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Abstract. The investigation of relations between protein tertiary structure and amino acid sequence is a topic 
of tremendous importance in molecular biology. The automated discovery of recurrent patterns of structure 
and sequence is an essential part of this investigation. These patterns, known as protein motifs, are abstractions 
of fragments drawn from proteins of known sequence and tertiary structure. This paper has two objectives. 
The first is to introduce and define protein motifs, and provide a survey of previous research on protein motif 
discovery. The second is to present and apply a novel approach to protein motif representation and discovery, 
which is based on a spatial description logic and the symbolic machine learning paradigm of structured concept 
formation. A large database of protein fragments is processed using this approach, and several interesting and 
significant protein motifs are discovered. 
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1. Introduction and definitions 

A task of growing importance in the management of biochemical and crystallographic 

data is the ability to perform generalization and abstraction over large sets of related 

physical observations. There exist recurrent patterns and rules of structural biochemistry 

hidden in the Protein Data Bank (Bernstein et al., 1977); machine discovery techniques 

can help to uncover these patterns and rules. Generalized patterns can facilitate efficient 

information retrieval and data incorporation, providing a conceptual framework to which 

new structural data can be related. They can also be used for prediction of molecular 

conformation from topological structure, since they often represent common 3D (three- 

dimensional) structural features. The analogous investigation of relations between protein 

structure and amino acid sequence is a topic of tremendous importance in molecular 

biology. It is necessary to understand protein 3D structure before protein function and 

activity can be understood at the molecular level. 

Proteins are macromolecules comprising chains of structural building blocks known as 

amino acids. Amino acids have a backbone and a side chain, and are classified into 20 

groups based on the topological structure of their side chain. Each amino acid is typically 

denoted by a single letter name. Proteins can be described at various levels of abstraction. 

The primary structure of a protein is given by its linear (1D) sequence of amino acids. 

The primary structure dictates the 3D structure of the protein in solution, although the 

rules governing this determination have not yet been discovered. The secondary structure 

of a protein is given by a sequence of structural identifiers, such as g (alpha-helix), ~. 

* This work was performed while the anthor was at Queen's University, Kingstson, Ontario, Canada. 
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Figure 1. Representations of structure (primary, secondary, tertiary) for a small protein (Crambin: PDB code 

1CRN). Top: primary structure given by a sequence of 46 amino acid identifiers. The primary sequence 

is followed by a sequence of 46 secondary-structure identifiers (DSSP format: a "-"  indicates unassigned 

structure for the corresponding residue). Bottom: a 2D visual projection of the protein's tertiary structure 

(virtual backbone representation). 

(strand), or T (turn). Equivalently, a sequence of n elements is often described by n such 

structural identifiers: the format produced by the DSSP secondary-structure assignment 

program (Kabsch & Sander, 1983). Protein tertiary structure is described by the positions 

of all atoms of the macromolecule in 3D space (see Figure 1). 

In addition to the levels of secondary and tertiary structure, there are a variety of 

abstract representation forms for protein 3D structure (Schulz & Schirmer 1979). One 

such representation, encountered frequently throughout this paper, is the protein virtual 
backbone. For a chain of length n, this comprises n representative points, one for each 

residue. The chosen representative point is often the position of the Cc~ atom (one of 

the amino acid backbone atoms) of the residue. In a protein virtual backbone, two 

points are contiguous or virtually bonded if their residues are adjacent in the amino 

acid sequence. The virtual bond angle (VBA), defined between three contiguous points 

(a, b, c), is the angle between the vectors (b, a) and (b, c). The virtual bond dihedral 
angle (VBDA), defined between four contiguous points (a, b, c, d), is the angle between 

the planes (a, b, c) and (b, c, d). 

A protein fragment is an observed pattern of amino acid residues, for example, a 

region of (1D) primary structure, or of (3D) tertiary structure. A protein motif is an 

abstraction of one or more fragments. Protein motifs can be classified into four categories. 

Sequence motifs are linear strings of residue identifiers with an implicit topological 

ordering. Sequence-structure motifs are sequence motifs with predefined secondary- 

structure identifiers attached to one or more residues in the motif. The sequence is 

assumed to be predictive of the associated structure. Structure motifs are 3D structural 

objects, described by positions of residue objects in 3D Euclidean space. Structure 

motifs are free of sequence information, although most research enforces contiguity 

of structure motif components. Finally, structure-sequence motifs are combined 1D- 

3D structures that associate sequence information with a structure motif. Structure- 



MACHINE DISCOVERY OF PROTEIN MOTIFS 127 
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Figure 2. Various types of protein motifs. Legend; X: any residue, G: glycine, V: valine, H: helix, E: /3-strand, 

T: turn, p:polar, s: small, h: hydrophobic. 

sequence motifs need not indicate a fixed direction of implication between structure and 

sequence. Figure 2 illustrates these four types of protein motifs, along with some further 

subclassifications which are elaborated upon later in the paper. The first three motif 

types are discussed by Thornton and Gardner (1989); the structure-sequence motif will 

be presented in this paper. 

Machine discovery of protein motifs of various types is currently an area of intense 

interest in molecular biology. One of the objectives of this paper is to bring this important 

application domain to the attention of the machine learning community. Section 2 of this 

paper will survey previous research on protein motif discovery according to the above 

categorization of motifs. The second aim of this paper is to present and apply a new 

approach to protein motif discovery, which is based on knowledge representation ideas 

of description logics and machine learning principles of structured concept formation. 

Section 3 of this paper presents this new approach. The description logic facilitates 

reasoning about subsumption of motifs - -  an ability not found in other protein motif 

discovery systems - -  while the concept formation procedure creates a concept taxonomy 

of generalized motifs. Section 4 presents some promising results obtained on a large 

database of protein fragments. 

2. Discovery of protein motifs 

The field of empirical machine discovery encompasses the theories and autonomous 

processes involved in finding novel regularities, concepts, or dependencies in data. It 

is convenient to identify a protein motif with a concept, having a formal intensional 

description in addition to an extensional meaning. In order to apply concept discovery 

techniques, a rigorous mathematical semantics for a motif is necessary to determine 

whether an observation lies within that concept's extension. 

There has been a considerable amount of research on machine discovery of protein 

motifs. Most, but not all, of this work relies on some form of numerical clustering: frag- 

ments are described by a set of numeric features, a distance metric on these descriptions 
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is defined, and motifs emerge as cluster centroids during the clustering process. The 

technique presented in this paper uses, by contrast, a conceptual clustering technique; 

fragments are structured objects, a measure of relational or structural similarity is defined, 

and motifs are most specific generalizations of fragments. 

This section will describe and compare a handful of methods in terms of their repre- 

sentation theory, the type of motif under consideration, the semantics given to motifs, 

the motif evaluation mechanism employed, and the pragmatics of discovered motifs. A 

more extensive survey appears in my Ph.D. dissertation (Conklin, 1995). Though the 

results presented in Section 4 will be concerned mainly with structure-related motifs, 

it is informative to review sequence motif work as a backdrop for discussing the more 

general structure-sequence motif. 

2.1. Sequence and sequence-structure motifs 

Protein sequence motifs are the most commonly encountered motif type in the molec- 

ular biology literature. It is generally assumed that similarities in protein sequence are 

indicative of structural and functional similarity. Thus the discovery of sequence motifs 

from structurally similar proteins or protein fragments is an important method for un- 

covering relationships between protein structure and sequence. Protein sequence motifs 

can facilitate the incremental acquisition and indexing of sequence data into knowledge 

bases organized according to sequence similarity (Taylor, 1986). 

