filters, and Haar-like filters), features based on edge-oriented histograms and those based on 
Active Appearance Models (Edwards et al., 1998). This set also includes spatio-temporal 
features like motion energy images (Essa & Pentland, 1997) and motion history images 
(Valstar et al., 2004), and learned image filters from independent component analysis (ICA), 
principal component analysis (PCA), and local feature analysis (LFA). Linear discriminant 
analysis (e.g., fisherfaces) is another form of learned appearance-based feature, derived from 
supervised learning, in contrast to the others mentioned above, which were based on 
unsupervised learning from the statistics of large image databases.  
A common reservation about appearance-based features for expression recognition is that 
they are affected by lighting variation and individual differences. However, machine 
learning systems taking large sets of appearance-features as input, and trained on a large 
database of examples, are emerging as some of the most robust systems in computer vision. 
Machine learning combined with appearance-based features has been shown to be highly 
robust for tasks of face detection (Viola & Jones, 2004; Fasel et al., 2005), feature detection 
(Vukadinovic & Pantic, 2005; Fasel, 2006), and expression recognition (Littlewort et al., 
2006).  Such systems also don’t suffer from issues of initialization and drift, which are major 
challenges for motion tracking.  
The importance of appearance-based features for expression recognition is emphasized by 
several studies that suggest that appearance-based features may contain more information 
about facial expression than displacements of a set of points (Zhang et al., 1998; Donato et 
al., 1999), although the findings were mixed (e.g., Pantic & Patras, 2006). In any case, 
reducing the image to a finite set of feature displacements removes a lot of information that 
could be tapped for recognition. Ultimately, combining appearance-based and motion-based 
representations may be the most powerful, and there is some experimental evidence that 
this is indeed the case (e.g., Bartlett et al., 1999). 
Bartlett and colleagues (Donato et al., 1999) compared a number of appearance-based 
representations on the task of facial action recognition using a simple nearest neighbor 
classifier. They found that Gabor wavelets and ICA gave better performance than PCA, 
LFA, Fisher’s linear discriminants, and also outperformed motion flow field templates.  
More recent comparisons included comparisons of Gabor filters, integral image filters, and 
edge-oriented histograms (e.g., Whitehill & Omlin, 2006), using SVMs and AdaBoost as the 
classifiers. They found an interaction between feature-type and classifier, where AdaBoost 
performs better with integral image filters, while SVMs perform better with Gabors. The 
difference may be attributable to the fact that the pool of integral image filters was much 

                                                                 
2
 Something so large that people fail to remark on it. 
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larger. AdaBoost performs feature selection and does well with redundancy, whereas SVMs 
were calculated on the full set of filters and don’t do well with redundancy. Additional 
comparisons will be required to tease these questions apart.  

 

Figure 6. Outline of the real-time expression recognition system of Littlewort et al. (2006) 

6.2 Appearance-based Facial Affect Recognition 

Here we describe the appearance-based facial expression recognition system developed by 
Bartlett and colleagues (Bartlett et al., 2003; Littlewort et al., 2006). The system automatically 
detects frontal faces in the video stream and codes each frame with respect to 7 dimensions: 
neutral, anger, disgust, fear, joy, sadness, surprise. The system operates in near-real-time, at 
about 6 frames per second on a Pentium IV. A flow diagram is shown in Figure 6. The 
system first performs automatic face and eye detection using the appearance-based method 
of Fasel et al. (2005) (see section 3). Faces are then aligned based on the automatically 
detected eye positions, and passed to a bank of appearance-based features. A feature 
selection stage extracts subsets of the features and passes them to an ensemble of classifiers 
which make a binary decision about each of the six basic emotions plus neutral.  

Feature selection LDA SVM (linear)
None 44.4 88.0 
PCA 80.7 75.5 
Adaboost 88.2 93.3 

Table 1. Comparison of feature-selection techniques in the appearance-based expression 
recognition system of Littlewort et al (2006). Three feature selection options are compared 
using LDA and SVMs as the classifier 

