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Abstract. Admissible heuristics are an important class of heuristics worth discovering: they guarantee shortest 

path solutions in search algorithms such as A* and they guarantee less expensively produced, but boundedly longer 

solutions in search algorithms such as dynamic weighting. Unfortunately, effective (accurate and cheap to com- 

pute) admissible heuristics can take years for people to discover. Several researchers have suggested that certain 

transformations of a problem can be used to generate admissible heuristics. This article defines a more general 

class of transformations, called abstractions, that are guaranteed to generate only admissible heuristics. It also 

describes and evaluates an implemented program (Absolver IO that uses a means-ends analysis search control 

strategy to discover abstracted problems that result in effective admissible heuristics. Absolver I/discovered several 

well-known and a few novel admissible heuristics, including the first known effective one for Rubik's Cube, thus 

concretely demonstrating that effective admissible heuristics can be tractably discovered by a machine. 
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1. Introduction 

Admissible (lower-bound) heuristics are an important class of heuristics worth discovering 
because they have several desirable properties in various search algorithms. For example, 
they guarantee shortest path solutions in the A* algorithm. The computational complexity 
of generating a shortest path solution, which is NP-Complete for many problems, is some- 
times justified when path length corresponds to r6source usage such as time or money or 
when the same solution is used frequently. Often, however, a reasonably short solution 
for a problem is acceptable if it can be generated faster. With admissible heuristics, the 
dynamic weighting (Pohl, 1973) and A~ (Pearl, 1984) algorithms guarantee less expensively 
produced, but boundedly longer solutions. Moreover, it is possible to reduce an exponen- 
tial average time complexity to a polynomial one using A* and multiples of an admissible 
heuristic (Chenoweth & Davis, 1991). Unfortunately, heuristics that are both admissible 
and effective (accurate and cheap to compute) often take years for people to discover. For 
example, although the Traveling Salesperson problem was introduced in mathematical circles 
as early as 1931 (Lawler & Lenstra, 1984), it is not until 1971 that the Minimal Spanning 
Tree heuristic for it was discovered (Held & Karp, 1970). The ultimate goal of this research 
is to develop a system for discovering effective admissible heuristics automatically, thereby 
shifting some of the burden of discovery from humans to machines. This article describes 
and evaluates an implemented program (Absolver II) that can tractably discover effective 
admissible heuristics. 

Previous proposed but uhimplemented methods to generate admissible heuristics for a 
problem involv~e finding the length of a shortest path solution to a transformed version of the 
problem. As shown in figure 1, a heuristic for a state s in problem with goal g is computed 
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Figure 1. The length of a shortest path of a transformed problem = The admissible heuristic. 
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Figure 2. How Manhattan Distance is generated from a transformed problem. 

by transforming s to s '  and g to g', and then finding a shortest path solution from s'  to 

g'; the length of that shortest path solution is the admissible heuristic. For example, figure 

2 shows how the Manhattan Distance heuristic, an admisible heuristic for sliding block 

puzzles, can be generated by ignoring the blank. Since moves in the transformed problem 

will result in states where tiles are superimposed, the length of a shortest path solution 

in this transformed space is the sum over all tiles of the rectilinear distance to each tile's 

goal destination. This sum, which underestimates the actual solution path length because 

it allows tiles to be superimposed, is the Manhattan Distance. 

Transformations that generate admissible heuristics include adding edges to a problem's 

search graph (Guida & Somalvico, 1979; Gaschnig, 1979), dropping operator precondi- 

tions (Pearl, 1984), and applying homomorphic transformations to a problem (Kibler, 1985). 

The intuitive reason that these transformations generate admissible heuristics is because 
they add short-cut solution paths. 

For such heuristics to be effective, the transformed problems that generate them should 
be easier to solve and closely approximate the original problem (Valtorta, 1984; Mostow 
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and Prieditis, 1989). Several methods exist to make a problem easier to solve. These methods 

include factoring the problem into independently solvable subproblems (Pearl, 1984) or 

applying an efficient solution-producing algorithm when possible. Absolver I exhaustively 

searches for such easy-to-solve transformed problems (Mostow & Prieditis, 1989). One 

major problem with Absolver I is that for most problems the space of transformed prob- 

lems is generally too large to search exhaustively--a more efficient method of search con- 

trol is required. 

This article extends previous work in three ways. First, it extends and unifies previous 

definitions of transformations that generate admissible heuristics (section 2). Second, it 

extends Absolver I's transformation catalogs (section 3). Finally and most important, it 

describes and evaluates a new search control mechanism as implemented in Absolver II 

(sections 4 and 5) and compares this mechanism to other machine discovery systems (sec- 

tion 6). 

2. Abstracting transformations 

Intuitively, an abstracting transformation removes details. To formalize this intuitive notion 

requires a definition of search. The definition that we will assume is standard in the AI 

literature (Nilsson, 1980). Search can be thought of as finding a finite path in a graph from 

a node representing an initial state (situation) to a node that satisfies a given goal. Certain 

pairs of nodes are connected by directed arcs that represent the application of an operator; 

these arcs are typically weighted to represent the cost of applying the corresponding operator. 

The graph and goal can be specified explicitly or implicitly. In an explicit specification, 

the nodes and arcs with associated costs might be supplied in a table that includes every 

node in the graph and a list of its successors and the costs of associated arcs. This informa- 

tion might also be specified by a matrix that stores the costs of associated arcs for every 

pair of nodes (an infinite cost arc represents the absence of an arc). Similarly, the goal 

might be specified by enumerating all goal states. In an implicit specification, only that 

portion of the graph that is sufficient to include a goal node is made explicit by applying 

operators using a search algorithm such as A*. In this type of specification, the set of goal 

states is specified by supplying a goal statement that defines that class of goal states. For 

example, in the Eight Puzzle problem, the set of states consists of all tile permutations, 
and operators only allow swapping the blank with an adjacent tile (i.e., the cost function 

on a pair of states return 1 if one state is reachable from the other by swapping the blank 

with an adjacent tile, and ~o otherwise). The set of goal states might contain all those states 

with tiles in a particular order. 

More formally, let a search problem be a 3-tuple (S, c, G), where S is a set of states 

describing situations of the world; c : S × S -~ IR is a positive cost function that represents 

the cost of applying the corresponding action from one state to another; and G ~_ S is 

a set of goal states. The reason for defining a search problem to exclude the initial state 

will be explained shortly. A heuristic evaluation function for a problem <S, c, G) is a 

positive real-valued function that estimates the cost of a minimum cost path to the goal node. 
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Using this framework, several standard functions can now be defined. The length of a 

shortest path from a state s to a state t for a set of states S with cost function c is defined 

as the function k~,~(s, t): 

n--1 t ~  
k~,c(S, t) = min ~ C(Si, Si+I) [ S 1 : S A Si ~" S ]k s n : 

i=1 l<-i<-n 

The length of a shortest path from a state s to a state in G of a problem ( S, c, G) is defined 

as the function * • hs,c,~(s). 

h~,~,~(s) = min {k~,c(s, t) I t ~ G} 

The reason that the initial state is excluded from our definition of a search problem is so 

that the definition for the length of a shortest path is consistent with the notion of a heuristic 

in standard AI texts (Nilsson, 1980), which is also relative to a search problem (S, c, G) 

rather than a search problem plus an initial state. 