Sequence motifs can be discovered from a maximal alignment of one or more pro- 

tein sequences, followed by the abstraction of residues at aligned positions. There is 

an extensive literature on the comparison of sequence motifs: see Lathrop et al. (1993) 

for a good survey of this work. Conserved residues are those identical at corresponding 

alignment positions. It is uncommon to find long connected sequences of conserved 

residues in non-homologous proteins (Sternberg & Islam, 1987), hence the need arises 

to construct histograms of residue distribution at alignment positions to produce a con- 

sensus sequence motif. Taylor (1986) uses a more general abstraction scheme; a domain 

theory is used to classify amino acids into nondisjoint groups based on physicochemical 

properties such as hydrophobicity and polarity which are expected to have an influence 

on protein folding. Following Rooman and Wodak (1991), we shall refer to sequence 

motifs containing property identifiers as property motifs (see Figure 2). 

Much of the work on protein secondary-structure prediction is based on the a priori 

definition of sequence motifs that are predictive of a certain type of secondary-structure 

identifier. These sequence-structure motifs (referred to by Thornton and Gardner as 

"structure-related sequence motifs") manifest an inherent directionality of implication 

from sequence to structure. The work of Rooman, Wodak, and colleagues has been 

influential in establishing important sequence-structure predictivity results. Rooman and 

Wodak (1988) associate with each amino acid in a motif a standard secondary-structure 

identifier (e.g., Figure 2, motif 3). A discovery procedure develops short sequence 

regular expressions with structure associations. They demonstrated that, while not enough 

associations are derived to predict a complete protein structure, a number of reliable and 

predictive motifs do exist. In a similar study, Rooman et al. (1990b) replace the standard 
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secondary-structure identifiers with elements produced by structure motif discovery (see 

next section). 

Rooman et al. (1989) take a number of sequence motifs, reported in the literature 

as characterizing local secondary structure, and subject them to a rigorous validation 

against a database of 75 proteins. Out of 12 sequence motifs, only one is found to be 

predictive of secondary structure. The hypothesized reason for this poor performance is 

the over-generality of the motifs tested. Rooman et al. present experimental evidence 

indicating that there is a direct relationship between motif specificity and predictivity. 

2.2. Structure motifs 

The accurate prediction of protein tertiary structure from amino acid sequence, while the- 

oretically possible, has remained one of the great open problems in molecular biology. 

Though the prediction problem is typically reduced to a more manageable one - -  the 

prediction of secondary structure from sequence followed by the packing of secondary 

structures into 3D - -  recently there has been increasing interest in the automated dis- 

covery and use of structural elements less coarse than the standard secondary structures. 

There are three main reasons for this development. First, there is a wide discrepancy 

between different methods for secondary-structure assignment from tertiary structure 

(Zhang et al., 1993). A prediction system relying on one assignment method for training 

and evaluation is modelling to some extent its particular characteristics (Colloc'h et al., 

1993). Second, unidentifiable folding patterns are usually classified as "random c0il," 

even though these regions are neither random nor undefinable (Prestrelski et al., 1992). 

Finally, the packing of secondary-structure elements is itself a non-trivial task and is 

dependent on accurate secondary-structure predictions. By contrast, structure motifs are 

building blocks that can be used to precisely describe the tertiary structure of a new 

protein (Jones & Thirup, 1986). 

Structure motifs are typically discovered by numerical clustering. These procedures 

require a fixed set of numeric parameters to describe observations, and a distance metric 

over these multidimensional vectors. In all structure motif discovery research surveyed 

in this section, the initial numeric parameters are simply the list of 3D coordinates of 

fragment components. The "visual" similarity of two fragments is thus highly dependent 

on the coordinate flame of the protein(s) from which the fragments were extracted. This 

problem can be circumvented in three ways: 1) by standardizing fragment descriptions 

before comparison; 2) by using numeric features invariant with respect to Euclidean 

transformations (rotations and translations), or 3) by first performing an optimal alignment 

of the fragments in 3D space before their comparison. There are drawbacks with each 

approach; the first implicitly forces a fragment alignment that is possibly suboptimal, the 

second is sensitive to the chosen features, and the third complicates the semantics of a 

motif. Further weaknesses with these approaches are discussed at the end of this section. 

Hunter and States (1991) standardize fragments by placing their center of mass at the 

origin, orienting the x, y, and z axes relative to the principal axes of the moment of 

inertia tensor of the fragment. The authors note various problems with this standardization 

method; foremost is the fact that small changes in fragment data can flip the choice of an 
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axis, confounding the motif/fragment relationship. Bayesian classification techniques are 

used to produce clusterings which are evaluated according to Bayes' formula with a prior 

distribution favoring fewer classes; given two clusterings, each with the same number of 

classes, the method will prefer the clustering which has a tighter fit to the data. Motifs 

are represented by a probability distribution over Cartesian coordinates for the backbone 

atoms of each residue. Thus motifs are probabilistic concepts; fragments fall into a class 

with a certain probability. In contrast to other approaches reviewed below, amino acids 

are represented by line rather than point data, since all backbone atoms are used. 

Rooman et al. (1990a) use an invariant representation scheme. The similarity between 

two fragments is computed by a Ca  distance root-mean-square (DRMS) metric 1 (Rooman 

et al., 1990a). Similar to the work of Prestrelski et at. (1992) and Zhang et al. (1993), 

fixed-length contiguous fragments from a protein virtual backbone are used. A fragment 

is an instance of a class by virtue of being within a DRMS distance threshold from the 

prototypical motif of that class. Similar to the work of Hunter and States, a structure motif 

is a 3D coordinate description, and can be depicted and perhaps evaluated by a chemist 

using molecular visualization software. A fragment clustering yields a dendogram of 

cluster merges; this structure must be pruned to produce a library of motifs. Rooman et 

al. (1990a) discuss different pruning techniques, and point out the dependence of any 

technique on the pragmatics of the motif library. In a first experiment, a fixed number 

(four) of general motifs is sought after, for each fragment length from four through seven. 

These motifs are correlated with four standard secondary structures. The four discovered 

classes are used in the sequence-structure analysis (Rooman et al., 1990b) discussed in 

the previous section. In a second experiment, Rooman et al. (1990a) cluster heptamers 

and only retain motifs which contain, on average, 50 members. Some of these motifs 

are subjected to a structure-sequence analysis (see next section). 

Unger et al. (1989) first perform an optimal alignment of two fragments in 3D before 

their comparison, using a best-molecular-fit routine (e.g., Kabsch, 1976). Virtual back- 

bone, described by Cc~ positions of residues, are clustered using a k-nearest neighbor 

algorithm. Whereas Rooman et al. (1990a) use the DRMS metric, based on intra- 

fragment distances, Unger et al. first optimally align the structures and use the "aligned" 

root-mean-square deviation (ARMS) between the two aligned point sets 2 (Cohen & Stern- 

berg, 1980) as a measure of similarity. Various criteria are used to evaluate the proposed 

clustering, including the production of a reasonable number of discovered motifs, and a 

reasonable goodness of fit to the training fragments. 

Nussinov and Wolfson (1991) use large-scale structural comparisons to discover protein 

structure motifs. Unlike the approaches surveyed above, a protein is not divided into 

contiguous training fragments; rather, two proteins are compared in their entirety to 

identify atoms that are superposable in 3D. A set of such points forms a structural motif. 