Kernel Adaboost SVM AdaSVM LDApca

Linear 90.1 88.0 93.3 80.7 
RBF  89.1 93.3  

Table 2. Comparison of classifiers in the appearance-based expression recognition system of 
Littlewort et al (2006). AdaSVM: Feature selection by AdaBoost followed by classification 
with SVM’s. LDApca: Linear Discriminant analysis with feature selection based on principle 
component analysis, as commonly implemented in the literature 
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Littlewort et al. (2006) carried out empirical investigations of machine learning methods 
applied to this problem, including comparison of recognition engines and feature selection 
techniques. The feature selection techniques compared were (1) Nothing, (2) PCA, and (3) 
Feature selection by AdaBoost. When the output of each feature is treated as the weak 
classifier, AdaBoost performs feature selection, such that each new feature is the one that 
minimizes error, contingent on the set features that were already selected. These feature 
selection techniques were compared when combined with three classifiers: SVM-AdaBoost, 
and Linear Discriminant Analysis (LDA). The system was trained on the Cohn-Kanade 
dataset, and tested for generalization to new subjects using cross-validation. Results are 
shown in Tables 1 and 2. Best results were obtained by selecting a subset of Gabor filters 
using AdaBoost and then training SVMs on the outputs of the filters selected by AdaBoost. 
The combination of AdaBoost and SVMs enhanced both speed and accuracy of the system.  
The system obtained 93% accuracy on a 7-alternative forced choice. This is the highest 
accuracy to our knowledge on the Cohn-Kanade database, which points to the richness of 
appearance-based features in facial expressions. Combining this system with motion 
tracking and spatio-temporal analysis systems such as those developed by Pantic & Patras 
(2005) and Cohn et al. (2004) is a promising future direction for this research. 

7. Facial Muscle Action Detection 

As already mentioned in section 2.1, two main streams in the current research on automatic 
analysis of facial expressions consider facial affect (emotion) detection and facial muscle 
action detection such as the AUs defined in FACS (Ekman & Friesen, 1978; Ekman et al., 
2002). This section introduces recent advances in automatic facial muscle action coding.  

 

Figure 7. Outline of the AU recognition system of Valstar and Pantic (2006a) 

Although FACS provides a good foundation for AU-coding of face images by human 
observers, achieving AU recognition by a computer is not an easy task. A problematic issue 
is that AUs can occur in more than 7000 different complex combinations (Scherer & Ekman, 
1982), causing bulges (e.g., by the tongue pushed under one of the lips) and various in- and 
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out-of-image-plane movements of permanent facial features (e.g., jetted jaw) that are 
difficult to detect in 2D face images. Historically, the first attempts to encode AUs in images 
of faces in an automatic way were reported by Bartlett et al. (1996), Lien et al. (1998), and 
Pantic et al. (1998). These three research groups are still the forerunners in this research 
field. This section summarizes the recent work of two of those research groups, namely that 
of Pantic and her colleagues (section 7.1) and that of Bartlett and her colleagues (section 7.2). 
An application of automatic AU recognition to facial behavior analysis of pain is presented 
in section 7.3. 

7.1 Feature-based Methods for Coding AUs and their Temporal Segments 

Pantic and her colleagues reported on multiple efforts aimed at automating the analysis of 
facial expressions in terms of facial muscle actions that constitute the expressions. The 
majority of this previous work concerns geometric-feature-based methods for automatic 
FACS coding of face images. Early work was aimed at AU coding in static face images 
(Pantic & Rothkrantz, 2004) while more recent work addressed the problem of automatic 
AU coding in face video (Pantic & Patras, 2005, 2006; Valstar & Pantic, 2006a, 2006b). Based 
upon the tracked movements of facial characteristic points, as discussed in section 5, Pantic 
and her colleagues mainly experimented with rule-based (Pantic & Patras, 2005, 2006) and 
Support Vector Machine based methods (Valstar & Pantic, 2006a, 2006b) for recognition of 
AUs in either near frontal-view (Figure 7) or near profile-view (Figure 8) face image 
sequences. 

 

Figure 8. Outline of the AU recognition system of Pantic and Patras (2006) 