An admissible heuristic for a problem (S, c, G) is a function h : S ~ IR such that for 

all s ~ S : h(s) < h~,~,a(s). 

A function dp : S -~ S' is abstracting from problem (S, c, G) to problem (S', c', G ' )  iff: 

1. dp reduces cost: (¥s, t ~ S)c'(d~(s), dp(t)) < c(s, t) 

2. dp expands goals: (¥g ~ G)~(g) ~ G' 

An example of an abstracting transformation is one that ignores the blank in our Eight 

Puzzle problem where (S, c, G) is the original problem and (S', c', G ' )  is the transformed 

problem such that S' is the set of all tile situations with superimpositions allowed, c'(s, t) 
= 1 when s can be changed into t by moving a tile into an adjacent location and oo other- 

wise (i.e., the operators that define the cost function for the transformed problem allow 

moving a tile to an adjacent, possibly non-blank location), and G '  = G but with the blank 

ignored. The transformation is abstracting because it reduces cost and expands goals from 

the original to the transformed problem. 

Abstracting transformations have several important properties in the context of search, 

each of which is proved by Prieditis (1990). First, they generate admissible heuristics: if 

~b : S -~ S'  is abstracting from problem (S, c, G) to problem (S', c', G ' ) ,  then (vs ~ 

S)h~,c,~,(~(s)) <- h~,c,6(s). Second, they are composable: if ~b I : S1 ~ S~ is abstracting 

from problem ($1, Cl, G1) to problem (S~, c~, G~), ~b 2 : $2 ~ S~ is abstracting from 

problem ($2, c2, G2) to problem (S~, c~, G~), S~ ~_ $2, (vs, t ~ S[)c2(s, t) <_ c~(s, t), 
and G[ ~ G2, then g o f :  $1 ~ S~ is abstracting from problem ($1, Cl, G1) to problem 

<S~, c~, G~>. 
Third, two search problems can be partially ordered according to whether a composition 

of abstracting transformations exists to get from one to the other. This partial order relation 

makes it easy to understand why certain heuristics always dominate others in terms of pruning 

power. For example, the Number of Out-of-Place Tiles heuristic, which is less accurate 

than the Manhattan Distance heuristic, is generated by additionally ignoring the adjacency 
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requirement. Because abstracting transformation remove details, the more abstract the prob- 

lem, the less accurate the resulting heuristic. Since accuracy determines pruning power 

(Nilsson, 1980), generally the more abstract a problem the lower the pruning power of 

the resulting heuristic. 

Finally, for every admissible heuristic, an abstracting transformation that generates a 

heuristic at least as accurate as the original heuristic can be constructed. More formally, 

given an admissible heuristic h(s) for a problem (S, c, G),  an abstracting transformation 

~b : S ~ S'  from problem (S, c, G)  to problem (S', c', G') that generates a heuristic 

at least as accurate as h(s) can be constructed as follows. Let ~b(s) = s, S" = S, G' = G 
and for all s, t ~ S: 

c'(s, t) ( h(s) 

t~c(s, t) 

i f t E  G 

otherwise 

Clearly, ~b is abstracting and h],,c,,6,(4~(s)) is at least as accurate as h(s). 
Abstracting transformations are sufficiently general to cover previous definitions of trans- 

formations that generate admissible heuristics, including adding edges (Guida & Somalvico, 

1979; Gaschnig, 1979), dropping operator preconditions (Pearl, 1984), and applying homo- 

morphic transformations (Kibler, 1985). For example, adding an edge to a problem is the 

same as reducing the cost function from oo to some finite value for the pair of states bridged 

by that edge. Abstracting transformations also cover other transformations not covered by 

previous definitions. For example, the abstracting transformation of dropping a conjunct 

from a conjunctive goal description generates an admissible heuristic because it increases 

the set of goal states. However, this transformation is not covered by adding edges, dropping 

operator preconditions, or applying a homomorphic transformation. 

3. Extended transformation catalogs 

Absolver II's abstracting and speedup transformations operate on the same extended STRIPS- 

style problem representation (Fikes et al., 1972) of Absolver I. A state in this representation 

is a set of ground literals; the set of goal states is specified implicitly by a goal statement, 
which specifies those ground literals that must be in a goal state; and the cost function 

is specified relative to a set of parameterized operators--if an operator in this set applies 

to a state, the cost of getting from that state to the state that results from applying the operator 

is 1; otherwise the cost is oo. As in the original STRIPS, an operator contains aprecondi- 
tion set, which specifies the set of literals that must be in the state before the operator 

can be applied to that state, a delete set, which specifies the set of literals that will no 

longer be in the state after the operator is applied, and an add set, which specifies the 

set of literals that will be in the state after the operator is applied. 

We have extended the original STRIPS problem representation to include integer arrays, 

bit arrays, and arrays containing bags of propositional items (a bag, also known as a multiset, 

is a set with duplicates allowed). The only operations on these items are the following: add 

a constant (integers), invert a bit (bits), and add to a bag (bags). Each operator is augmented 
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with three arrays (one for each array type), each of which specifies how each array element 

changes with operator application. These arrays are called the delta constant arrays. The 

only tests on array items are the following: equal to a constant (integers), equal to 0 or 

to 1 (bits), and equal to a particular bag (bags); when no such test is included for an array 

item, the test is simply ignored for that item (i.e., a "don't  care" condition). Each operator 

is augmented with three such arrays for precondition tests--one for each array type. In 

addition to satisfying an operator's precondition set before the operator can be applied, 

the preconditions of  every element in each array type must be satisfied. The goal statement 

is similarly augmented with three such arrays. A state, which consists only of  literals in 

the original STRIPS representation, is augmented to include the three array types to store 

the current values for every element of each array type. Since the actual implementation 

of operators, goal statements, and states is not important for purposes of this article, we 

will not describe it in detail; what is important is that objects such as literals and integers 

exist in our representation and can be manipulated. We chose this representation because 

its declaratively represented operators, goal, and states make it easy to compute the form 

of an abstracted operator, goal, and state, and because it is powerful enough to represent 

a wide variety of search problems. 

Table 1 summarizes Absolver II 's catalog of abstracting transformations, each of  which 

has been proved to be abstracting (Prieditis, 1990), thereby guaranteeing that all heuristics 

generated from the catalog are indeed admissible. Prior to problem-solving, these transfor- 

mations are applied to operators and/or the goal statement to build an abstracted problem. 

During problem-solving, the transformations are applied to those states that are actually 

reached during search. We have categorized the transformations into three distinct types: 

information-dropping which simply remove a piece of  information from an operator or a 

goal; mapping, which map one or more objects in the original space to one object in the 

abstracted space; and composition, which functionally compose two pieces of information. 

For example, sum( i, j ) is a composition abstraction because it takes two integer items 

Table 1. Absolver II's current catalog of abstraction transformations over operators, goal statements, and states. 