A technique from computer vision known as geometric hashing is used to compute 

the geometric alignment parameters which produce the most superposable atoms. Two 

interesting features of this method are that motifs need not refer to contiguous sequential 

regions, and that they can contain arbitrarily many components. 

Table 1 summarizes several structure motif discovery results. The first column indi- 

cates the method for computing similarity between two fragments; whether they are first 
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Table 1. Structure motif discovery results (--: not reported, t: per protein pair). 

Paper similarity fragment length # fragments # motifs 

Zhang et al., 1993 invariant 7 6,422+6,242 6 
Prestrelski et al., 1992 invariant 8 2,378 113 
Hunter & States, 1991 standardized 5/6 9,556/9,491 27/--- 
Rooman et al., 1990a invariant 4-7 13,000 4 
Rooman et al., 1990a invariant 7 13,000 > 10 
Onizuka et al., 1993 invariant 5-129 - -  16 
Nussinov & Wolfson, 1 9 9 1  alignment full protein 2 It  
Unger et al., 1989 alignment 6 13,000 103 
Matsuo & Kanehisa, 1993 alignment 7 15,320 37 

standardized, aligned during comparison, or whether features invariant under Euclidean 

transformations are used. The second column indicates the training fragment size; there 

is some consensus on a length from six to eight. The third column indicates the number 

of  training fragments used. Finally, the last column indicates the number of  retained mo- 

tifs. It is apparent that there is little agreement on the optimal motif  library size. As we 

have seen, however, different research has different pragmat ic  goals for the discovered 

motif  libraries. 

2.3. Structure-sequence motifs 

Structure-sequence motifs assign both sequence and 3D coordinate information to residues. 

This motif  type is different from the sequence-structure motif  in that the motif  itself must 

have an explicit  3D structure. The sequence-structure motifs described in the previous 

section do not fall into the category of  structure-sequence motifs because the 3D structure 

is only implicit  in the association of  a residue with a structure identifier. 

Structure-sequence motifs are currently receiving a great deal of  attention in the molec- 

ular biology literature. The "inverse" structure prediction problem, where a sequence is 

predicted for a given structure, relies on a compact library of structure-sequence motifs. 

The sequence portion of these motifs can be a conserved or property sequence, and may 

be probabilistic in that propensities for different amino acids at each sequence position 

are indicated. A motif, which may be noncontiguous, is "threaded" by the amino acid 

sequence of unknown structure, with an evaluation function judging the goodness of fit 

of  the input sequence to the motif  sequence for a particular threading (Jones et al., 1992; 

Ponder & Richards, 1987). One attraction of this approach is that the number of  possible 

protein structure classes may not be very large - -  on the order of one thousand (Chothia, 

1992) - -  and that an exhaustive search over a compact  library of structure-sequence 

motifs may be feasible. 

Many researchers concerned with the discovery of  structure motifs (see previous sec- 

tion) have attempted to generalize their techniques to produce structure-sequence motifs. 

This involves an analysis of the sequences within a discovered structure class. Unger et 

al. (1989) tabulate statistics on the frequency of  each amino acid types at every position 
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in a structure motif, producing a consensus sequence motif. Preliminary results indicate 

that the local 3D structure of a fragment can sometimes be predicted by assignment of 

the fragment to a motif based on these frequency tables. Zhang et al. (1993) also tabu- 

late the relative frequency of each of the amino acids for the central residue in their six 

discovered structure motifs. Finally, Rooman et al. (1990b) obtain a property sequence 

motif for discovered heptamer structures. These sequences, however, are only weakly 

specific and are not likely to be predictive of the associated structure. 

Each of these three simple extensions to structure motif discovery are restrictive in 

that a single property or conserved sequence must be associated with a structure; it is 

not possible to represent a structure which is associated with a disjunction of sequences. 

This is a problem because the consensus sequence of a discovered structure motif will 

tend towards the fiat distribution. The discovery method presented in Section 3 of this 

paper removes this restriction. Also, most structure-sequence work reflects a pragmatic 

bias to the prediction of structure from known sequence. As we have seen, an equally 

useful task is the prediction of sequence from hypothetical or known structure. 

2.4. Discussion 

Table 2 classifies the protein motif discovery work discussed above according to three 

dimensions. Column 2 indicates the motif type. Columns 3 and 4 indicate the semantic 

theory which dictates the meaning of a motif, and hence the motif-fragment relationship. 

In a model-theoretic semantics, the extension of a motif is a set - -  the set of all fragments 

with the same properties and relationships as the motif. In a probabilistic framework, a 

motif also denotes a set, but here the elements of the set have a probability of occurrence. 

A similarity semantics can be given in two ways, one where the motif is assigned a 

distance threshold ~5 (as in the work of Rooman et al., 1990a), another where there is 

no bound and the motif denotes something similar to a "fuzzy" set. Researchers in 

protein motif discovery are often not clear about which semantics is intended. Table 3 

summarizes the three main semantic theories of protein motifs. For example (row 1), if 

a motif X has a similarity (/5) semantics, then a fragment Y must meet the condition 

d(X, Y) <_ ~5, where ~5 is a researcher-specified constant. 

Table 2 shows that, in the work surveyed, protein motifs have not been given a common 

semantics. Structure motifs have usually been represented using prototypes that have a 

similarity semantics, whereas sequence motifs have usually been represented by logical 

definitions with a model-theoretic semantics. Structure-sequence motifs often inherit a 

confused dual semantics. 

Most protein motif discovery work uses a restricted semantics for structure motifs, in 

that a motif can only subsume a fragment of the same length. This leaves little flexibility 

for reasoning about relative generality of motifs, an important capability (Rooman & 

Wodak, 1991). Unger et al. (1989) note that the ARMS (and DRMS) measures of 

structural similarity can give counterintuitive results, not necessarily reflecting topological 

or qualitative similarities. The following section proposes a representation that has a 

model-theoretic semantics for both structure and sequence motifs and addresses many of 

the issues raised in this survey. 
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Table 2. A comparison of different protein motif representations (--: not applicable to this type of motif). 

Paper Motif type Semantic Theory 
Sequence Structure 

Taylor, 1986 sequence model 
Smith & Smith, 1990 sequence similarity 
Rooman & Wodak, 1988 seq-struct model 
Rooman & Wodak, 1991 seq-struct model 
Rooman et al., 1990b seq-struct model 
Hunter & States, 1991 struct - -  
Rooman et al., 1990a struct - -  
Nussinov & Wolfson, 1991 struct - -  
Prestrelski et al., 1992 struct - -  
Onizuka et al., 1993 struct - -  
Matsuo & Kanehisa, 1993 struct - -  
Unger et al., 1989 struct-seq probability 
Blundell et al., 1987 struct-seq model 
Salf& Blundell, 1990 struct-seq similarity 
Zhang et al., 1993 struct-seq probability 
Conklin et al., 1993 struct-seq model 

m 

n 

m 

m 

probability 
similarity 
similarity 
similarity 
similarity 
similarity 
similarity 
similarity 
similarity 
similarity 
model 

Table 3. The relationship between a motif X and a fragment Y in various semantic theories. 