As already mentioned in section 2, automatic recognition of facial expression configuration 
(in terms of AUs constituting the observed expression) has been the main focus of the 
research efforts in the field. In contrast to the methods developed elsewhere, which thus 
focus onto the problem of spatial modeling of facial expressions, the methods proposed by 
Pantic and her colleagues address the problem of temporal modeling of facial expressions as 
well. In other words, these methods are very suitable for encoding temporal activation 
patterns (onset → apex → offset) of AUs shown in an input face video. This is of importance 
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for there is now a growing body of psychological research that argues that temporal 
dynamics of facial behavior (i.e., the timing and the duration of facial activity) is a critical 
factor for the interpretation of the observed behavior (see section 2.2). Black and Yacoob 
(1997) presented the earliest attempt to automatically segment prototypic facial expressions 
of emotions into onset, apex, and offset components. To the best of our knowledge, the only 
systems to date for explicit recognition of temporal segments of AUs are the ones by Pantic 
and colleagues (Pantic & Patras, 2005, 2006; Valstar & Pantic, 2006a, 2006b). 
A basic understanding of how to achieve automatic AU detection from the profile view of 
the face is necessary if a technological framework for automatic AU detection from multiple 
views of the face is to be built. Multiple views was deemed the most promising method for 
achieving robust AU detection (Yacoob et al., 1998), independent of rigid head movements 
that can cause changes in the viewing angle and the visibility of the tracked face. To address 
this issue, Pantic and Patras (2006) proposed an AU recognition system from face profile-
view image sequences. To the best of our knowledge this is the only such system to date.  
To recognize a set of 27 AUs occurring alone or in combination in a near profile-view face 
image sequence, Pantic and Patras (2006) proceed under two assumptions (as defined for 
video samples of the MMI facial expression database, part one; Pantic et al., 2005b): (1) the 
input image sequence is non-occluded (left or right) near profile-view of the face with 
possible in-image-plane head rotations, and (2) the first frame shows a neutral expression. 
To make the processing robust to in-image-plane head rotations and translations as well as 
to small translations along the z-axis, the authors estimate a global affine transformation δ 
for each frame and based on it they register the current frame to the first frame of the 
sequence. In order to estimate the global affine transformation, they track three referential 
points. These are (Figure 8): the top of the forehead (P1), the tip of the nose (P4), and the ear 
canal entrance (P15). These points are used as the referential points because of their stability 
with respect to non-rigid facial movements. The global affine transformation δ is estimated 
as the one that minimizes the distance (in the least squares sense) between the δ-based 
projection of the tracked locations of the referential points and these locations in the first 
frame of the sequence. The rest of the facial points illustrated in Figure 8 are tracked in 
frames that have been compensated for the transformation δ. Changes in the position of the 
facial points are transformed first into a set of mid-level parameters for AU recognition. 
These parameters are: up/down(P) and inc/dec(PP’). Parameter up/down(P) = y(Pt1) – y(Pt), 
where y(Pt1) is the y-coordinate of point P in the first frame and y(Pt) is the y-coordinate of 
point P in the current frame, describes upward and downward movements of point P. 
Parameter inc/dec(PP’) = PP’t1 – PP’t, where PP’t1 is the distance between points P and P’ in 
the first frame and PP’t is the distance between points P and P’ in the current frame, 
describes the increase or decrease of the distance between points P and P’. Further, an AU 
can be either in: 
(a) the onset phase, where the muscles are contracting and the appearance of the face 

changes as the facial action grows stronger, or in  
(b) the apex phase, where the facial action is at its apex and there are no more changes in 

facial appearance due to this particular facial action, or in  
(c) the offset phase, where the muscles are relaxing and the face returns to its neutral 

appearance, or in  
(d) the neutral phase, where there are no signs of activation of this facial action.  
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Often the order of these phases is neutral-onset-apex-offset-neutral, but other combinations 
such as multiple-apex facial actions are also possible. Based on the temporal consistency of 
mid-level parameters, a rule-based method of Pantic and Patras encodes temporal segments 
(onset, apex, offset) of 27 AUs occurring alone or in combination in the input face videos. 
E.g., to recognize the temporal segments of AU12, the following temporal rules are used: 

IF (up/down(P7) > ε AND inc/dec(P5P7) ≥ ε) THEN AU12-p 
IF AU12-p AND {([up/down(P7)]t > [up/down(P7)]t-1 ) THEN AU12-onset 
IF AU12-p AND {( | [up/down(P7)]t – [up/down(P7)]t-1 | ≤ ε) THEN AU12-apex 
IF AU12-p AND {([up/down(P7)]t < [up/down(P7)]t-1 ) THEN AU12-offset 

