
 Open access Proceedings Article DOI:10.1145/2814864.2814873

Machine-interpretable dataset and service descriptions for heterogeneous data
access and retrieval — Source link

Anastasia Dimou, Ruben Verborgh, Miel Vander Sande, Erik Mannens ...+1 more authors

Institutions: Ghent University

Published on: 16 Sep 2015 - International Conference on Semantic Systems

Topics: Linked data, RDF Schema, RDF, Data mapping and Data access

Related papers:

 Towards a maturity model for corporate data quality management

 Receipt management- transaction history based trust establishment

 Executing SQL over encrypted data in the database-service-provider model

 Data organization and access for efficient data mining

 TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones

Share this paper:

View more about this paper here: https://typeset.io/papers/machine-interpretable-dataset-and-service-descriptions-for-
2ycwaoymkf

https://typeset.io/
https://www.doi.org/10.1145/2814864.2814873
https://typeset.io/papers/machine-interpretable-dataset-and-service-descriptions-for-2ycwaoymkf
https://typeset.io/authors/anastasia-dimou-1pk1vj3im6
https://typeset.io/authors/ruben-verborgh-vdnmcdtb3v
https://typeset.io/authors/miel-vander-sande-4elnb2zhv2
https://typeset.io/authors/erik-mannens-2cwflkaetj
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/international-conference-on-semantic-systems-3vg2hj31
https://typeset.io/topics/linked-data-f8hzgtd9
https://typeset.io/topics/rdf-schema-1ojenhkr
https://typeset.io/topics/rdf-39fy9mhe
https://typeset.io/topics/data-mapping-2fqhzamc
https://typeset.io/topics/data-access-3umivkog
https://typeset.io/papers/towards-a-maturity-model-for-corporate-data-quality-4y8gjcg792
https://typeset.io/papers/receipt-management-transaction-history-based-trust-3w9llanzt8
https://typeset.io/papers/executing-sql-over-encrypted-data-in-the-database-service-541p052hta
https://typeset.io/papers/data-organization-and-access-for-efficient-data-mining-4szs8q48wc
https://typeset.io/papers/taintdroid-an-information-flow-tracking-system-for-realtime-5d8smsr0iy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/machine-interpretable-dataset-and-service-descriptions-for-2ycwaoymkf
https://twitter.com/intent/tweet?text=Machine-interpretable%20dataset%20and%20service%20descriptions%20for%20heterogeneous%20data%20access%20and%20retrieval&url=https://typeset.io/papers/machine-interpretable-dataset-and-service-descriptions-for-2ycwaoymkf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/machine-interpretable-dataset-and-service-descriptions-for-2ycwaoymkf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/machine-interpretable-dataset-and-service-descriptions-for-2ycwaoymkf
https://typeset.io/papers/machine-interpretable-dataset-and-service-descriptions-for-2ycwaoymkf

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all

UGent research publications. Ghent University has implemented a mandate stipulating that all

academic publications of UGent researchers should be deposited and archived in this repository.

Except for items where current copyright restrictions apply, these papers are available in Open

Access.

This item is the archived peer-reviewed author-version of:

Machine-interpretable dataset and service descriptions for heterogeneous data access and retrieval

Anastasia Dimou, Ruben Verborgh, Miel Vander Sande, Erik Mannens, and Rik Van de Walle

In: Proceedings of the 11th International Conference on Semantic Systems, 9367, 145-152, 2015.

http://dl.acm.org/citation.cfm?id=2814873

To refer to or to cite this work, please use the citation to the published version:

Dimou, A., Verborgh, R., Vander Sande, M., Mannens, E., and Van de Walle, R. (2015). Machine-

interpretable dataset and service descriptions for heterogeneous data access and retrieval.

Proceedings of the 11th International Conference on Semantic Systems 9367 145-152.