Semantic theory X # values for truth notation 

similarity (6) prototype 2 d(X, Y) < 6 
similarity prototype - -  d( X, Y) 
probabilistic probability distribution many p(YIX) 
model logical sentence 2 ~ Y :=> X 

3. Discovery in a Spatial Description Logic 

The first part of  this paper presented the important  applicat ion of protein mot i f  discovery, 

and surveyed a number  of exist ing approaches. Many  issues were raised and discussed, 

inc luding the semantics given to motifs, the mot i f  evaluat ion mechan i sm employed,  

and the pragmatics of  discovered motifs. This  part of  the paper will present  a new 

approach to protein mot i f  representat ion and discovery which is based on knowledge  

representat ion ideas from description logics and machine  learning principles of structured 

concept  formation. 

Concept  formation systems construct  a hierarchical organization of intensional  concept  

definit ions (Gennari  et al., 1989), and should therefore be based on a theory of concept  

generali ty and subsumption.  Descript ion logics (Nebel, 1990) are a restricted first-order 

formal ism with specialized inference rules for detect ing extensional  subsumption.  De- 

scription logics provide an elegant  under ly ing  formal ism for concept formation work, 

useful for both background knowledge  and discovered concepts.  Section 3.1 briefly 

reviews general description logics, and presents S79£, a spatial description logic specif- 

ically tailored to reasoning about  structured concepts. 
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A structured object is composed of parts along with defined relations among these 

parts. A structured object may be composite, recursively comprising other structured 

objects as parts, or atomic, a The level of a structured object is defined inductively as 

follows. The level of an atom is 0. The level of a composite object is one greater than the 

maximum of each part level. Although $ D £  is capable of describing multilevel objects, 

only level-0 and level-1 objects will be encountered in this paper. Supervised concept 

learning with structured objects falls into the general area of relational learning, which is 

being explored currently by inductive logic programming researchers (Muggleton, 1992). 

The incremental conceptual clustering of structured objects is addressed by the field of 

structured concept f o r m a t i o n -  see Thompson and Langley (1991) and Conklin (1995) 

for reviews of the field. 

Section 3.2 presents a structured concept formation system which discovers 8 D £  con- 

cepts. The structural similarity of two fragments is measured according to the number 

of parts participating in a relation-preserving correspondence between them. A match 

between two compellingly similar fragments is used to build a generalized motif, which 

is then classified into an evolving concept taxonomy. The structured concept formation 

procedure was applied to a large database of fragments drawn from different structural 

classes of proteins. Section 4 presents these results. 

Concept discovery is a highly underconstrained task, and it is essential that some form 

of selective acquisition and retention (Markovitch & Scott, 1993) of discovered concepts 

be performed. The concept formation system described in Section 3.2 strives to create 

a taxonomy which is a fast information retrieval system for fragments. In Section 4, 

structure-sequence motifs are evaluated according to their predictive power, that is, the 

ability of the sequence of a motif to predict its associated structure. Examples of high- 

quality, predictive discovered motifs are presented in Section 4. 

3.1. A Spatial Description Logic 

Description logics are a flame-based representation scheme which make a clear division 

between concepts (called the terminology) and instances of those concepts (described 

using assertions). A terminology is created using the d e f c o n c e p t  and d e f p r i m c o n -  

cepe  statements which associate concept names with concept terms. The concept term 

any is predefined. Concept names may not be defined more than once in a terminology. 

Concept terms are constructed from other concept terms using concept constructors such 

as conjunction, negation and disjunction. 

The central reasoning method in description logics is reasoning about subsumption of 

concepts. In any consistent model of a terminology, each concept defines an extension: 

the set of objects in a domain of interpretation that are instances of the concept. One 

concept C extensionally subsumes another concept D in a terminology T,  denoted 7- 

G' ~- D or more simply C >-7" D, if its extension is a superset of the other's in all 

possible models of 7-. Two concepts C and D are extensionally equivalent, denoted 

C -=7" D, if they co-subsume each other. The subsumption relation induces a concept 

taxonomy. This is a lattice denoting the partial order of subsumption between concept 

names. For example, the relation amino-acid >---T Glycine is depicted by the concept 
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any 

amino-acid 

motif2 polar hydrophobic small aliphatic 

mot i f i Glyc ine Val ine 

Figure 3. A concept taxonomy depicting a portion of Taylor's (1986) domain theory. 

taxonomy Figure 3. This small taxonomy illustrates a portion of Taylor's (1986) domain 

theory of amino acids; Taylor's complete classification can be represented in description 

logic terms. The concept G lyc ine ,  for example, is defined by the statement 

defprimconcept Glycine (small and hydrophobic) ; 

which states that all glycines are necessarily small and hydrophobic. The taxonomy of 

Figure 3 also displays a subsumption relationship between two protein motifs m o t i f 2  

and m o t i f  l, as discussed later in this section. 

All description logics possess inference rules for detecting subsumption between two 

concept terms; these procedures compute the validity of the sequent T ~- C h D (read 

"from background knowledge T,  it can be inferred that C subsumes D"). One of the 

main facilities of a description logic is a classifier, which places a new concept in its 

"correct" location in the taxonomy, just below all most specific subsumers (MSS), and just 

above all most general subsumees (MGS) (Woods, 1991). As a new concept progresses 

down the taxonomy during the classification process, concepts which are increasingly 

specific and similar to the new concept are encountered. 

Description logics have a method for expressing relationships between objects; these 

so-called roles are restricted to binary relations. In order to facilitate reasoning about 

structured objects, a spatial description logic called $ 7 ) £  has been crafted. The main 

addition made by S.D£ to standard description logic principles is the image term. Image 

terms are used to represent structured concepts, and are formed by associating a symbolic 

image with a set of relation identifiers. 

A symbolic image is described by a spatial data structure comprising a set of concept 
terms with their coordinates in multidimensional space. Informally, a symbolic image is 
a set of components, or term/coordinate pairs. Formally, the abstract data type I m a g e  is 

given by the following signature: 

Component = ConceptTerm × Coordinate 

empty : 0 --+ Image 

put : Image × Component --+ Image 

de le te  : Image × Component --+ Image 
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Many other operations on images can be defined using these constructors: for example, 

a r e p l a c e  operation which changes a component, a move operation which transfers a 

single part to a new location, an o v e r l a y  operation which "merges" two images, or a 

e x t r a c t  operation which retains only those components of an image lying in a given 

region of space. The canonical form of a symbolic image is given by a sequence of p u t  

operations. This canonical form will be abbreviated below simply as a set of components. 

An image term is formed by associating a symbolic image with a set of relation iden- 

tifiers that are preserved by the image. These relations are analogous to description 

logic roles, except that they are computed by functions which directly manipulate the 

symbolic image data structure. Functions that operate on symbolic images, computing 

n-ary relations, take n-tuples of components as arguments. The S79£ representation 

language provides a diagrammatic rather than a sentential representation (Larkin & Si- 

mon, 1987) of structured concepts. Diagrammatic representations have a number of nice 

properties for structured concept representation, including simple and elegant rules for 

structural subsumption and generalization (Table 4), compactness of description, and an 

exact structural and geometrical correspondence with objects from the domain. The latter 

property will be important in Section 4 where one of the motif evaluation criteria is the 

average "visual" similarity of instances. 