The meaning of these rules is as follows. P7 should move upward, above its neutral-
expression location, and the distance between points P5 and P7 should increase, exceeding 
its neutral-expression length, in order to label a frame as an “AU12 onset”. In order to label 
a frame as “AU12 apex”, the increase of the values of the relevant mid-level parameters 
should terminate. Once the values of these mid-level parameters begin to decrease, a frame 
can be labeled as “AU12 offset”.  
Since no other facial expression database contains images of faces in profile view, the 
method for AU coding in near profile-view face video was tested on MMI facial expression 
database only. The accuracy of the method was measured with respect to the 
misclassification rate of each “expressive” segment of the input sequence (Pantic & Patras, 
2006). Overall, for 96 test samples, an average recognition rate of 87% was achieved sample-
wise for 27 different AUs occurring alone or in combination in an input video.  
For recognition of up to 22 AUs occurring alone or in combination in an input frontal-face 
image sequence, Valstar and Pantic (2006a) proposed a system that detects AUs and their 
temporal segments (neutral, onset, apex, offset) using a combination of Gentle Boost 
learning and Support Vector Machines (SVM). To make the processing robust to in-image-
plane head rotations and translations as well as to small translations along the z-axis, the 
authors estimate a global affine transformation δ for each frame and based on it they register 
the current frame to the first frame of the sequence. To estimate δ, they track three 
referential points. These are: the nasal spine point (N, calculated as the midpoint between 
the outer corners of the nostrils H and H1, see Figure 7) and the inner corners of the eyes (B 
and B1, see Figure 7). The rest of the facial points illustrated in Figure 7 are tracked in 
frames that have been compensated for the transformation δ. Typical tracking results are 
shown in Figure 5. Then, for all characteristic facial points Pi depicted in Figure 7, where i = 
[1 : 20], they compute two the displacement of Pi in y- and x-direction for every frame t. 
Then, for all pairs of points Pi and Pj, where i ≠ j and i,j = [1 : 20], they compute in each 
frame the distances between the points and the increase/decrease of the distances in 
correspondence to the first frame. Finally, they compute the first time derivative df /dt of all 
features defined above, resulting in a set of 1220 features per frame.  
They use further Gentle Boost (Friedman et al., 2000) to select the most informative features 
for every class c ∈ C, where C = {AU1, AU2, AU4, AU5, AU6, AU7, AU43, AU45, AU46, 
AU9, AU10, AU12, AU13, AU15, AU16, AU18, AU20, AU22, AU24, AU25, AU26, AU27}. An 
advantage of feature selection by Gentle Boost is that features are selected depending on the 
features that have been already selected. In feature selection by Gentle Boost, each feature is 
treated as a weak classifier. Gentle Boost selects the best of those classifiers and then boosts 
the weights using the training examples to weight the errors more. The next feature is 
selected as the one that gives the best performance on the errors of the previously selected 
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features. At each step, it can be shown that the chosen feature is uncorrelated with the 
output of the previously selected features. As shown by Littlewort et al. (2006), when SVMs 
are trained using the features selected by a boosting algorithm, they perform better.  
To detect 22 AUs occurring alone or in combination in the current frame of the input 
sequence (i.e., to classify the current frame into one or more of the c ∈ C), Valstar and Pantic 
use 22 separate SVMs to perform binary decision tasks using one-versus-all partitioning of 
data resulting from the feature selection stage. More specifically, they use the most 
informative features selected by Gentle Boost for the relevant AU (i.e., the relevant c ∈ C) to 
train and test the binary SVM classifier specialized in recognition of that AU. They use 
radial basis function (RBF) kernel employing a unit-width Gaussian. This choice has been 
influenced by research findings of Bartlett et al. (2006) and Littlewort et al. (2006), who 
provided experimental evidence that Gaussian RBF kernels are very well suited for AU 
detection, especially when the SVM-based classification is preceded by an ensemble-
learning-based feature selection.  
As every facial action can be divided into four temporal segments (neutral, onset, apex, 
offset), Valstar and Pantic consider the problem to be a four-valued multi-class classification 
problem. They use a one-versus-one approach to multi-class SVMs (mc-SVMs). In this 
approach, for each AU and every pair of temporal segments, a separate sub-classifier 
specialized in the discrimination between the two temporal segments is trained. This results 
in ∑i i = 6 sub-classifiers that need to be trained (i = [1 : C – 1], C = {neutral, onset, apex, 
offset}). For each frame t of an input image sequence, every sub-classifier returns a 
prediction of the class c ∈ C, and a majority vote is cast to determine the final output ct of the 
mc-SVM for the current frame t. To train the sub-classifiers, Valstar and Pantic apply the 
following procedure using the same set of features that was used for AU detection (see 
equations (1)–(5) above). For each classifier separating classes ci, cj ∈ C they apply Gentle 
Boost, resulting in a set of selected features Gi,j. They use Gi,j to train the sub-classifier 
specialized in discriminating between the two temporal segments in question (ci, cj ∈ C). 
The system achieved average recognition rates of 91% and 97% for samples from the Cohn-
Kanade facial expression database (Kanade et al., 2000) and, respectively, the MMI facial 
expression database (Pantic et al. 2005b), 84% when trained on the MMI and tested on the 
Cohn-Kanade database samples, and 52% when trained on the MMI database samples and 
tested on the spontaneous-data-part of the MMI database. 
Experiments concerning recognition of facial expression temporal activation patterns (onset 