10.1145/2814864.2814873

Machine-Processable Dataset and Service Descriptions
for Heterogeneous Data Access and Retrieval

Anastasia Dimou
anastasia.dimou@ugent.be

Ruben Verborgh
ruben.verborgh@ugent.be

Miel Vander Sande
miel.vandersande@ugent.be

Erik Mannens
erik.mannens@ugent.be

Rik Van de Walle
rik.vandewalle@ugent.be

Ghent University – iMinds – Multimedia Lab
Ghent, Belgium

ABSTRACT

The rdf data model allows the description of domain-level
knowledge that is understandable by both humans and ma-
chines. rdf data can be derived from different source for-
mats and diverse access points, ranging from databases or
files in csv format to data retrieved from Web apis in json,
Web Services in xml or any other speciality formats. To
this end, vocabularies such as rml were introduced to uni-
formly define how data in multiple heterogeneous sources is
mapped to the rdf data model, independently of their orig-
inal format. This approach results in mapping definitions
that are machine-processable and interoperable. However,
the way in which this data is accessed and retrieved still
remains hard-coded, as corresponding descriptions are of-
ten not available or not taken into account. In this paper,
we introduce an approach that takes advantage of widely-
accepted vocabularies, originally used to advertise services
or datasets, such as Hydra or dcat, to define how to access
Web-based or other data sources. Consequently, the gener-
ation of rdf representations is facilitated, as the description
of the interaction models with the original data remains in-
dependent, interoperable and granular.

Keywords

Linked Data Mapping, Data Access, Data Retrieval, rml

1. INTRODUCTION
Describing domain-level knowledge, understandable both

by humans and machines, can be achieved by representing
data using the rdf data model. Although, if the data is
originally in other formats, its representation in rdf syntax
should be obtained. Such data can originally (i) reside on
diverse, distributed locations, (ii) be approached using differ-
ent access interfaces and (iii) have heterogeneous structures
and formats. In more details:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Diverse, distributed locations
Data can reside locally, e.g., in files or in a database
at the local network, or can be published on the Web.

Different access interfaces
Data can be approached using diverse interfaces. For
instance, it can be as straightforward to access the data
as raw files for example. There might be metadata
that describe how to access the data, as in the case of
data catalogues. But it might also be required to have
a dedicated access interface to retrieve the data from
a repository. For instance database connectivity for
databases, or different interfaces from the Web, such
as Web apis.

Heterogeneous structures and formats
Data can be stored and/or retrieved in different struc-
tures and formats. For instance, data can originally
have a tabular structure, (e.g., databases or csv files),
be tree-structured (e.g., xml or json format), or be
semi-structured (e.g., in html).

Coping with the ever-increasing amount of data, in respect
to incorporating data from multiple sources of different data
formats into a common knowledge domain, is challenging
but still remains complicated, despite the significant number
of existing tools. To be more precise, most of the tools that
generate rdf representations of some data, deploy mappings
from a certain source format to rdf and from a given input.
Only few provide mappings from different source formats to
rdf, and even less provide independent, interoperable and
machine-processable mapping definitions.

Even though the barrier of uniformly defining how to
map heterogeneous data to the rdf data model has been
addressed [11], even more generic application still can not
be built because data access and retrieval remains hard-
coded. To be more specific, uniform, machine-processable
mapping definitions indicate how triples should be gener-
ated in a generic way for all possible different input sources.
Those mapping definitions contain references to an input
data source, which are case-specific and, thus, defined us-
ing formulations relevant to the corresponding data format,
e.g., xpath for data in xml format. However, as the data
retrieval remains out of the mapping definitions’ scope, it
ends up being hard-coded in the corresponding implementa-
tions. While this is not a major problem when local, custom,
or input-specific data is considered, the situation aggravates

Figure 1: Data retrieval and mapping to the RDF data model.
A triple consists of RDF Terms which are generated by Term Maps (4). Those Term Maps are defined
with a mapping definition vocabulary and are instantiated with data fractions referred to using a reference

formulation relevant to the corresponding data format. Those fractions are derived from data extracted at
a certain iteration (3) from a logical source (2). Such a logical source is formed by data retrieved from a
repository (1) which is accessed as defined using the corresponding dataset or service description vocabulary.

when data from multiple heterogeneous data sources, ac-
cessed via different interfaces, is required to be retrieved
and mapped to the rdf data model.