The semantics of SD£ is straightforward, deriving from standard description logic se- 

mantics, except that image terms have a unique interpretation. The extension of an image 

term is the set of all things with the mentioned parts in the mentioned relationships (an 

illustration of image term semantics will be given below). The induced extensional def- 

inition of image term subsumption has a structural counterpart. One image term [I, R] 

structurally subsumes another [J, R] if and only if there exists a relational monomor- 

phism (Haralick & Shapiro, 1993) between their canonical forms that also preserves 

subsumption. Thus [I, R] h T  [J, R] if and only if there exists an injective function f 

from the components of I to the components of J such that first(a) ~_7- f irst(f  (a)) for 

all components a of I,  and for all tuples of components related (not related) in I, f 

maps them to components in J which are also related (not related). Table 4 lists four 

additional structural subsumption rules for SD£. 

3.1.1. Protein motif representation in $D£ 

The $79/2 representation language has been used successfully in other domains of chem- 

istry, for example, to represent hexopyranose sugar configurations (Conklin et al., 1992). 

An earlier paper (Conklin et al., 1993) showed how SD£ could be used to represent all 

four protein motif types. The discussion here will be mainly concerned with structure- 

sequence motifs. 

Sequence motifs can easily be represented in $79£ using a 1D coordinate space4: 

type coordinate = (w : integer); 

Various semantics have been assigned to sequence motifs, particularly in cases where 

insertion and deletion of residues are allowed. For now we ignore these cases and 
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Table 4. Four structural subsumption rules for $79£. "T is a terminology, C and D are concept terms, A is a 
symbolic image, P is an image component, c is a coordinate, and R, R' are relation identifier sets. 

1. 

2. 

3. 

4. 

I- C >- (C a n d  D) 

[de le t e (A ,  P), R] ~ [A, R] 

R' C_R 

[A, R'] >'- [A, R] 

The first deduction rule states that any component of a 
conjunction subsumes that conjunction. The next three 
rules apply solely to image terms, and follow directly 
from the definition of image term subsumption given 
in Section 3.1. The second rule states that deleting 
one or more components from an image produces a 
more general image term. The third rule states that a 
more general image term can be produced by removing 
relation identifiers from a relation set. Rule 4 states 
that replacing a part of a component by a subsuming 
concept term produces a more general image term. 

T~-C>-D 

T 5 [ rep lace(A,  (D c), (C c)), R] >- [A, R] 

assume that sequence moti fs  preserve  the topological  or g raph- theore t ic  distance be tween  

residues: 

distance(p,q) = p.w - q.w; 

The express ion p . w  refers to the solitary w d imens ion  o f  the componen t  p. Sequence  

motifs  are constructed by associat ing this d i s t a n c e  relat ion with a sequence.  

To represent  protein structure mot i fs  it is necessary to use relations that are invariant  

under Eucl idean transformations.  Examples  include hydrogen  bonding,  distance ranges,  

angle ranges,  and ternary spatial relat ionships.  To represent  structure and s t ruc ture-  

sequence moti fs  we s imply place  the parts in a 4D  space, using the w d imens ion  to 

represent  topological  order, and the x, y and z d imens ions  to represent  the Cartesian 

coordinates:  

type coordinate = (w :integer, x : real, y : real, z : real); 

As an example  of  a relat ion defined over  this space, cons ider  the 4 - a ry  A ( d e l t a )  

relation, which is defined in terms of  the V B D A  ( v b d a )  be tween  a chain of  cont iguous 

( c o n t i g )  residues (for brevity, cont igui ty condit ions are omit ted  for the L, Z, and J 

relations): 

contig(p,q) = true if distance(p,q) == i; 

delta(p,q,r,s) = U if 

contig(p,q) and contig(q,r) and contig(r,s) and 

-75 <= vbda(p,q,r,s) <= 15; 

delta(p,q,r,s) = L if 

15 <= vbda(p,q,r,s) <= 105; 

delta(p,q,r,s) = Z if 

105 <= vbda(p,q,r,s) <= 195; 

delta(p,q,r,s) = J if 

195 <= vbda(p,q,r,s) <= 285; 
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This qualitative relation takes on four discrete values - -  U, L, Z, J - -  and tracks how 

a fragment winds through 3D space. It is called A because it looks at the change in 

direction of a fourth part relative to three other parts. The idea of partitioning the space 

of VBDAs to create structure descriptors was proposed independently by Conklin et al. 

(1993) and Ring et al. (1992). The particular partitioning above is due to Ring et al., and 

is based on a statistical analysis of a large number of protein tetramers. It is attractive 

for protein motifs since repetitions (called structural sequences) of L and J identifiers 

correspond closely to the standard c~ and/3 secondary structures, respectively (Levitt & 

Greer, 1977). 

To define a structure-sequence motif, we first create a symbolic image for a fragment 

from the Protein Data Bank. For example: 

defimage 5ADH-heptamer-203 ( 

(Valine (i 11.6 14.8 28.1) 

(Glycine (2 13.9 14.2 30.9) 

(Leucine (3 16.4 16.7 29.5) 

(Serine (4 13.6 19.1 29.1) 

(Valine (5 12.8 19.0 32.8) 

(Isoleucine (6 16.4 19.8 33.7) 

(Methionine (7 16.0 23.0 31.7) ); 

The defined identifier 5ADH-heptamer-203 c a n  now be used in constructing a structure- 

sequence motif: 

defconcept motifl (image 5ADH-heptamer-203 (distance delta)); 

asserting that this symbolic image preserves the topological distance and A relations. 

The d e f c o n c e p t  construct introduces necessary and sufficient conditions for concept 

membership. Due to the clef image naming facility of S D £ ,  an individual database 

fragment need only be defined once, and motifs are constructed by associating relations 

and applying both primitive image operators and generalization operators to that fragment. 

Generalization is based on inverting the last three subsumption rules of Table 4. For 

example, a motif more general than m o t i f l  (defined above) can be constructed by a 

single application of the replacement rule: 

defconcept motif2 (image 

(replace 5ADH-heptamer-203 

(Giycine (2 13.9 14.2 30.9)) 

((small and hydrephobic) (2 13.9 

(distance delta)); 

14.2 30.9))) 

This motif is more general than m o t i f l ,  since constraints on one of its parts (the glycine) 

have been weakened (i.e., ( sma l l  and h y d r o p h o b i c )  >'-7- G1ycine).  The extension 

of m o t i f 2  includes not only instances with a glycine (appropriately related to other parts 

of the motif); any residue that is both small and hydrophobic (e.g., alanine, threonine) can 

be substituted. Thus m o t i f 2  >'-7- m o t i f l ,  and this is depicted by the concept taxonomy 

of Figure 3. 

The semantics of image terms is given by equivalence to first-order predicate calculus. 

Figure 4 illustrates this translation for the image term of mo t i  f 2. Images are decomposed 
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sh 

v~ 

x . 3 *  pl p2 p3 p4 p5 p6 p7 

part(x,pl) A . . .  A part(x,p7) A 

Valine(pl) A 

small(p2) A hydrophobic(p2) A 

Leucine(p3) A Serine(p4) A 

Valine(p5) A Isoleucine(p6) A 

Methionine(pT) A 

distance(pl,p2) = 1 A 

distanee(pl,p3) = 2 A... h 

delta(pl,p2,p3,p4) : L A 

delta(p2,p3,p4,pS) = L A 

delta(p3,p4,p5,p6) = L A 

delta(p4,pS,p6,p7) = L 

Figure 4. The logical equivalence semantics for the image term of motif2 (see text, Section 3.1.1) which 
preserves the distance and del ta  relations. Left: a depiction of the symbolic image. Amino acid abbrevi- 
ations are standard: amino acid property abbreviations are given in the Appendix. Right: the translation of 
the image term into a one-variable lambda predicate. For brevity, many of the topological d~stance terms are 
omitted from the translation. 

according to a fundamental relation (Thompson & Langley, 1991) called p a r t .  The 

structural sequence for this helical motif  is 5LLL. Note the use of  Haussler 's  (1989) 3" 

quantifier, which ensures that each quantified variable refers to a distinct object. The 

extension of  a one-variable lambda predicate, with respect to a domain of interpretation, 

is all objects in the domain for which the predicate is true. Under this semantics, it 

can be shown that the last three subsumption rules of Table 4 are sound: the proofs are 

straightforward and are omitted here. 