Type Name English paraphrase 

Information dropping drop_pre(p,o)  

drop_goal(p) 

drop(p) 

drop precondition o from operator o 

drop p from the goal statement 

drop p from operators, states, and the goal statement 

Mapping count(p) 

p a r i t y ( i )  

replace p by number of p(x) in operators, states, and the 
goal statement 

replace i th element of the integer array by its parity in 
operators, states, and the goal statement 

Composition sum(i , j )  

bagsum( i , j ) *  

replace two integers elements by their sum in operators, 
states, and the goal statement 

replace two bags by their union in operators, states, and 
the goal statement 

** = new: not in Absolver I. 
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in an integer array and replaces them by their sum, which is a functional composition of 

the original items. Each operator is transformed as follows: if the precondition test for 

either element is a "don't care," the test for the composition becomes a "don't care"; other- 

wise, the constants for each test are added to form the test for composition. In either case, 

the original two elements are removed and a new array element representing the composi- 

tion is added. The goal statement is similarly transformed. The elements i and j are re- 

moved from each operator's delta constants array and summed to form a delta constant 
for the new array element. 

Although we do not claim that this catalog is complete or "right" for our representation, 

we did choose each transformation for several reasons. First, each transformation is domain- 

independent, which implies that it will apply across different domains. Second, each transfor- 

mation is mechanizable--that is, its application can be automated (and in fact is). Third, 

each transformation appeared well motivated--we had examples of known heuristics that 

could be derived with it. Finally, each transformation is somewhat natural for our represen- 

tation: it can be concisely and compactly defined. 

As we mentioned in section 1, an abstracted problem that generates a heuristic should 

be easier to solve than the original problem. Since using breadth-first search to compute 

a heuristic generated from an abstracted problem is generally too expensive, some method 

to speed up the computation of a heuristic is required. Towards that end, we have imple- 

mented the catalog of speedup transformations (henceforth called speedups). Table 2 lists 

these speedups from least to most powerful in terms of reducing the complexity of search. 

We have also proved that each of the speedups preserves admissibility (Prieditis, 1990). 

Removing a redundant or an irrelevant operator reduces the branching factor. Since the 

form of our operators is declarative, the test for redundancy is relatively straightforward: 

an operator is redundant if its precondition, add, and delete sets and its delta constant arrays 

exactly match that of another operator (modulo different names for the same parameter). 

The test for irrelevancy is, however, somewhat more complicated. An operator is relevant 

for a goal if it can directly add a conjunct in the goal statement or if it can add a conjunct 

in the precondition of a relevant operator. If an operator is not in this set, it is irrelevant 

and can be removed. An operator is actually "removed" by specializing its parameters. 

For example, the parameterized operator Idovo ( t ,  X, y ), which moves tile t from location 

Table 2. Absolver lI's current catalog of speedup transformations. 

Name English paraphrase 

Remove Redundant* 

Remove irrelevant* 

Factor 

Apply Finite Differencing* 

Precompute Lookup Table* 

Collapse to Closed Form 

remove a redundant operator 

remove an operator that cannot be on a shortest solution path 

factor a problem into independent subproblems 

incrementally update the heuristic as a result of  an operator application in the 

original problem 

store the distance from goal to every reachable state 

collapse non-branching search to closed form formula of shortest path length 

* = new: not in Absolver I. 
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x to location y, can be specialized to Move (1, x, y ) ,  which moves only tile 1 (variables 

are in lower case), by binding parameter y to 1. I f  the original operator is removed, all 

operators (i.e., all instances of Move (1, x, y))  will now only move tile 1. In effect, the 

operators that move all other tiles have been removed. 

The set of relevant operators is actually constructed by backchaining on every literal in 

the goal statement for a given problem. For example, after applying d top ( B Iank) ,  if the 

goal statement only specifies the location of tile 1, the relevant set of operators would con- 

tain only Move ( 1, x. y) (only the most general versions of each operator are kept in the 

set). Notice that if an operator can apply to some state on a shortest path to a goal state, 

then no operators more specific than it will be in the set of relevant operators for that goal. 

Therefore, all those operators that are irrelevant can be removed without increasing the 

length of the shortest path. While it may not be possible to precisely to compute the set 

of operators that will definitely apply to a state on a shortest path for a given goal statement 

without actually solving the original search problem, it is entirely possible to compute the 

set of those operators that might apply to a state on such a shortest path. That set is simply 

the set of relevant operators. 

The Factor speedup partitions the literals in the goal statement and corresponding sets 

of relevant operators into sets of mutually independent goal literals and corresponding oper- 

ators. Two sets of goal literals and corresponding operators are independent from each 

other iff no literal in the add set of an operator from one set unifies with a literal in the 

precondition set of an operator or a goal literal in the other set. Figure 3 shows how the 

set of independently solvable subproblems is used to compute the Manhattan Distance heu- 

ristic for the Eight Puzzle. 

After applying d top (B Iank) to the original problem, the resulting problem is factored 

into the set of independently solvable subproblems shown above the original problem. Each 

Tile l ' s  Fsctor Tile 2's Fscto~ "I'de $ 's  Fsct~- 

Move(1.r~) ] Move(2,~,~) Move($,x,y) 
~ ~ 

P~: {At(l,x),Adj(x,Y)] I ÷ ÷ ÷ Pre: {At(2,x),Adj(x,y)} [ . . .  Pre: {At($x),Adj(x~y)} 
Det: {At(l~x)} [ ~ | :  {AI(2,X)} Del: {AI(8,x)} 
Add: {At(1.y)} I Add: {Al(2,y)} Add: {At($,y)} 

Goal: {At(I,A)} Goal: {AI(2JI)] Goal: {At(8,1)} 

OriBi~=l Preblem 

~ o~t,~)  
~e: l A I( l~),~d~I~y),B ~md~y) } 

I~: {A~(~), ~.I~')} 
Ackt: {At(t,y)) 

Goal: {AIU,A),At(1,B),.,At($,I),Blank(E)} 

Figure 3. Independently solvable subproblems used to compute Manhattan Distance. 
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subproblem contains a set of goal literals and corresponding relevant operators. For exam- 

ple, the upper-leftmost subproblem contains goal literal set {At ( 1, A) }, which says tile 

1 must be at location A, and the corresponding relevant operator set is {Move ( 1, x, y) }. 

An operator in this subproblem moves only tile 1 to adjacent locations; the least number 

of moves is the rectilinear distance to t~e goal location (A) of the tile. Since each of the 

subproblems is guaranteed to be independent from all the other subproblems because irrel- 

evant operators have been removed, each can be solved independently from the others. For 

example, the moves in the upper-leftmost subproblem do not affect tiles 2--8. As a result, 

factoring into independent subproblems preserves admissibility. The sum of the lengths 

of the rectilinear distance to goal (i.e., the shortest path) for each of these subproblems 

is the Manhattan Distance. 

In general, factoring reduces the co~nplexity of search from the product to the sum of 

the size of the search spaces (number of states) for each independent subproblem. Given 

k independently solvable subproblems, each of which has branching factor b and depth d, 

the complexity of solving them together (i.e., without factoring) is O((kb)kd), since oper- 

ators for solving any one of the k subp:roblems apply at any point and the total depth of 

solving all k subproblems must be k times the depth of solving any one subproblem. In 
contrast, the complexity of solving the set of problems independently is O(kbd). For exam- 

ple, after applying d top (BI ank) in an n × n sliding block puzzle, the resulting problem 

can be factored into a set of n 2 - 1 independently solvable problems, each of which has 
search space of size O(n2). In contrast, the size of the search space is O((n2) n2-1) without 

factoring, since each of the n 2 - 1 tiles can be in any of the n 2 positions. 