Vocabularies which are originally used to advertise datasets
or services (e.g., dcat1 or Hydra2) and to enable applica-
tions to easily consume the underlying data, exist. These
same vocabularies can be used to specify how to access and,
subsequently, retrieve data sources, available on the Web or
not and generate their rdf representation. This way, the
description that captures how to access the data becomes
machine-processable, as the mapping descriptions are, en-
abling even more generic implementations. However, access
descriptions with such vocabularies are not taken into ac-
count and are not aligned with the vocabularies used to de-
scribe the mapping definitions.

In this paper, we introduce an approach that exploits
wc-recommended or widely-accepted vocabularies originally
used to advertise datasets or services, e.g., dcat or sparql-
sd

3, to define how to access data sources, available on the
Web or not, and generate their rdf representation. Our
contribution is twofold: (i) on the one hand, we review dif-
ferent vocabularies of interfaces that describe how to access
data and we define how data sources can be instantiated us-
ing those descriptions; (ii) on the other hand, we define how
such access interface descriptions can be aligned with a map-
ping language and we extend the generic mapping language
rml

4, to properly handle such input sources.
The remainder of the paper is structured as follows: Sec-

tion 2 elucidates the retrieval steps required to obtain the
data whose semantic representation is desired. Section 3
reviews related works. Section 4 describes machine process-
able service and dataset descriptions for different cases and
Section 5 provides details regarding how rml was extended
to take them into consideration. Finally, Section 6 concludes
with the outcomes of this work.

2. ACCESS, RETRIEVE AND MAP DATA

TO THE RDF DATA MODEL
In order to describe domain-level knowledge, understand-

able both by humans and machines the rdf data model
can be considered. Although, if the data is originally in
other formats, their representation in rdf syntax should be

1
www.w3.org/TR/vocab-dcat/

2
http://www.w3.org/ns/hydra/spec/latest/core/

3
http://www.w3.org/TR/sparql11-service-description/

4
http://rml.io

obtained. In this section, we explain the retrieval and ex-
traction steps required to obtain the data whose semantic
representation is desired. Figure 1 illustrates how data is
accessed and retrieved from their original repositories and
how further data fractions are extracted to finally obtain
the desired rdf dataset.

Data is stored in different repositories residing sometimes
in different locations. Those repositories can be found e.g.,
locally, on a network, or on the Web. For instance, data can
be available as raw files, databases or Web resources, or files
listed in catalogues5. To retrieve data from a repository,
an access interface is required (Step 1) to handle the in-
teraction. Data can be approached using diverse interfaces.
For instance, database connectivity, such as Open DataBase
Connectivity (odbc) to access data residing in a database.
But data on the Web can also be retrieved using different
interfaces, such as Web apis6 or Web services.

Once the retrieved data is obtained (Step 2), from one or
more repositories, one or more Logical Sources are formed.
Such a Logical Source contains data in a certain structure
and format, e.g., csv, xml or json. This data source is what
mapping languages, such as rml, consider for the mapping
definitions. How this data source is retrieved is out of scope
for vocabularies focused on specifying the mapping defini-
tions. If the original repository is a raw file, the Logical
Source may coincide. Further data fragmentation and ex-
traction requires references relevant to the data format (i.e.,
its corresponding Reference Formulation).

As mapping definitions are meant to be applied recur-
sively to data fragments extracted from the Logical Source,
an iterator is required. The iteration pattern is also de-
fined in a formulation relevant to the Logical Source. The
iterator runs over the Logical Source, extracting data frag-
ments (Step 3). For instance, an iterator running over a csv

file extracts a row of the csv at each iteration. In case the
iteration pattern applies to the complete Logical Source, the
Iteration fragment coincides with the Logical Source.

For each Iteration further data fragmentation occurs (Step
4) to extract the exact Data fraction(s) used to instantiate
a Term Map which, in its turn, generates the corresponding
rdf term. For the aforementioned csv example, such a data
fraction is the value of a column from a given row extracted
at a certain Iteration. At the end, the corresponding rdf

representation of the Logical Source is obtained (Step 5).