An ,97?£. concept taxonomy is a lattice structure with concept names as nodes. These 

concept names are defined using d e f c o n c e p t ,  and will usually refer to image terms. 

Very general motifs are placed at high levels of  the taxonomy. The actual database 

fragments will be at the leaves of  the taxonomy. The taxonomy structure is incrementally 

revised by a machine discovery procedure, which is the topic of the next section. 

3.2. Discovery in the Spatial Description Logic 

The IMEM (Image MEMory)  system (Conklin & Glasgow, 1992) is a s imilar i ty-based 

structured concept formation system which discovers, revises, maintains and organizes an 

,97?£. knowledge base of images. The original purpose of IMEM was as a generalization- 
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Table 5. The IMEM algorithm. Top-level call: incorporate(image). 

incorporate (image) 

let M be the most specific subsumers of image 

for each concept C in M do 

(a) place a subsumption link between C and image 

(b) merge(image, C) 

merge (image, C) 

for all immediate subsumees m of C such that S(image, D)>_ "7 de 

(a) form a new concept which is a common subsumer of image and D, and give 

it a unique name U 

(b) classify(U) 

classify(N) 

if N is equivalent to an existing concept, create a pointer from N to that 

concept 

else place N in the current concept taxonomy just below all most specific 

subsumers, and just above all most general subsumees 

based memory (Lebowitz, 1987) for efficient retrieval of images (structured objects) for 

analogical reasoning. Though IMEM can be seen as a conceptual clustering system - -  

grouping instances into classes of high similarity - -  it is perhaps better viewed as a system 

for learning by analogy (Winston, 1980). A high-level description of the algorithm is 

given in Table 5. The IMEM method differs from concept formation methods such as 

UNIMEM (Lebowitz, 1987) and COBWEB (Fisher, 1987) with respect to the structured 

hypothesis space used, the rigorous denotation of links in the concept hierarchy, and in 

the way similarity is measured. IMEM learns by recalling images similar to an input 

image, and by performing a generalization and a classification step. The concepts of 

image term subsumption and classification were outlined in the previous section: this 

section will focus on the similarity-matching and generalization steps. 

IMEM exploits a well-known principle of information retrieval: a hierarchy of clusters 

can balance both the precision and recall of retrieval and improve retrieval efficiency 

(Salton & Wong, 1978). As Levinson (1985) has noted, a concept taxonomy can be used 

for close-match retrieval simply by computing the most specific subsumers (MSS) of an 

input concept, followed by a close-match computation with each instance of each MSS. 

This close-match retrieval principle is also exploited in the merge step (see Table 5), 

with minor modifications for efficiency purposes; first, only the immedia te  subsumees 

of each MSS are scanned for similarity, and secondly, generalization only occurs with 

concepts more similar than a researcher-specified threshold ~-. 

There are many techniques for measuring the similarity between two structured ob- 

jects in machine learning (e.g., Falkenhainer et al., 1989; Bisson, 1992; Winston, 1980). 

Similarity theory is also an active research area in structural chemistry (Johnson & Mag- 

giora, 1990). The similarity of two images in IMEM is primarily s tructural .  IMEM was 

originally devised as a memory for analogical reasoning, and implements the s t ruc ture  
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mapping principle of analogy (Falkenhainer et al., 1989). The generalization operation 

in the merge step uses a computed structural mapping, which explicitly applies the part 

deletion subsumption rule (Table 4), and generalizes the matched components with the 

replacement rule. The use of the relation subset rule will be encountered in Section 4. 

3.3. Image similarity 

Two image terms C and D are structurally equivalent if they have the same relation sets, 

the same number of parts, and if these parts are identically related. More precisely, there 

must exist a relational isomorphism which maps the parts of one image to the parts of 

the other. The similarity of two images having the same relation sets can be measured in 

terms of the number of part deletions needed to bring them into structural equivalence, 

that is, according to the size of a partial relational isomorphism between them. Similarity 

also recursively takes into account the similarity of corresponding image parts. 

My Ph.D. dissertation presents an axiomatic theory of similarity for SD£.  A similar- 

ity coefficient ST must obey several properties, including symmetry and monotonicity. 

It can be shown that the Dice and Tanimoto similarity coefficients, popular in chemical 

information retrieval systems (Willett, 1990), have these properties. The following propo- 

sition, proved in my dissertation, establishes the close relationship between similarity and 

subsumption in SD£.  

PROPOSITION 1 (INDEXING) Let 27 be a terminology, C and D be any two image 

terms such that C h T  D. For any image term I, if D hT- I, then ST(D, I) > ST(C, I). 

Furthermore, the inequality is strict whenever the relation C hT  D is proper (i.e., 

C ~ T  D). 

The impact of the indexing proposition is that the concept taxonomy can be used to 

index images for close-match retrieval. The proposition guarantees that as a target image 

descends a concept taxonomy, fewer and more closely matching source images will be 

retrieved. Thus retrieval is directed, and need not involve enumeration of images. 

3.3.1. Least common subsumers 

The computation of a structural similarity valuation between two images C and D nec- 

essarily produces a set of partial relational monomorphisms between them. Each one 

of these functions induces a common subsumer L which, by definition, is structurally 

equivalent to a subimage of C and a subimage of D. The parts of L are produced by 

computing a common subsumer of corresponding parts in C and D. If the relational 

monomorphism is maximal (i.e., not a sub-function of any other) and a least common 

subsumer is computed for corresponding parts, the image term L will be a least common 

subsumer of C and D. 

To illustrate this, refer to Figure 5, which shows two images C and D (top left and right) 

and below them a least common subsumer. Although not apparent from the diagrams, the 

structural sequence of C is LLJU, and the structural sequence of D is LLJJ. A maximal 
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s la 

,/ B / 
c ~  j P  

Figure 5. A least common subsumer (middle) of two images (left, right). The two fragments are not structurally 
equivalent under the delta relation; one part must be dropped from each to make them so. See Section 3.3.1 
for further details. 

relational monomorphism between C' and D has six elements. Hence one part must be 

deleted from both C and D (the cysteine (c) and the threonine (T), respectively) to bring 

them into structural equivalence. The least common subsumer (bottom) therefore has 

six parts, each of which are least common subsumers of corresponding parts of C and 

D. The background knowledge T used during the least common subsumer computation 

contains Taylor's domain theory of amino acids. 

4. Experimental results 

4.1. Heptamer motifs 

To evaluate the performance of IMEM on structure-sequence motif discovery, a large 

database of protein fragments was constructed from 99 proteins. These proteins are 

a union of those used by Hunter and States (1991) and Rooman and Wodak (1991), 

and each has a resolution better than 2.5 A. They also span a variety of distinct protein 

structural families. A database of 17138 virtual backbone heptamer fragments was created 

by sliding a window of length 7 over each protein virtual backbone sequence. Taylor's 

(1986) domain theory of amino acid physicochemical properties was coded as background 

knowledge in SD£.  The additional amino acid classes of hydrogen-bond acceptor and 

donor (used by King and Sternberg, 1990) were coded. Fragments preserved the A and 

the topological distance relations (see Section 3.1.1). 