During actual problem-solving, the w~lue returned by a heuristic generated from an ab- 

stracted factored problem can be incrementally updated a result of each mowe in the original 

problem. After computing the shortest path on the initial state for every factored subproblem, 

the shortest path for only one factored subproblem needs to be computed after each subse- 

quent move in the original problem; the remaining subproblems do not need to be solved 

because each move in the original problem will only affect one abstracted subproblem. 

For example, if Move ( 1, A, B) is applied in the original problem, only the shortest path 

for the abstracted subproblem involving tile 1 needs to be updated to compute the Manhattan 

Distance for the resulting state. We call this idea finite differencing. 1 In general finite dif- 

ferencing speeds up search by roughly O(k) with k independently solvable subproblems 

of the same complexity, since the value., of the heuristic need be computed only once for 

all subproblems (i.e., initially) and subsequent computations involve only a single subprob- 

lem per move in the original problem. For example, the complexity of the Manhattan Dis- 
tance heuristic is reduced from O(n 4) tO O(n 2) by applying finite differencing. This com- 

plexity analysis ignores an initial O(n 4) computation, which is amortized over all subse- 

quent states of the problem instance. 

Finally, given a hashing function and an efficient lookup algorithm, the distance from 
the abstracted goal to each abstracted state can be precomputed and looked up in constant 

time. Of course, it is possible to precompute a lookup table for the original problem, but 

the table size will be as large as the original search space, which is typically an exponen- 
tial of the problem size. And if the original search space size is exponential, then it will 

take exponential time to fill the table. The objective is to precompute a lookup table when 
table size is a polynomial of the problem size or to precompute up to a prespecified limit 



126 A.E. PRIEDITIS 

Problem 

DISCOVERY 1 

Speed Up • Speedup 
Catalog 

Admissible Heuristic 
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i 
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Figure 4. Our model for discovery and application of admissible heuristics. 

when the number of states is exponential. Unlike all the other speedup transformations, 

which are automated, the decision to precompute a lookup table remains manual, since 

it depends on a good hashing scheme and an efficient lookup algorithm. 

Figure 4 summarizes our model for discovering and applying admissible heuristics. An 

abstracted version of the original problem is sped up and then used as an admissible heuristic 

for all problem instances (problem + initial state). The basic idea is that abstractions coupled 

with speedups can reduce the complexity of computing the resulting heuristics. In particu- 

lar, the resulting complexity reduction for n × n sliding block puzzles is as follows (com- 

plexity-number of states--of the original problem is leftmost): 

finite 

abstract factor differencing precompute 
O(n2!)  =*' O((n2) nz-1) ~ O(n  4) =~ O ( n  2) = 0(1) 

Notice that the effort to discover a heuristic for a problem is amortized over all instances 
of a problem because the derived heuristic is not instance-specific. Discovering effective 

heuristics amounts to finding those abstractions that can be sped up, since speedups might 

only be enabled after abstraction. The next section describes how Absolver II solves this 
problem. 

4. Absolver II 

Although the effort of discovering heuristics is amortized over all instances of a problem, 
blindly generating and testing each abstraction for speedup applicability is generally too 

expensive. For example, the number of combinations of d top abstractions with n relation 

names is 2 n. A good search control strategy should find effective heuristics quickly (if 
they exist) in this space. 

Absolver II's means-ends search strategy relies on a "difference" table (table 3) of plausible 
abstracting transformations for each implemented speedup to identify and eliminate obstacles 
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Table 3. Plausible abstractions for each speedup transformation. 

Speedup transformation 

Remove Remove Collapse to 

Abstraction Factor redundant irrelevant closed form 

drop_pre(p,o) 

drop_goal(p) 

drop(p) 

sum(i , j )  

bagsum(i,j) 

count(p) 

p a r i t y ( i )  

X X 

X X 

X X 

X X 

X X 

X X 

X 

to applying speedups. An "x" in a particular row/column entry of this table means that 

the row's abstracting transformation is likely to lead to satisfying the column's speedup 
transformation, given our experience in applying the model by hand; the lack of an "x" 
means that the abstracting transformation is not likely to lead to satisfying the speedup, 
given our experience. Finite Differencing is not shown because it is always applied after 
Factoring; Precompute is not shown because it is not automated (for the reasons mentioned 

in section 3). 
Using this table, Absolver II halts and outputs the first heuristic it finds subject to the 

following constraints implicit in its search mechanism (paraphrased in everyday English): 

1. The less information dropped to derive the heuristic the better (e.g., the less precondi- 
tions dropped the better). 

2. All abstracted problems must be sped up. 

Absolver II's search control strategy is actually comprised of three subprograms: Com- 
poser, Dropper, and Summarizer. The objective of Composer is to find an abstracted prob- 
lem in which redundant operators can be removed by applying composition abstractions 
such as sum, thereby reducing the branching factor. The objective of Dropper is to find 

an abstracted problem that can be factored into at least two independent subproblems by 
applying information dropping abstractions such as d r op_p r e (irrelevant operators are 
removed prior to factoring). The objective of Summarizer is to find an abstracted problem 
in which redundant operators can be removed by applying mapping abstractions such as 

c o u n t .  

Using the difference table, Absolver II's overall search strategy is to apply abstractions 
until it finds a problem that can be sped up. It first calls Composer. If Composer fails 
to find a problem in which redundant operators can be removed, then it calls Dropper. 
If Dropper cannot factor the problem into two or more independent subproblems, then 
Absolver II calls Summarizer as a last resort. 2 After Absolver II succeeds in finding an 

abstracted problem that can be sped up, it calls itself recursively on the resulting problem, 
thus resulting in a hierarchy of abstracted problems, which generates a hierarchy of heuristics. 
For example, if Dropper succeeds in finding a factorable set of subproblems, it factors 
the problem into the subproblems and then calls itself recursively on each of the subproblems. 
Each heuristic in the hierarchy is used to more efficiently compute heuristics lower in the 

hierarchy. 
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The rest of this section describes Composer and Dropper. Summarizer is not described 

since it is relatively simple: it simply applies count (to every predicate) in attempt to find 

an abstracted problem in which redundant operators can be removed and, failing that, it 

applies pa r i t y  (to every integer) for another attempt at removing redundant operators. 

4.1. Composer: The search for redundant operators 

Composer searches through the space of composition abstractions for those abstractions 

that lead to the removal of redundant operators. Instead of considering all possible such 
compositions, it considers only pairwise compositions and searches this space using a stan- 

dard hill-climbing algorithm and a meta-heuristic in the form of a "similarity" coefficient. 

This meta-heuristic returns the number of operator pairs in which the candidate composi- 

tion of the two array elements is equal; the larger the similarity coefficient, the more likely 

that a particular composition will lead to a redundant operator (i.e., making one operator 

identical to another by applying compositions). Composer applies the similarity coefficient 

to each pairwise candidate composition and then proceeds in the direction of that pairwise 

composition with the largest similarity coefficient; ties are broken arbitrarily. 