5
e.g.,http://open-data.europa.eu/en/data/dataset/

cordisfp7projects
6
e.g.,https://biblio.ugent.be/publication/{id}?format={format}

www.w3.org/TR/vocab-dcat/
http://www.w3.org/ns/hydra/spec/latest/core/
http://www.w3.org/TR/sparql11-service-description/
http://rml.io
e.g., http://open-data.europa.eu/en/data/dataset/cordisfp7projects
e.g., http://open-data.europa.eu/en/data/dataset/cordisfp7projects
e.g., https://biblio.ugent.be/publication/{id}?format={format}

3. RELATED WORK
To the best of our knowledge, there is no mapping solution

that takes into consideration diverse dataset and services
descriptions to access the data described. Most existing so-
lutions consider data derived from a certain source format
and from a given input, which, in most cases, is a local file.

3.1 Mapping Languages
For relational databases, different mapping languages are

defined [13]. Indicatively mentioned, the Triplify [2] which is
based on mapping http-uri requests onto relational database
queries, and the Sparqlification Mapping Language (sml) [24]
which declaratively defines mappings based on sql views
and sparql construct queries, do not specify how the in-
put data source is retrieved from the corresponding database
within the mapping definitions. Among those language, only
drq [7], which is described in more details in Section 4.4,
defines how the database connectivity should be specified.
To the contrary, the wc recommended rrml [8], does not
provide any database connectivity descriptions, as it consid-
ers such description out of the vocabulary scope.

Mapping languages were also defined to support conver-
sion from data in csv and spreadsheets to the rdf data
model. XLWrap’s mapping language [17] converts data in
various spreadsheets to rdf. XLWrap’s mapping language
does not describe alternative access descriptions, as a file is
always the expected data source. However, which file exactly
is expected, is specified within the mapping definition as
follows [] xl:fileName ‘‘files/example.xls’’. Similarly, tarql
that follows a query-based approach, considers csv files as
input. Such a file is also defined within the query that acts
as mapping definition. In tarql language [6], the mapping
definitions have sparql syntax, thus the input csv file is de-
fined as follows SELECT ... FROM <file:example.csv>. Last, the
declarative owl-centric mapping language Mapping Mas-
ter’s M2 [23] which converts data from spreadsheets into
owl, does not specify at all within the mapping definitions
the input source.

A larger variety of solutions exist to map data in xml

format to rdf, but tools mostly rely on existing xml solu-
tions, such as xslt (e.g., Krextor7 and AstroGrid-D8), xpath
(e.g., Tripliser9), and xquery (e.g., xsparql

10). None of
them though defines neither how the input source should be
specified, nor has rdf syntax which would allow them to be
combined with dataset and service access descriptions.

Last, among the tools that provide mappings from differ-
ent source formats to the rdf data model, e.g., Datalift11,
OpenRefine12, RDFizers13 or Virtuoso Sponger14, none re-
lies on independent generic mapping definitions. Instead
those tools employ separate source-centric approaches for
each of the formats they support which are hard-coded in
the corresponding implementation. The only generic lan-
guage that exists and allows any type of input source is
rml [11], which is described in more details in Section 5.1.

7
https://trac.kwarc.info/krextor/

8
http://www.gac-grid.de/project-products/Software/XML2RDF.html

9
http://daverog.github.io/tripliser/

10
http://www.w3.org/Submission/xsparql-language-specification/

11
http://datalift.org/

12
http://openrefine.org/

13
http://simile.mit.edu/wiki/RDFizers

14
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtSponger

3.2 Dataset and Service Descriptions
Different dataset and service descriptions exist, which de-

scribe how to access data. Rather than reinventing such
descriptions for the purpose of data access, we aim to reuse
existing work, which we summarize and discuss in the fol-
lowing paragraphs. Dataset descriptions could refer to data
catalogues to Lined Data sets, or to specific type of data,
e.g., tabular data. In the former case, thewc recommended
vocabulary, dcat [20], is defined which is more thoroughly
described in Section 4.1. In the later case, the void vocabu-
lary [1] is considered which defines how to describe metadata
for rdf datasets to improve their discoverability. Among the
metadata which can be specified with the void vocabulary,
it is also access metadata. The void vocabulary allows to
specify as access interface (i) sparql endpoints, (ii) rdf