The IMEM method (Table 5) was applied to the fragment database (its order was 

randomized), with one small modification: when a new structure-sequence motif was 

created, a "pure" sequence motif (reversing the third subsumption rule of Table 4) and 

a "pure" structure motif were generated and classified. The generation of corresponding 

sequence and structure motifs for every structure-sequence motif produces an efficient 

indexing structure for fragment classification, and provides an elegant and efficient way to 

evaluate motif sequence-structure predictivity. For the heptamer experiments, fragments 

are used to create a motif only if they are structurally equivalent. 

The efficiency of classification in $7~/; degrades (at worst) linearly with the number 

of concepts in the taxonomy. Nevertheless, the fragment database is very large, and to 

reduce overall discovery time concept formation was disabled after 2000 fragments were 
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Table ~ A sequence-structurecontingency table used for the chi- 
square assessment of a discovered motif(motif 5314 of Table 7). 

S t r u c t u r e  

Sequence yes no TotNs 
yes ] 11 2 13 
no [ 62 17063 17125 

73 17065 17138 

Table 7. Examples of discovered predictive protein structure-sequence heptamer motifs. Id: a unique identifier 
for the motif. Amino acid property abbreviations are given in the Appendix. Structural identifiers are defined in 
Section 3.1.1. M+: the number of fragments subsumed by the motif; M_ : the number of fragments subsumed 
by the sequence, but not by the associated structure; DRMS: mean DRMS (Section 2.2); ~r: standard deviation; 
XZ: chi-square value computed from the sequence-structure contingency table for the motif. Table 6 displays 
the contingency table for motif 5314. 

Id Sequence Structure M+ M_ DRMS o- X 2 

5314 (s)(ayn)(adp)(s)(h)(P)(h) JZLZ 11 2 0.49 0 .43 2174.10 
4791 (adpt)(adp)(X)(ap)(G)(dp)(adpt) ZJLJ 5 1 0.82 0.68 681.02 
6085 (G)(1)(h)(S)(h)(G)(dp) zuzJ 9 0 0.48 0.41 2698.42 
3450 (V)(1)(adps)(A)(A)(H)(C) LJUZ 7 0 0.23 0.07 2136.12 
6012 (h)(1)(T)(A)(hs)(H)(C) LJUZ 9 0 0.22 0.07 2746.76 
3105 (X)(adpt)(Q)(bs)(s)(S)(hs) ZLLU 6 0 0.66 0.48 3019.41 
6479 (dp)(X)(h)(X)(dyp)(T)(L) LLLL 5 0 0.24 0.07 19.53 
6711 (t)(s)(h)(adp)(adyps)(A)(hs) LLLL 5 0 0.14 0.03 19.53 
5091 (h)(h)(ayp)(r)(l)(X)(N) LLLL 8 0 0.29 0.12 31.25 
5270 (h)(ap)(A)(l)(X)(c)(h) LLLL 12 1 0.34 0.23 41.46 
5382 (X)(A)(X)(1)(dhp)(s)(1) LT,L L 14 3 0.40 0.18 40.26 
3993 (s)(s)(H)(s)(A)(G)(hs) LLLL 5 0 0.38 0.14 19.53 

processed.  The  remain ing  f ragments  were  then classified: in this manner  accurate statis- 

tics on the previous ly  d iscovered  moti fs  are obtained.  Abou t  2500 sequence-s t ruc ture  

mot i fs  were  d iscovered  by I M E M .  Each represents  a recurrent  associat ion be tween  se- 

quence  and structure. This  exper iment  explored whether  some of  the mot i fs  had a 

sequence which  was predic t ive  o f  local  tertiary structure. To this end, those motifs  for 

which the sequence is probably not predic t ive  were  filtered out f rom the original  set. 

Each d iscovered  mot i f  was passed through three success ive  filters. First, the ratio 

M + / N  - -  where  N is the number  o f  f ragments  subsumed by the sequence port ion of  

the motif ,  and M +  is the number  o f  f ragments  subsumed by the s t ruc ture -sequence  mot i f  

- -  must  be greater  than 0.8. This  ensures that more  than 80% of  the instances of  the 

sequence  m o t i f  have the same structure, and therefore that the sequence  may  be predic t ive  

o f  the corresponding structure. Second,  the mean D R M S  of  all instances o f  the mo t i f  must  

be less than 0.95 ~5 .  This  is done  because  it does not  necessari ly fo l low that motifs,  

qual i ta t ively similar  according to the A relation, are also quant i ta t ively or "v i sua l ly"  

similar. This  filter ensures that the structure port ion o f  the mot i f  is a good bui lding 

block. Finally, the third filter applies a chi-square test o f  statistical independence  to the 

discovery.  This  is a standard technique  for evaluat ing  the significance of  a suspected 
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Table 8. Examples of variable-length discovered motifs. 

Id Sequence Structure M+ M_ 

7205 (C)(X)(G)(D)(S)(G)(G)(s)(h) LLZLZJ 9 1 
6791 (N)(S)(1)(s)(X)(X)(dp)(D)(I)(h)(L)(L)(K)(L)(ayp)(dhp) LLJZLZZZJJJJJ 3 0 
5289 (X)(dhp)(dp)(h)(N)(h)(aps)(r)(ayps) JzazJJ 4 0 
3816 (s)(dp)(V)(A)(X)(h)(h)(hs) LLLLL 7 0 
6664 (ap)(X)(h)(X)(dp)(L)(X)(dyp)(X)(G)(h)(X) LLLLLLLJZ 5 0 

association (Zembowicz & Zytkow, 1992). A 2 x 2 contingency table for the motif 

is constructed (see Table 6), and a Bonferroni-adjusted chi-square test at a significance 

level of 0.01 is applied 6. This test gives support to the conclusion that the sequence and 

structure of  the motif are significantly correlated and not merely random associations. 

If  a motif C passes through all three filters, then all motifs D such that C h T  D 

are not considered. In this manner, the most general motifs satisfying all three filters 

are retained. After application of  the filters to the 2500 discovered motifs, 144 motifs 

were retained. A few of these are presented in Table 7. The mean DRMS for many 

motifs (e.g., 6479, 6711) is very low. Some motifs (e.g., 3450, 3993) have several 

specific conserved residues indicated. Some motifs (e.g., 5382) are quite general: this 

indicates their wider applicability for tertiary-structure prediction. Many of the structural 

sequences are LLLL - -  referring to the common helical structure - -  but several Other 

structural sequences are also exhibited. 

4.2. Variable-length motifs 

Given the apparent success of  the heptamer analysis, it is reasonable to ask: do there 

exist longer predictive motifs, and can these be automatically discovered? To answer 

these questions, a training set was created by sliding a window of length 20 over all 

99 proteins, creating 15747 20-mers. In contrast to the heptamer analysis, here IMEM 

was permitted to delete parts from fragments when creating least common subsumers. 

Concept formation was disabled after 1000 fragments were processed. About 300 motifs 

were discovered, and about half of  these passed through the three filters, Several motifs 

were very long - -  nearing length 20 - -  and many shorter motifs were also discovered. 