When the number of uninstantiated operators after redundant operators are removed is 

75 % of the number of original operators. Absolver II is called recursively to build a hierarchy 

of heuristics. (In effect, Composer calls itself recursively because Absolver II typically 

ends up called Composer again.) The 75% value, which we chose initially and have not 
had to change, is a rough indicator that the branching factor of the abstracted is sufficiently 

reduced such that search will be cheaper than in the original space, but not reduced so 

much that inaccurate though cheap-to-compute heuristics result. 

For example, in the Fool's Disk problem, the object of which is to orient each of the 

concentric disks such that the numbers on each radius (labeled R l-R8 in figure 5a) sum 

to 12, Composer generates the hierarchy of abstracted problems shown in figure 5b-d. 

Each problem in this hierarchy generates an admissible heuristic for the preceding level. 

The Diameters problem, shown in figure 5b, is an abstraction of the original Fool's Disk 
problem where the following pairs of radii numbers are added using the sum transforma- 

tion: R1 and R5, R2 and R6, R3 and R7, and R4 and RS. For example, the figure shows 

how the outer disk's numbers for radius R 1 and R5 are summed to form the outer disk's 

number of a new radius called R 1R 5. The Perpendicular Diameters problem, shown in 

figure 5c, is an abstraction of the Diameters problem where perpendicular diameters are 

summed. For example, in the Perpendicular Diameters problem, the composite R 1 and R5 
is summed with the composite R3 and R7. The All Numbers problem, shown in figure 5d, 

is an abstraction of the Perpendicular Diameters problem: all the numbers are summed. To 

compute, for example, the Diameters problem heuristic for any state in the original Fool's 
Disk problem, the state is abstracted (by summing opposite radii) and then the search algo- 

rithm (e.g., A*) is called recursively with the Diameters problem and the abstracted state. 
If this heuristic returns ~o for a state at any level of abstraction (i.e., an exhaustive search 

failed), then the state can be pruned. In effect, the heuristics are actually used as a solvability 

test rather than a distance estimate: if the abstracted goal cannot be reached in the abstract 

space, then the original goal cannot be reached in the original space. In problems where 
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Figure 5. The hierarchy of heuristics discovered by Absolver II (circled radius values show example composition). 

all solutions have the same length (e.g., the length is 4 for the Fool's Disk), the heuristics 

Absolver II discovers act as solvability tests rather than distance estimators. In sum, to 

prune states that cannot reach the goal, the original Fool's Disk relies on. the Diameters 

problem, which in turn relies on the Perpendicular Diameters problem, which finally relies 

on the All Numbers problem. The next few paragraphs describe how Composer finds these 
heuristics. 

The original Fool's Disk problem is represented by states with an integer array of length 

8; each element in this array represents the current radius sum and operators that place 

each disk in one of eight orientations. For example, the initial state is represented by the 

array (0, 0, 0, 0, 0, 0, 0, 0), and an operator that places the outermost disk in the orientation 
shown in figure 5a would have as its integer delta constant array (3, 4, l, 3, 4, 5, 3, 2) .  

Since there are four disks and eight orientations per disk, there are 32 such operators, 

each representing the placement of a particular disk in a particular orientation. Using these 

32 operators, Composer computes the values for the similarity coefficient on each candi- 
date combination of radius pairs. The results are shown in table 4. Each entry in the table 

is the similarity coefficient on the corresponding row and column. For example, the table 

shows that the sum of R 1 and R2 is equal in 68 pairs of operators. Moreover, composing 

either of R1 with R5, R2 with R6, R3 with R7, or R4 with R8 is more likely to lead to 

operators becoming identical than composing another pair of radii. 

Composer arbitrarily picks one of these highest-ranking candidate compositions and ap- 
plies it. In our example, it picks the composition of R 1 and R 5. After applying this compo- 

sition, it finds that there are still 32 operators in the resulting problem, so it again computes 

the similarity coefficient (this time including a new radius called R 1R4). Again, the highest 

ranking compositions are R2 with R6, R3 with R7, and R4 with R8. Composer arbitrarily 

picks one of these (R4 with R8) and applies it. Even after this combination there are still 
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Table 4. Similarity coefficients for composing each radius pair (most promising compositions are highlighted). 
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Table 5. Similarity coefficients for composing each diameter pair (most promising compositions are highlighted). 
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32 operators, so Composer continues. Finally, after combining R3 with R7 and then R2 

with R6, the number of operators shrinks to 16 (well within 75 % of the original 32), which 
results in the Diameters problem. 

Next, Composer calls itself recursively on the Diameters problem to obtain a heuristic 

that can be used for solving the Diameters problem. Table 5 shows the results of applying 

the similarity coefficient to the candidate compositions. The compositions of R 1R5 with 

R3R7 and R2R6 with R4R8 top the list; Composer arbitrarily chooses the first one. After 

applying this composition, the number of operators shrinks to 15 because one redundant 

operator is removed. Since this number is still not within 75 % of 16, Composer continues. 

After composing R 1R5 with R 3R7, the size of the operator set is reduced to 8, which results 

in the Perpendicular Diameters problem. Finally, Composer calls itself recursively to pro- 
duce the All Numbers problem, where R1R3R5R7 and R2R4R6R8 are composed. 

The complexity of each non-recursive call to Composer is dominated by the complexity 

of computing the similarity coefficient, whose complexity is O(m2n 2) for m operators and 
a size n array, since each pair of operators must be examined and the similarity coefficient 

will be applied to each pair of array elements. Since Composer will call itself recursively 
at most O(n) times, the total complexity of it is O(m2n3). 

4.2. Dropper: The search for  factorability 

Dropper consists of two subprograms: Pairwise and Combine. For each pair of literals gt 
and g2 in the set of goal literals and set of operators for a problem, Pairwise drops the 
following items (in order) until the pair of literals can be achieved independently from 
each other: 



EFFECTIVE ADMISSIBLE HEURISTICS 131 

1. Preconditions that cause direct interaction: for every operator ol that can directly add 

gl (i.e., the operator contains an element in its add set that unifies with g0 ,  and every 

operator 02 that can directly add g2, drop those preconditions of Ol that unify with an 

element of  o2's add set and vice versa. 

2. Other goal literals that must be dropped in order to make the pair of goal literals inde- 

pendent: for every operator o 1 that can directly add gl, and every operator 02 that can 

directly add gz, drop those goal literals that can be on the intersection of the add sets 

of operator ol and 02. This second step is required because a third goal literal may pre- 

vent factoring the pair of literals. 

3. Other preconditions that cause indirect interaction: if an operator that can lead to one 

achieving one literal adds a precondition of an operator that can lead to the other achieving 

the other literal, then drop the precondition. 

Computing these drop sets for every pair of goal literals is important because these drop 

sets can then be combined to enable factoring of  the entire set of goal literals and corre- 

sponding abstracted relevant operators. The abstraction d tops  is not explicitly applied 

because it is defined in terms d rop_p re and d rop_goa  I which are applied. 