data dumps, (ii) root resources, (iv) uri lookup endpoints
and (v) OpenSearch description documents. In the same
context, the csv on the Web Working Group15 aims to de-
fine a case-specific metadata vocabulary for Tabular data
on the Web [25] which, at its current state, only allows data
dumps as access interface.

As far as service descriptions is concerned, and in respect
to accessing data in rdf syntax, besides the void vocabu-
lary, there is the wc recommended sparql-sd [26], which is
described in more details in Section 4.3. Regarding database
connectivity, there are no dedicated vocabularies. Descrip-
tions in the frame of mapping languages, e.g., drq, which
is also described in more details in Section 4.4, prevail. How-
ever, regarding Web apis and Services, different vocabularies
were defined, thus we review below the state of the art.

The Web Service Description Language (wsdl) [5] de-
scribes the possible interactions, messages and the abstract
functionality provided by Web services. [14] describes its
representation in rdf and in owl, as well as a mapping
procedure for transforming wsdl descriptions into rdf. Se-
mantic Annotations for wsdl (sawsdl) [16] is one of the
first attempts to offer semantic annotations for Web ser-
vices. Later on, an adaptation for generic http interfaces
was proposed [21].

The owl for Services (owl-s) [22], the Web Service Mod-
eling Ontology (wsmo) [9] and the wsmo-lite [27] are alter-
native ontologies, defined for modelling Web services. The
owl-s ontology also focuses on input and output parame-
ters, as sawsdl. The wsmo ontology is an alternative to
owl-s, although there are substantial differences between
the two approaches [19]. The wsmo ontology employs a sin-
gle family of layered logic languages [10]. However, when
expressed in rdf syntax, wsmo expressions become simi-
larly unintegrated and hence not self-descriptive as owl-s

expressions. The wsmo-lite ontology extends sawsdl with
conditions and effects. hrests [15] uses microformats to add
machine-processable information to human-readable docu-
mentation, while its ontology16 extends the wsmo-lite on-
tology17. Last, Microwsmo extends hrests and adopts the
wsmo-lite service ontology for expressing concrete seman-
tics. For our purposes, we mostly need the interface descrip-
tion part of the above possibilities, since our goal is access
to the services rather than, for instance, composition.

15
http://www.w3.org/2013/csvw/wiki/Main_Page

16
http://www.wsmo.org/ns/hrests/

17
http://www.wsmo.org/ns/wsmo-lite/

https://trac.kwarc.info/krextor/
http://www.gac-grid.de/project-products/Software/XML2RDF.html
http://daverog.github.io/tripliser/
http://www.w3.org/Submission/xsparql-language-specification/
http://datalift.org/
http://openrefine.org/
http://simile.mit.edu/wiki/RDFizers
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
http://www.w3.org/2013/csvw/wiki/Main_Page
http://www.wsmo.org/ns/hrests/
http://www.wsmo.org/ns/wsmo-lite/

4. DESCRIBING INTERFACES TO ACCESS

HETEROGENEOUS DATA SOURCES
Even though the barrier of uniformly mapping heteroge-

neous data to the rdf data model has been overcome, with
uniform, machine-processable mapping definitions and case
specific references to the input data source, depending on
its format, data access and retrieval remains hard-coded
in the implementation. Data can reside locally or on the
Web. Accessing the data might be straightforward, as in
the case of files locally stored. However, in most cases,
dedicated interfaces are required. Such dataset and ser-
vice descriptions can be: (i) dataset’s metadata descrip-
tions, (ii) Hypermedia-driven Web apis or Web services,
(iii) sparql services, (iv) database connectivity.