 apex  offset) were conducted on the MMI database only, since the sequences in the 
Cohn-Kanade database end at the apex. On average, 95% of temporal patterns of AU 
activation were detected correctly by their system. The system successfully detected the 
duration of most AUs as well, with a shift of less than 2 frames in average. However, for 
AU6 and AU7, the measurement of the duration of the activation was over 60% off from the 
actual duration. It seems that human observers detect activation of these AUs not only based 
on the presence of a certain movement (like an upward movement of the lower eyelid), but 
also based on the appearance of the facial region around the eye corner (like the crow feet 
wrinkles in the case of AU6). Such an appearance change may be of a different duration 
from the movement of the eyelid, resulting in an erroneous estimation of AU duration by 
the system that takes only facial movements into account. As mentioned above, using both 
geometric and appearance features might be the best choice in the case of such AUs. 
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7.2 Appearance-based Methods for AU Coding 

Here we describe an appearance-based system for fully automated facial action coding 
developed by Bartlett and colleagues (Bartlett et al. 2003, 2006), and show preliminary 
results when applied to spontaneous expressions. This extends a line of research developed 
in collaboration with Paul Ekman and Terry Sejnowski (e.g., Bartlett et al., 1996, 1999). The 
system is the same as the one described in Section 6.1, with the exception that the system 
was trained to detect facial actions instead of basic emotions. An overview is shown in 
Figure 9. It is user independent and operates in near-real time, at about 6 frames per second 
on a Pentium IV. The system detects 30 AUs, and performance measures are available for 20 
of them, below. Bartlett and colleagues (2006) also found that this system captures 
information about AU intensity that can be employed for analyzing facial expression 
dynamics. 
Appearance-based approaches to AU recognition such as the one presented here, differ from 
those of Pantic (e.g., Pantic & Rothkrantz, 2004a) and Cohn (e.g., Tian et al., 2001), in that 
instead of employing heuristic, rule-based methods, and/or designing special purpose 
detectors for each AU, these methods employ machine learning in a general purpose system 
that can detect any AU given a set of labeled training data. Hence the limiting factor in 
appearance-based machine learning approaches is having enough labeled examples for a 
robust system. Previous explorations of this idea showed that, given accurate 3D alignment, 
at least 50 examples are needed for moderate performance (in the 80% range), and over 200 
examples are needed to achieve high precision (Bartlett et al., 2003). Another prototype 
appearance-based system for fully automated AU coding was presented by Kapoor et al. 
(2003). This system used infrared eye tracking to register face images. The recognition 
component is similar to the one presented here, employing machine learning techniques on 
feature-based representations, where Kapoor et al. used PCA (eigenfeatures) as the feature 
vector to be passed to an SVM. As mentioned in Section 6.1, we previously found that PCA 
was a much less effective representation than Gabor wavelets for facial action recognition 
with SVMs. An appearance-based system was also developed by Tong et al. (2006). They 
applied a dynamic Bayesian model to the output of a front-end AU recognition system 
based on the one developed in the Bartlett’s laboratory. While Tong et al. showed that AU 
recognition benefits from learning causal relations between AUs in the training database, 
the analysis was developed and tested on a posed expression database. It will be important 
to extend such work to spontaneous expressions for the reasons described in Section 2.2. 

 

Figure 9. Outline of the Appearance-based facial action detection system of Bartlett et al. 
(2006) 
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Here we show performance of the system of Bartlett et al. (2006) for recognizing facial 
actions in posed and spontaneous expressions (Figure 10). The system was trained on both 
the Cohn-Kanade and Ekman-Hager datasets. The combined dataset contained 2568 training 
examples from 119 subjects. Performance presented here was for training and testing on 20 
AUs. Separate binary classifiers, one for each AU, were trained to detect the presence of the 
AU regardless of the co-occurring AUs. Positive examples consisted of the last frame of each 
sequence which contained the expression apex. Negative examples consisted of all apex 
frames that did not contain the target AU plus neutral images obtained from the first frame 
of each sequence, for a total of 2568-N negative examples for each AU. 