For example, given the two literals At ( l ,  A) and At (2, B), figure 6 shows that d top_  

O re (Blank,  Move) will make the pair of literals independent from each other (step 1). 

Operators of the form Move ( 1, x, A) move tile 1 from location x to location A and directly 

add At (1 ,A),  and operators of the form Move (2, x, B) directly add At (2, B). Since 

Move ( 1, x, A) places the blank in some location (possibly location B) and Move (2, x, B) 

places the blank in some location (possibly location A), it is possible for each operator to 

add a precondition required by the other. Dropping B I a n k from the precondition of  the 

Move operator makes the application of one operator independent of the results obtained 

by the other. As a result, Pairwise applies d rop_~ r e ( B l a n k ,  Idove). 

In step 2, since Move ( 1, x, A) and Move (2, x, B) place B I a n k in some location, B I a n k 

must additionally be dropped from the goal in order to make the literals At ( 1, A) and 

At (2, B) independent from one another. I f  this were not dropped, the pair of literals-- 

though independent from each other--cannot be independently achieved from positioning 

the B Iank. That is, one achieved goal literal may have to be undone to position the B Iank. 

5 
~(L~) ~ ( ~ )  

Figure 6. Dropping the blank from preconditions enables factoring of the two goal literals. 
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Figure 7. Locating the earliest cause of non-independence. 

Consequently, Pairwise applies d rop_goa I (Blan k) to enable factorability of the two goal 
literals. 

In step 3, Pairwise constructs a chain of operators by backchaining from each literal and 

each precondition of operators already on the chain. Although each precondition can have 

a separate chain, Pairwise constructs the chains depth-first until it finds a reason for non- 

independence. If no such reason is found, it backtracks to a precondition whose chain has 

not yet been constructed. If an operator is detected that can add a precondition required 

by an operator in the other chain, it drops the (single) precondition of the operator that 

is nearest to the origin of the chain, even though the offending operator might be at a later 

point in the chain. Figure 7 shows this situation for a particular pair of literals and their 

associated chains. Once this precondition is dropped, a new chain is then constructed and 

the process repeats until the literals become independent. In our Eight Puzzle example, 

Pairwise actually succeeds after one such iteration because the two literals are already inde- 

pendent with respect to dropping B I a n k from operator preconditions. 

Since Pairwise can overestimate the number of preconditions that must be dropped to 

ensure factorability, it calls a postprocessor that attempts to reduce the number of dropped 

preconditions by greedily adding back dropped preconditions and testing if independence 
is still preserved (i.e., pass through the previous three steps without dropping any precon- 

ditions or literals). 

Even after Pairwise has computed the set of preconditions and goal literals to drop for 

each pair of goal literals, the entire set of goal literals and corresponding abstracted rele- 

vant operators may not be factorable because of interactions among goal literals triples, 

quadruples, and higher combinations. In short, the drop sets may have to be combined to 

make the entire set of goal literals and corresponding abstracted relevant operators factor- 

able. Combine does just that. It unions the drop sets produced by Pairwise by using the 
depth first iterative deepening search algorithm (Korf, 1985) with two meta-heuristics to 

further reduce search (iteration is on the number of precondition and goal literal drops): 

1. Union those drop sets first that make the most literal pairs independent--this action 
might be more likely to lead to faster convergence to factorability while reducing the 
number of drops. 



EFFECTIVE ADMISSIBLE HEURISTICS 133 

2. Ignore those drop sets that drop a goal literal only to make one independent from another. 

Such drop sets are less likely to lead to factorability, since they do not affect the factor- 
ability of other goal literals. 

This search algorithm tends to minimize the number of preconditions and goal literals 
to drop and hence tries to abstract as little as possible. In our Eight Puzzle example, which 
only has a single drop set (dropping B I a n k from the operator and the goal), Combine 
converges to a factorable set after one iteration of the iterative deepening algorithm. Com- 
bine is then called recursively on each of the factored subproblems. Finally, it terminates 

successfully, since no other factorable subproblems can be obtained within any of the fac- 
tored subproblems. The resulting set of subproblems is the AND tree shown in figure 3, 
which is used to compute the Manhattan Distance heuristic. Each recursive call produces 
another level of the tree. 

The complexity of Dropper is dominated by the third step of Pairwise, which is also 

called for additional independence tests for greedily adding back dropped preconditions 
as described above and which constructs a transitive closure of the set of operators that 
can possibly lead to achieving a goal. The worst-case complexity of constructing this tran- 
sitive closure is O(b~b), where bb is the backward branching factor (the average number 
of operators instances--operators whose parameters are bound to constants--that add a 

given predicate) and do is the backward depth (the length of the longest chain of operators 
in the set of relevant operators for a given goal literal). That is, the number of precondi- 
tions that Pairwise examines is porportional to the number of paths from a goal literal to 
each operator in the chain. 

5. Experimental results 

Table 6 presents the results of applying Absolver II to several well-defined search domains, 

each of which is sufficiently complex to require heuristics. The table lists the domain, the 
name of the heuristic, and the percentage of the space that was explored (to two significant 

digits).3 The percentage is computed by dividing the number of heuristics generated before 
the named one was found by the number of abstractions with respect to Absolver l]'s catalog 
of abstracting transformations and multiplying by 100. The space size is a conservative 

estimate in that it includes only those abstractions that Absolver II actually considers in 
its search. For example, the space size for deriving the Manhattan Distance is 4096, since 

Absolver II drops operator preconditions and literals from the goal to derive the heuristic, 
and there are 9 goal literals and 3 preconditions (29+3 = 4096). Since arrays are not part 
of our problem specification for the Eight Puzzle, Absolver II does not apply composition 
abstractions. In contrast, to derive the Fool's Disk heuristic, Absolver II only applies s urn 
(to the 8 radii) and not other abstractions; it therefore searches a space of size 28 (= 256). 

The results of this table can be summarized as follows. Absolver II discovered effective 
admissible heuristics in 6 out of the 13 domains by exploring only a fraction of the space 
of heuristics derivable by the abstracting transformations in our catalog. Absolver II dis- 
covered 8 novel heuristics, 5 of which turned out to be effective (we define "effective" 
as roughly one or more order of magnitude of speedup over exhaustive search). The novel 

effective heuristics include the Center-Comer, X-Y, Box Distance, and the Nearly Opposite 
Sides heuristic. 
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Table 6. Admissible heuristics discovered by Absolver II. 

Domain Heuristic % Space explored 

Manhattan Distance + .0024 
Eight Puzzle X_y. + .000045 

TSP Unvisited Cities .78 
Towers of Hanoi # Misplaced Disks .00038 
Mutilated Checkerboard Colored Squares + 25 
2-D Routing Unvisited Signals* .0097 
Rubik's Cube Center-Corner *+ 10 -15 
Fool's Disk Diameters *+ 2.7 
Instant Insanity Nearly Opposite Sides *+ 18 
Think-A-Dot Dropped Gates* 2.7 × 10 -5 
Rooms World Box Distance *+ 25 
Blocks World # Misplaced Blocks .0025 
Eight Queens # Unplaced Queens .2 
Uniprocessor Scheduling Unassigned Jobs* 8.7 × 10 -8 

* = novel. 
+ = effective. 