In the previous section (Section 3), we review vocabularies
describing interfaces for accessing datasets and services that
enable agents to retrieve the underlying data. For each type
of interface, a corresponding wc recommended is described
in more details below. In case there is no such vocabulary, a
widely-used one is mentioned. The list is not exhaustive, it
rather has an indicative exemplary purpose, aiming to cap-
ture the most common cases. Any of the dataset or service
descriptions could be replaced by other corresponding ones
and new can be brought into consideration.

4.1 Metadata describing the access interface
Data can be published either independently, as data dumps,

or in the frame of a data catalogue. dcat [20] is the wc

recommended vocabulary used to describe datasets in data
catalogs. The dcat vocabulary provides machine-readable
metadata that enables applications to easily consume them.
The dcat vocabulary does not make any assumptions about
the format of the datasets described in a catalog; format-
specific information is out of scope. The dcat namespace is
http://www.w3.org/ns/dcat# and the preferred prefix is dcat.

The dcat vocabulary defines dcat:Catalog that represents
a dataset catalog, dcat:Dataset that represents a dataset in
the catalog, while dcat:Distribution represents an accessible
form of a dataset, e.g., a downloadable file, an rss feed or
a Web service that provides the data. dcat considers as a
dataset a collection of data, published or curated by a single
agent, and available for access or download in one or more
formats. Thus, a certain distribution is the minimum that
a mapping processor requires. Directly downloadable distri-
butions contain a dcat:downloadURL reference, for instance:

1 @prefix dcat: <http://www.w3.org/ns/dcat#> .
2

3 <#DCAT_source>
4 a dcat:Dataset ;
5 dcat:distribution [
6 a dcat:Distribution;
7 dcat:downloadURL <http://example.org/file.xml>].

Listing 1: DCAT access metadata description

A dcat:Distribution might not be directly downloadable
though. For instance, a dataset might be available via an
api and the api, in its turn, can be defined as an instance
of a dcat:Distribution. In this case, it is recommended to
use dcat:accessURL instead of dcat:downloadURL. However,
access-specific properties, e.g., for api descriptions, is not
defined by dcat itself. Thus a client does not know how to
interact with the mentioned interface, the api in this case.
Due to dcat shortcoming to entirely describe indirectly ac-

cessed Web sources, other vocabularies focused on describing
specific interfaces could be considered instead.

4.2 Hypermedia-Driven Web APIs
For the description of hypermedia-driven Web apis, the

Hydra Core Vocabulary [18], a lightweight vocabulary used
to specify concepts commonly used in Web apis, is pub-
lished by the Hydra wc Community Group18. The Hy-
dra vocabulary provides machine-processable descriptions
which enable a server to advertise valid state transitions
to a client. Thus, the server is decoupled from the client
which can use this information to construct valid http re-
quests to retrieve the data. The Hydra namespace is http:

//www.w3.org/ns/hydra/core# and the preferred prefix hydra.
An instance of the hydra:ApiDocumentation class describes

a Web api, by providing its title, short description, main en-
try point and additional information about status codes that
might be returned. The Hydra vocabulary enables the api’s
main entry point to be discovered automatically, when it is
not known or specified, if the api publisher marks his re-
sponses with a special http link header. A client looks for
a link header with a relation type hydra:apiDocumentation
and, this way, obtains a hydra:ApiDocumentation defining
the api’s main entry point.

The dcat:accessUrl of a dcat:Distribution instance can point
to a resource described with the Hydra vocabulary, inform-
ing potential agents how valid http requests should be per-
formed. The Hydra vocabulary can be used both to de-
scribe (i) static iris, and (ii) dynamically generated iris,
e.g., Listing 2. A template valued iri containing variables,
is described as a hydra:IriTemplateMapping instance whose
values depend on information only known by the client.

1 @prefix hydra : <http://www.w3.org/ns/hydra/core#> .
2

3 <#API_source>
4 a hydra:IriTemplate
5 hydra:template
6 "https://api.twitter.com/1.1/followers/ids.json?

screen_name={name}";
7 hydra:mapping [
8 a hydra:TemplateMapping ;
9 hydra:variable "name";

10 hydra:required true] .