 

Figure 10. System performance (area under the ROC) for the AU detection system of Bartlett 
et al. (2006): (a) posed facial actions (sorted in order of detection performance), and (b) 
spontaneous facial actions (performance is overlayed on the posed results of (a); there were 
no spontaneous examples of AU 27 in this sample) 
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We first report performance for generalization to novel subjects within the Cohn-Kanade and 
Ekman-Hager databases. Generalization to new subjects was tested using leave-one-subject-
out cross-validation in which all images of the test subject were excluded from training. The 
system obtained a mean of 91% agreement with human FACS labels. Overall percent correct 
can be an unreliable measure of performance, however, since it depends on the proportion 
of targets to non-targets, and also on the decision threshold. In this test, there was a far 
greater number of non-targets than targets, since targets were images containing the desired 
AU (N), and non-targets were all images not containing the desired AU (2568-N). A more 
reliable performance measure is area under the ROC (receiver-operator characteristic curve, 
or A’). This curve is obtained by plotting hit rate (true positives) against false alarm rate 
(false positives) as the decision threshold varies. A′ is equivalent to percent correct in a 2- 
alternative forced choice task, in which the system must choose which of two options 
contains the target on each trial. Mean A′ for the posed expressions was 92.6. 
A correlation analysis was performed in order to explicitly measure the relationship 
between the output margin and expression intensity. Ground truth for AU intensity was 
measured as follows: Five certified FACS coders labeled the action intensity for 108 images 
from the Ekman-Hager database, using the A-E scale of the FACS coding manual, where A 
is lowest, and E is highest. The images were four upper-face actions (1, 2, 4, 5) and two 
lower-face actions (10, 20), displayed by 6 subjects. We first measured the degree to which 
expert FACS coders agree with each other on intensity. Correlations were computed 
between intensity scores by each pair of experts, and the mean correlation was computed 
across all expert pairs. Correlations were computed separately for each display subject and 
each AU, and then means were computed across display subjects. Mean correlation between 
expert FACS coders within subject was 0.84. 

Action unit 
 1 2 4 5 10 20 Mean
Expert-Expert .92 .77 .85 .72 .88 .88 .84 
SVM-Expert .90 .80 .84 .86 .79 .79 .83 

Table 3. Correlation of SVM margin with intensity codes from human FACS experts 

Correlations of the automated system with the human expert intensity scores were next 
computed. The SVMs were retrained on the even-numbered subjects of the Cohn-Kanade 
and Ekman-Hager datasets, and then tested on the odd-numbered subjects of the Ekman-
Hager set, and vice versa. Correlations were computed between the SVM margin and the 
intensity ratings of each of the five expert coders. The results are shown in Table 3. Overall 
mean correlation between the SVM margin and the expert FACS coders was 0.83, which was 
nearly as high as the human-human correlation of .84.  Similar findings were obtained using 
an AdaBoost classifier, where the AdaBoost output, which is the likelihood ratio of target/ 
nontarget, correlated positively with human FACS intensity scores (Bartlett et al., 2004).  
The system therefore is able to provide information about facial expression dynamics in 
terms of the frame-by-frame intensity information. This information can be exploited for 
deciding the presence of an AU and decoding the onset, apex, and offset. It will also enable 
studying the dynamics of facial behavior. As explained in section 2, enabling investigations 
into the dynamics of facial expression would allow researchers to directly address a number 
of questions key to understanding the nature of the human emotional and expressive 
systems, and their roles interpersonal interaction, development, and psychopathology.  
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We next tested the system on the RU-FACS Dataset of spontaneous expressions described in 
section 2.5. The results are shown in Figure 10. The dataset included speech related mouth 
and face movements, and significant amounts of in-plane and in-depth rotations. Yaw, 
pitch, and roll ranged from -30 to 20 degrees. Preliminary recognition results are presented 
for 12 subjects. This data contained a total of 1689 labeled events, consisting of 33 distinct 
action units, 19 of which were AUs for which we had trained classifiers. All detected faces 
were passed to the AU recognition system. Faces were detected in 95% of the video frames. 
Most non-detects occurred when there was head rotations beyond ±100 or partial occlusion.  

 

Figure 11. Output of automatic FACS coding system from Bartlett et al. (2006).  Frame-by-
frame outputs are shown for AU 1 and AU 2 (brow raise) for 200 frames of video.  The 
output is the distance to the separating hyperplane of the SVM. Human codes (onset, apex, 
and offset frame) are overlayed for comparison 

 

Figure 12. Output trajectory for a 2’ 20’’ video (6000 frames), for one subject and one action 
unit. Shown is the margin (the distance to the separating hyperplane). The human FACS 
labels are overlaid for comparison: Frames within the onset and offset of the AU are shown 
in red. Stars indicate the AU apex frame. Letters A-E indicate AU intensity, with E highest 

Example system outputs are shown in Figure 11 and 12. The system obtained a mean of 93% 
correct detection rate across the 19 AUs in the spontaneous expression data. As explained 
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above, however, percent correct can be misleading when there are unequal numbers of 
targets and nontargets. Mean area under the ROC for the spontaneous action units was .75 
(and thus percent correct on a 2-alternative forced choice would be 75%). This figure is 
nevertheless encouraging, as it shows that fully automated systems can indeed get a signal 
about facial actions, despite generalizing from posed to spontaneous examples, and despite 
the presence of noise from speech and out-of-plane head rotations. As with the posed 
expression data, the SVM margin correlated positively with AU intensity in the spontaneous 
data (Figure 12). Mean correlation of AU 12 with FACS intensity score was .75, and the 
mean over eight AUs tested was 0.35.  