Table 8 lists just a few of  the discovered variable length motifs. Motif 6791 has 16 

parts, with several specific residues indicated. Motif 7205 has a very specific sequence, 

yet covers nine fragments. It is also quite interesting in other respects. It represents an 

abstraction of residues 191 through 199 in the family of  serine protease proteins. This 

region represents the most highly conserved region in serine proteases, and contains the 

active-site serine residue 195 (Smith & Smith, 1990). 
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4.3. Discussion and future work 

These results address a key question posed by Unger et al. (1989), showing that it is 

possible to automatically discover protein structural building blocks that carry sequence 

specificity. These structural building blocks are encapsulated in structure-sequence motifs 

and expressed as SDE concepts. Filters were used to prune the set of discovered motifs. 

Though the filters were tailored for sequence-structure predictivity, there is no reason why 

structure-sequence predictivity could not also be explored in this discovery framework. 

For such an experiment, it will probably be necessary to use long training fragments to 

allow for a wider distribution of structural sequences. 

Discovered motifs could be used for protein tertiary-structure prediction, and increasing 

the length of discovered motifs may allow us to consider tertiary interactions which are 

nonlocal in the protein sequence. Interactions between distant residues, and the failing 

of structure prediction methods to take them into account, is one of the hypothesized 

reasons for the limited prediction success that has been achieved. In general, with longer 

motifs, more contiguous residues can be predicted, and less tertiary alignment of predicted 

portions needs to be performed. It is, however, too restrictive to discover motifs of only 

one size. An advantage of IMEM is that it can discover variable-length motifs. 

The efficiency of the IMEM discovery algorithm depends on its incrementality com- 

bined with the use of an evolving concept taxonomy for fast close-match retrieval of 

concepts. Due to incrementality, a different ordering of the training data may produce 

quite a different concept taxonomy. Once a motif is discovered and classified, it hides 

its instances from future fragments which it does not subsume (although note that other 

motifs may subsume some of the instances). For example, in the experiments aboVe, a 

sequence motif alone will hide some new fragments from subsumed structure-sequence 

motifs. Although not always desirable, the effect can be exploited by using sequence mo- 

tifs suspected to be predictive (Rooman et al., 1989) as background knowledge. Driven 

by empirical data, the discovery system will elaborate these sequence motifs, and also 

confirm whether they occur in similar structures. 

A visual inspection of several discovered motifs has revealed that pairs of motifs - -  

while not subsuming each other - -  are often quite similar in their sequences. While they 

both may be predictive, their least common subsumer may not be. This points to the 

idea of extending SD£ to deal with disjunction and negation to more concisely express 

the components of protein motifs. Indeed, parts of Taylor's original domain theory of 

amino acid types is expressed using disjunction and negation. Work on compiling a more 

extensive knowledge base of amino acids is in progress. 

On a related note, all previous structure-sequence discovery work has assumed that 

the components of motifs - -  amino acid identifiers - -  are devoid of manipulable 3D 

striacture. An extension of previous work is to base the discoveries of a system on 

the internal spatial structure of the amino acids. There are two approaches to such 

an extension. One is to code, as background knowledge, the definitions from manual 

amino acid rotamer classifications (Ponder & Richards, 1987). Another approach is to 

use IMEM to autonomously, discover its own rotamer classes. Both approaches require 

a knowledge representation, such as SD£, capable of describing multilevel structured 
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objects. Initial results on level-2 protein motif discovery with IMEM is reported by 

Conklin et al. (1994). Future work could also focus on using discovered heptamer 

motifs to parse or "tile" a protein. This may provide the basis for the discovery of 

recurrent level-3 (super-secondary) structural motifs. 

5. Conclusions 

The field of molecular biology is rich in applications for machine learning. This paper 

has presented and surveyed the important application domain of protein motif discovery. 

A novel representation and discovery scheme was outlined, wherein all types of protein 

motifs have a model-theoretic semantics, and structured concept formation is used to 

discover recurrent motifs. The organization of a knowledge base by subsumption guides 

new training fragments to other similar fragments, which are generalized and classified 

into an evolving concept taxonomy. Some promising results on a large database of 

protein fragments were presented. 

The main emphasis of this paper was on structure-sequence motifs - -  patterns of 

3D structure with attached sequence information. Until now, approaches to structure- 

sequence motif discovery were limited to the a posteriori  construction of a conserved or 

property sequence motif for instances of a discovered structure motif. These approaches 

do not represent structure motifs associated with a disjunction of sequences, and will 

produce overly-general and weakly predictive structure prediction rules. The system 

presented in this paper is the first to fully integrate the representation and discovery 

of protein structure and sequence motifs. The discovery of protein motifs is part of a 

larger research program which is concerned with the automated discovery of associations 

between molecular topological structure and 3D conformation in large molecular struc- 

ture databases (Conklin, 1995). Description logics and the machine learning paradigms 

of structured concept formation and learning by analogy have been influential in this 

research. 
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Appendix 

Amino acid property abbreviations 

abbreviation description amino acids with property 

X any amino acid all 

t tiny ACS 

h hydrophobic AFGHIKLMTVWY 

y hydrophylic SNDEQR 

s small ACDGNPSTV 

c charged DEHKR 

v positive HKR 

n negative DE 

r aromatic FHWY 

1 aliphatic ILV 

d hydrogen-bond donor WYHTKCSNQR 

a hydrogen-bond acceptor YTCSDENQ 

p polar CDEHKNQRSTWY 

Z GLX QE 

B ASX DN 

Notes 

2. 

DRMS(X,  Y) = n ( n  - 1)/2 (llXi - 2 5  II - IIY~ - ~ II) 2 

i=1 j = i + l  

where X and Y are two protein fragments of the same length n, indexed by i and j ,  respectively, l]. 11 is 

the vector norm function, so that I la  - Oil is the Euclidean distance between points a and b. 

A R M S ( X , Y )  = 1 (llX~ - ~11) 2 
n 

i=l 

where X and Y have been aligned to minimize this expression. Sternberg and Islam (1987) relate DRMS 

and ARMS for protein fragments by the approximation 

DRMS(X,  Y) ,-~ 0.75 x ARMS(X,  Y) + 0.199 

3. In the context of description logic theory, Nebel (1990) uses the term atomic concept  instead of concept  

name.  In this paper the term atomic refers to objects that are not decomposable into substructures. The 

term primit ive - as in Lathrop et al. (1987) and Thompson and Langley (1991) - -  is not used as it has a 

specific denotation in description logic theory. 

4. An abstract notation is used for type declarations and relation definitions, however the syntax for concept 

declarations and image terms is similar to that used in the implementation of S'D£. 

5. Unger et al. (1989) consider two hexamer fragments X and Y to be compellingly similar if ARMS(X,  Y) < 

1.0. Substituting this value into the approximation given in footnote 2 yields 0.95. 
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6. In a first pass through the motifs, only those which refute the null hypothesis of statistical independence 

at the 0.01 level of significance (X z > 6.64) are retained. However, the null hypothesis will be falsely 

rejected - -  a Type I error - -  for 1 in 100 tests. To preserve experiment-wise significance levels, it is 

therefore necessary to modify the chi-square test with a Bonferroni adjustment (Harris, 1985). This divides 

the significance level by the number n of tests made, and produces a new critical value for X 2. If n motifs 

pass the three filters then these motifs are sent through the third filter again, using an adjusted significance 

level of 0.01/n.  
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