The Center-Comer heuristic computes the minimum number of moves required to get 

just the center cubies in place plus the minimum number of moves required to get just 

the corner cubies in place for the 3 × 3 × 3 Rubik's Cube. This heuristic resulted in roughly 

eight orders of magnitude speedup with IDA* over the expected time for breadth-first (ex- 

haustive) search for long solutions. This result makes it the first known (non-trivial) ad- 

missible heuristic for the Cube. For search problems such as the Rubik's Cube, we chose 

the IDA* algorithm to evaluate the admissible heuristics discovered by Absolver II because 

this algorithm is standard for evaluating admissible heuristics. Moreover, its results can 

often be analytically compared to those of breadth-first search (i.e., by computing the average 

branching factor and depth, the total number of states expanded by breadth-first search 

and solution generation time can be estimated). To make the heuristic more effective, the 

Corner portion was precomputed up to depth 6 from the goal and the Center portion was 

entirely precomputed for these experiments. 

The X-Yheuristic computes the minimum number of column-adjacent blank swaps to get 

all tiles in their destination column plus the minimum number of row-adjacent blank swaps 

to get all tiles in their destination row for sliding block puzzles. The heuristic turned out 

to be the best admissible heuristic for the Eight Puzzle with IDA*, expanding 1.8 times 

fewer states than the Linear Conflict heuristic (Hansson et al., 1992), an adjusted, more 

accurate version of the Manhattan Distance heuristic. The version of the X-Y heuristic that 

we used was entirely precomputed: the X-Y. Without precomputation, the heuristic is less 

effective than the Linear Conflict heuristic, but better than Gaschnig's n-Maxswap heuristic 

(Gaschnig, 1979) and better than no heuristic at all (breadth-first search). The Center-Comer 

and X-Y heuristics demonstrate that abstraction coupled with precomputation can produce 

effective heuristics. 

The Box Distance heuristic computes the minimum number of rooms each box must pass 

through to reach its destination for the Rooms World. It expanded 267 times fewer states 

using IDA* than breadth-first search for the Rooms World problem, shown in figure 8. 
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Figure 8. A state in the Rooms World problem. 

The Diameters heuristic is the Fool's Disk heuristic described in section 4. It expanded 

45.41 times fewer states than exhaustive search. Both were evaluated using standard depth- 

first search with backtracking rather than with IDA* because all solutions have the same 

length (in this case, 4). As described in the previous section, the heuristic acts. as a solvability 

test during this search. The Diameters heuristic relies on the hierarchy of heuristics described 

in section 4 for faster computation. 

The Nearly Opposite Sides heuristic is an Instant Insanity analogue of the Diameter's 

heuristic in that opposite side colors are composed. (In Instant Insanity the objective is 

to build a stack of four cubes with variously colored faces such that no stack side contains 

two or more faces of the same color.) It expanded 2.61 times fewer states than exhaustive 

search with the same depth-first backtracking program as for the Fool's Disk. The Nearly 

Opposite Sides heuristic relies on a hierarchy of heuristics analogous to those of the Diam- 

eters heuristic, which Absolver II also discovered. The X-Y, Box Distance, Diameters, and 

Nearly Opposite Sides heuristics demonstrate that heuristics can be effective even though 

they are computed by search. 

Absolver II derived several known admissible heuristics, including the Manhattan Distance 
heuristic of the Eight Puzzle (using a different formulation than for the X-Y heuristic), 

the Number of Misplaced Disks heuristic of the Towers of Hanoi, the Mutilated Checker- 

board heuristic, and the Number of Misplaced Blocks heuristic. All except the Manhattan 

Distance heuristic were of the same complexity as the originals--the Manhattan Distance 

heuristic is slower by O(n) for n × n puzzles because the derived heuristic uses search to 

compute the minimum number of moves needed to get each tile from its current location to 

its goal location. This analysis assumes finite differencing and ignores a one-time O(n 4) 

initial computation, which is amortized over all subsequent Manhattan Distance computations 

Absolver II derived several inferior heuristics. In the 2-D Routing domain, the object 

of which is to find a shortest rectilinear routing from each source point to multiple target 

destinations for multiple signals, it derived the Unvisited Signals heuristic, which counts 

of the number of non-reached signal locations. The reason it derived this heuristic, instead 

of the more accurate Steiner Tree heuristic, which returns the length of a minimum recti- 

linear spanning tree and which we derived by hand (Prieditis, 1990), is because it dropped 
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a relation that was too salient for the problem. In the Traveling Salesperson Problem, Ab- 
solver II derived the Unvisited Cities heuristic, which computes the sum of the least cost 

edges leading to an unvisited city over all unvisited cities, instead of the more accurate 

Minimal Spanning Tree heuristic, which we derived by hand (Prieditis, 1990), because we 
have not implemented the speedup required to derive the Minimal Spanning Tree heuristic. 

Absolver II failed to find an effective admissible heuristic for the Think-A-Dot, Eight 

Queens, and Uniprocessor Scheduling problems for the same reason we failed to find one 

by hand (Prieditis, 1990): all abstractions that could be sped up removed too many impor- 

tant details and therefore resulted in relatively inaccurate heuristics. For example, to obtain 

the factorable abstracted problem that results in the Unassigned Jobs heuristic for the Uni- 

processor Scheduling problem, the time and seriality constraints must be dropped. The 

resulting heuristic, which returns the minimum costs of unassigned jobs, is relatively inac- 

curate. Our approach to discovering admissible heuristics appears to be unsuitable when 

the original problem is characterized by high goal or operator "interference" (many operators 

directly affect many parts of the goal statement or make many operators subsequently in- 

applicable in the original problem), and all abstracted problems are characterized by low 

goal or operator "interference" (few operators directly affect many parts of the goal state- 

ment or make many operators subsequently inapplicable in the original problem). Of course, 

it may be that to derive effective admissible heuristics for such domains requires abstrac- 

tions and speedups beyond our model or simply that we were not able to find a "good" 

formulation in which to derive heuristics. 

6. Relation to other work in machine discovery and learning 

Absolver II differs from traditional data-driven scientific discovery systems, such as Bacon 

(Langley et al., 1987), Coper (Kokar, 1986), Fahrenheit (~ytkow et al., 1990), and others 

(Schaffer, 1990), in that it does not rely on induction from data for its discovery process. 

Instead, because its discovery process is driven by the goal of obtaining an abstracted prob- 

lem that can be sped up, it can use techniques such as means-ends analysis to focus on 

its discovery process. 