7.3 Automatic Detection of Pain 

The automated AU recognition system described above was applied to spontaneous facial 
expressions of pain (Littlewort et al., 2006b). The task was to differentiate faked from real 
pain expressions using the automated AU detector. Human subjects were videotaped while 
they submerged their hand in a bath of water for three minutes. Each subject experienced 
three experimental conditions: baseline, real pain, and posed pain. In the real pain 
condition, the water was 3 degrees Celsius, whereas in the baseline and posed pain 
conditions the water was 20 degrees Celsius. The video was coded for AUs by both human 
and computer. Our initial goal was to correctly determine which experimental condition is 
shown in a 60 second clip from a previously unseen subject. For this study, we trained 
individual AU classifiers on 3000 single frames selected from three datasets: two posed 
expression sets, the Cohn-Kanade and the Ekman-Hager datasets, and the RU-FACS dataset 
of spontaneous expression data. We trained linear SVM for each of 20 AUs, in one versus all 
mode, irrespective of combinations with other AUs. The output of the system was a real 
valued number indicating the distance to the separating hyperplane for each classifier. 
Applying this system to the pain video data produced a 20 channel output stream, 
consisting of one real value for each learned AU, for each frame of the video. This data was 
further analyzed to predict the difference between expressions of real pain and fake pain. 
The 20-channel output streams were passed to another set of three SVMs, trained to detect 
real pain, fake pain, and baseline. In a preliminary analysis of 5 subjects tested with cross-
validation, the system correctly identified the experimental condition (posed pain, real pain, 
and baseline) for 93% of samples in a 3-way forced choice. The 2-way performance for fake 
versus real pain was 90%. This is considerably higher than the performance of naive human 
observers, who are near chance for identifying faked pain (Hadjistavropoulos et al., 1996). 