Absolver II is similar to discovery systems such as AM (Lenat, 1977), which discovers 
mathematical concepts, and Eurisko (Lenat, 1982, 1983a, 1983b), which discovery heuristics 

for AM-like discovery systems. Both systems discover concepts by searching the space of 

syntactic transformations of existing concepts. AM appears to work well precisely because 

such transformations are likely to lead to other mathematically interesting concepts (Lenat 
& Brown, 1984). Similarly, because the class of admissible heuristics that Absolver II dis- 

covers are ultimately defined in terms of syntactic features of a problem, syntactic transfor- 

mations of a problem are likely to lead to interesting heuristics. In short, AM and Absolver 

II seem to be searching a space rich in the type of objects they are trying to discover. Had 
they instead searched the space of binary representations of a problem by applying bit in- 

versions, they would have no doubt failed miserably, because the relationship between the 
manipulation of one particular bit and the original problem is at best tenuous. Indeed, Eurisko 

was not as successful as AM precisely because it lacked a natural form/content mapping 
between its representation and the meaning of its concepts. 
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Absolver II differs from systems that learn heuristics in that it does not rely on generaliza- 

tion from example solutions or on an external teacher who supplies example problems or 

solutions. Some of these learning systems rely on simplying assumptions to generate heu- 

ristics. For example, POLLYANNA (Ellman, 1988) generates heuristics for the card game 

Hearts by applying generic probabilistic simplifying assumptions to an intractable domain 

theory; the resulting heuristics are then empirically tested. Similarly, MetaLEX (Keller, 

1987) generates heuristics for search tasks by using performance statistics to guide its sim- 

plification of an intractable search domain theory. The simplifications differ' from abstract- 

ing transformations in that they do not ensure admissibility. 

Other systems that generate non-admissible heuristics use induction over example states 

on solution paths. For example, induction over states on solution paths can be used to learn 

the class of states for which it is useful to apply operators along such paths (Mitchell et 
al., 1983; Langley, 1983). These heuristics are not admissible and evaluate the usefulness 

of an operator rather than estimate distance to goal. 

As with induction, examples are used to derive heuristics in several other learning systems. 

One system adjusts the coefficients of a polynomial-based state evaluation function in re- 

sponse to positive and negative outcomes in the game of checkers (Samuel, 11963). Another 

derives heuristics by clustering information obtained from searches (Rendell, 1976). Yet 

another learns a state evaluation function by linear regression over a set of states with 

numerical features (Christensen & Korf, 1986). In contrast, explanation-based learning 

systems analyze solutions or non-solutions to learn heuristics for when to apply or not 

apply an operator (Minton, 1988; Mostow & Bhatnagar, 1987; Bhatnagar & Mostow, 1990). 

Again, these approaches result in non-admissible heuristics 

Absolver II (the Composer subprogram in particular) is similar to INFIN (Oyen, 1975), 
which discovers primitive problem-solving invariants, and DGBS (Ernst & Goldstein, 1982), 

which discovers higher-level invariants that are then converted to problem-solving strategies 
for the General Problem-Solver (GPS) program. All three programs apply composition 

abstractions, though for different reasons. For every operator, INFIN computes those items 

in a state (a state is represented as a set of integer or bag arrays) that are invariant--unchanged 

as a result of applying the operator. It then removes these invariants from the state and 

tries to find pairs of items that are invariant. This cycle continues with triples and higher 

combinations of items until all invariants have been removed~ The resulting set of invariants 

are called primitive. DGBS then takes these primitive invariants and tries to combine them 

using addition, multiplication, and bag union to obtain problem-solving subgoals that can 

be serially processed. For example, INFIN coupled with DGBS discovered the following 
three-step strategy for the Fool's Disk: 

1. Using the original set of 32 Fool's Disk operators, find a sequence of operators leading 

from a given initial state i to a state gl, where the sum of numbers on the horizontal 
and vertical diameters is 48. 

2. Using only those operators that preserve the horizontal and vertical diameter sum of 

48, find a sequence of operators leading from gl to a state g2, where each diameter 

sums to 24. 

3. Using only those operators that preserrve the diameter sum of 24, find a sequence of 

operators leading from g2 to the original goal states. 
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Of course, backtracking between steps might be needed because the states g~ or g2 might 

not be on the solution path. In essence, this strategy attempts to make problem-solving 

more efficient by setting up subgoals and reducing the branching factor between subgoals 

by only applying operators that preserve previous subgoals (Guvenir & Ernst, 1990). 

All three programs are sensitive to problem formulation. ~ For example, strong conditions 

on the problem formulation are often required to discover GPS-like strategies: if the Fool's 

Disk is formulated with 45 ° rotations, which is equivalent to the original formulation, DGBS 

discovers no meaningful invariants. Absolver 1/is somewhat less sensitive to problem formu- 

lation because heuristics may still be discoverable when efficient problem-solving strat- 

egies cannot. 

INFIN and DGBS might benefit from the discovery strategies and transformations used 

by Absolver II and vice versa. For example, INFIN might be able to discover more com- 

plex primitive invariants by first applying other abstracting transformations. Conversely, 

Absolver II might be able to discover efficient solvability tests based on heuristic resulting 

from combining primitive invariants as in DGBS. 

7. Conclusions, shortcomings, and future work 

Absolver II tractably discovered many known admissible heuristics and some novel effec- 

tive admissible heuristics. Some of these heuristics are still effective even though they are 

computed by search; others used precomputation to make them more effective. Search- 

computed heuristics might be important in domains such as the Room's World, for which 

effective closed-form heuristics might not exist. 

Since Absolver II is an experimental system, it has several shortcomings, each of which 

suggests interesting directions for future research. First, because it sometimes drops salient 
relations of a problem, it might be enhanced by a theory that links information loss via 

abstraction to accuracy of the resulting heuristics. This theory might allow Absolver II 

to predict the effectiveness of heuristics without testing them, which is currently left up 

to the user. Second, non-abstracting transformations might be required to derive effective 

heuristics in certain domains (e.g., Eight-Queens). Third, Absolver II might be able to 

boost the accurateness of certain admissible heuristics by taking into account interactions 

in the base level between independently solvable factored subproblems in the abstract level. 

For example, the Linear Conflict heuristic might be derivable by incrementing the Manhattan 

Distance heuristic by at least 1 for each interaction found in the original problem between 
independent factors with only one shortest path solution. We have been able to boost by 

hand the accurateness of a popular project scheduling heuristic using a similar technique 

called reconstitution (Janakiraman & Prieditis, 1992), which efficiently adds back previ- 
ously abstracted information while maintaining admissibility. Ultimately, we would like 

to automate this process. 

Finally, Absolver II sometimes derives inferior heuristics because it applies too many 
abstracting transformations to obtain a problem that can be sped up. Absolver II could 
assume, for example, that a problem is factorable until experience during problem-solving 
proves otherwise. Once a problem is proved to be non-factorable, the reason could be located 

and eliminated by abstraction. Of course, since the original assumption of factorability 
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ignores the test for independence, the resulting heuristics would not be guaranteed to be 
admissible. Sacrificing admissibility for ease of discovery and ease of computation may be 
the only method of dealing with the expense of discovering and computing certain heuristics. 

Despite its shortcomings, Absolver II concretely demonstrates that effective admissible 
heuristics can be tractably discovered by a machine. 
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Notes 

1. Finite differencing was originally introduced in the context of programming languages (Paige & Koenig, 1982; 
Moshi, 1989): differentiate over a computable function and then use that differential to incrementally compute 
the function. In our case, the differential requires search to be computed. 

2. Absolver lI collapses problems to dosed form whenever possible: it does not explicitly search for such problems. 
3. The domains, problem formulations, methods for choosing good formulations, derivations, and performance 

of the resulting heuristics are detailed by Prieditis (1990). 
4. Finding problem formulations for efficient problem-solving is a difficult problem (Amarel, 1968). 
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