8. Challenges, Opportunities and Recommendations 

Automating the analysis of facial signals, especially rapid facial signals (facial expressions) 
is important to realize more natural, context-sensitive (e.g., affective) human-computer 
interaction, to advance studies on human emotion and affective computing, and to boost 
numerous applications in fields as diverse as security, medicine, and education. This chapter 
introduced recent advances in machine analysis of facial expressions and summarized the 
recent work of two forerunning research groups in this research field, namely that of Pantic 
and her colleagues and that of Bartlett and her colleagues.  
In summary, although most of the facial expression analyzers developed so far target 
human facial affect analysis and attempt to recognize a small set of prototypic emotional 
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facial expressions like happiness and anger (Pantic et al., 2005a), some progress has been 
made in addressing a number of other scientific challenges that are considered essential for 
realization of machine understanding of human facial behavior. First of all, the research on 
automatic detection of facial muscle actions, which produce facial expressions, witnessed a 
significant progress in the past years. A number of promising prototype systems have been 
proposed recently that can recognize up to 27 AUs (from a total of 44 AUs) in either (near-) 
frontal view or profile view face image sequences (section 7 of this chapter; Tian et al. 2005). 
Further, although the vast majority of the past work in the field does not make an effort to 
explicitly analyze the properties of facial expression temporal dynamics, a few approaches 
to automatic segmentation of AU activation into temporal segments (neutral, onset, apex, 
offset) have been recently proposed (section 7 of this chapter). Also, even though most of the 
past work on automatic facial expression analysis is aimed at the analysis of posed 
(deliberately displayed) facial expressions, a few efforts were recently reported on machine 
analysis of spontaneous facial expressions (section 7 of this chapter; Cohn et al., 2004; 
Valstar et al., 2006; Bartlett et al., 2006). In addition, exceptions from the overall state of the 
art in the field include a few works towards detection of attitudinal and non-basic affective 
states such as attentiveness, fatigue, and pain (section 7 of this chapter; El Kaliouby & 
Robinson, 2004; Gu & Ji, 2004), a few works on context-sensitive (e.g., user-profiled) 
interpretation of facial expressions (Fasel et al., 2004; Pantic & Rothkrantz, 2004b), and an 
attempt to explicitly discern in an automatic way spontaneous from volitionally displayed 
facial behavior (Valstar et al., 2006). However, many research questions raised in section 2 of 
this chapter remain unanswered and a lot of research has yet to be done.  
When it comes to automatic AU detection, existing methods do not yet recognize the full 
range of facial behavior (i.e. all 44 AUs defined in FACS). For machine learning approaches, 
increasing the number of detected AUs boils down to obtaining labeled training data. To 
date, Bartlett’s team has means to detect 30 AUs, and do not yet have sufficient labeled data 
for the other AUs. In general, examples from over 50 subjects are needed. Regarding feature 
tracking approaches, a way to deal with this problem is to look at diverse facial features. 
Although it has been reported that methods based on geometric features are usually 
outperformed by those based on appearance features, recent studies like that of Pantic & 
Patras (2006), Valstar and Pantic (2006a), and those presented in this chapter, show that this 
claim does not always hold. We believe, however, that further research efforts toward 
combining both approaches are necessary if the full range of human facial behavior is to be 
coded in an automatic way. 
Existing methods for machine analysis of facial expressions discussed throughout this 
chapter assume that the input data are near frontal- or profile-view face image sequences 
showing facial displays that always begin with a neutral state. In reality, such assumption 
cannot be made. The discussed facial expression analyzers were tested on spontaneously 
occurring facial behavior, and do indeed extract information about facial behavior in less 
constrained conditions such as an interview setting (e.g., Bartlett et al., 2006; Valstar et al, 
2006). However deployment of existing methods in fully unconstrained environments is still 
in the relatively distant future. Development of robust face detectors, head-, and facial 
feature trackers, which will be robust to variations in both face orientation relative to the 
camera, occlusions, and scene complexity like the presence of other people and dynamic 
background, forms the first step in the realization of facial expression analyzers capable of 
handling unconstrained environments. 
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Consequently, if we consider the state of the art in face detection and facial feature 
localization and tracking, noisy and partial data should be expected. As remarked by Pantic 
and Rothkrantz (2003), a facial expression analyzer should be able to deal with these 
imperfect data and to generate its conclusion so that the certainty associated with it varies 
with the certainty of face and facial point localization and tracking data. For example, the 
PFFL point tracker proposed by Patras and Pantic (2004, 2005) is very robust to noise, 
occlusion, clutter and changes in lighting conditions and it deals with inaccuracies in facial 
point tracking using a memory-based process that takes into account the dynamics of facial 
expressions. Nonetheless, this tracking scheme is not 100% accurate. Yet, the method 
proposed by Valstar and Pantic (2006a), which utilizes the PFFL point tracker, does not 
calculate the output data certainty by propagating the input data certainty (i.e., the certainty 
of facial point tracking). The only work in the field that addresses this issue is that of Pantic 
and Rothkrantz (2004a). It investigates AU recognition from static face images and explores 
the use of measures that can express the confidence in facial point localization and that can 
facilitate assessment of the certainty of the performed AU recognition. Another way of 
generating facial-expression-analysis output such that the certainty associated with it varies 
in accordance to the input data is to consider the time-instance versus time-scale dimension 
of facial behavior (Pantic & Rothkrantz, 2003). By considering previously observed data 
(time scale) with respect to the current data (time instance), a statistical prediction and its 
probability might be derived about both the information that may have been lost due to 
malfunctioning / inaccuracy of the camera (or a part of facial expression analyzer) and the 
currently displayed facial expression. Probabilistic graphical models, like Hidden Markov 
Models (HMM) and Dynamic Bayesian Networks (DBN) are well suited for accomplishing 
this (Pantic et al., 2005a). These models can handle noisy features, temporal information, and 
partial data by probabilistic inference.  
It remains unresolved, however, how the grammar of facial behavior can be learned (in a 
human-centered manner or in an activity-centered manner) and how this information can be 
properly represented and used to handle ambiguities in the observation data (Pantic et al., 
2005a). Another related issue that should be addressed is how to include information about 
the context (environment, user, user’s task) in which the observed expressive behavior was 
displayed so that a context-sensitive analysis of facial behavior can be achieved. These 
aspects of machine analysis of facial expressions form the main focus of the current and 
future research in the field. Yet, since the complexity of these issues concerned with the 
interpretation of human behavior at a deeper level is tremendous and spans several 
different disciplines in computer and social sciences, we believe that a large, focused, 
interdisciplinary, international program directed towards computer understanding of 
human behavioral patterns (as shown by means of facial expressions and other modes of 
social interaction) should be established if we are to experience true breakthroughs in this 
and the related research fields. 
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