Listing 2: Template-valued Web API description

Web apis often split a collection of data into multiple
pages. In Hydra, this is described with an instance of the hy-
dra:PagedCollection that contains information regarding the
total number of items, the number of items per page and the
first, the next and the last page. Such a hydra:PagedCollection
instance follows:

1 @prefix hydra : <http://www.w3.org/ns/hydra/core#> .
2

3 <#API_source>
4 a hydra:PagedCollection ;
5 hydra:apiDocumentation <#HydraDocumentation> ;
6 hydra:itemsPerPage "100" ;
7 hydra:firstPage "/comments?page=1";
8 hydra:lastPage "/comments?page=10" .

Listing 3: Hydra Paged Collection description

18
http://www.w3.org/community/hydra/

http://www.w3.org/ns/dcat#
http://www.w3.org/ns/hydra/core#
http://www.w3.org/ns/hydra/core#
http://www.w3.org/community/hydra/

Web Services

Web services played an important part in the initial Seman-
tic Web vision [3]. However, Web Services were surpassed
in popularity by Web apis and at the moment, most of the
Web-based solutions prefer the later. Thus, a detailed exam-
ple for Web Service descriptions is not provide, even though
such a description could equally be considered.

4.3 SPARQL services
For the description of sparql endpoints, wc recommends

the sparql Service Description vocabulary (sparql-sd) [26].
sparql-sd provides a list of features of a sparql service and
their descriptions, made available via the sparql 1.1 Proto-
col for rdf. The sparql-sd namespace is http://www.w3.org/

ns/sparql-service-description# and the preferred prefix is sd.
An instance of sd:Service represents a sparql service made

available via the sparql protocol. A sd:Service refers to a
default dataset, described as an instance of the sd:Dataset
that represents an rdf dataset comprised of a default graph
(an instance of sd:Graph) and zero or more named graphs
(an instance of sd:NamedGraph). A collection of graphs is
described as instances of sd:GraphCollection. Last, sparql-
sd defines sd:Language whose instances represent one of the
sparql languages (e.g., sd:SPARQL11Query).

1 <#SPARQL_source>
2 a sd:Service ;
3 sd:endpoint <http://dbpedia.org/sparql/> ;
4 sd:supportedLanguage sd:SPARQL11Query ;
5 sd:resultFormat
6 <http://www.w3.org/ns/formats/SPARQL_Results_XML>.

Listing 4: SPARQL Service Description

Similarly to Hydra, a sd:Service instance could be used
to clarify dcat:accessUrl, allowing potential agents to know
how to perform the corresponding http requests.

4.4 Database Connectivity
For the description of database connectivity, correspond-

ing descriptions from the drq mapping language can be
considered [7]. drq is a declarative mapping language for
describing the relation between a relational database schema
and rdfs vocabularies or owl ontologies. The drq names-
pace is http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.

1# and the preferred prefix d2rq.
A d2rq:Database instance defines a jdbc connection to a

local or remote relational database. Instances of d2rq:Database,
annotated with its properties to specify the jdbc connection
properties, can be used to describe the access to a database.
An instance of such database description has as follows:

1 @PREFIX d2rq:
2 <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>
3

4 <#DB_source>
5 a d2rq:Database;
6 d2rq:jdbcDSN "jdbc:mysql://localhost/example";
7 d2rq:jdbcDriver "com.mysql.jdbc.Driver";
8 d2rq:username "user";
9 d2rq:password "password" .

Listing 5: D2RQ database connectivity description

The drq database connectivity description is focused on
relational databases and serves the needs of an exemplary
case of this work. Corresponding vocabularies for other type
of databases (e.g., NoSQL) can be taken into consideration.

5. ALIGNING DATA ACCESSING AND

MAPPING TO RDF DESCRIPTIONS
In this section, we define in details how heterogeneous

dataset and service descriptions can be taken into consid-
eration to access data and instantiate rml Logical Sources.
Those Logical Sources contain data whose representation
in rdf syntax is desired. For our use case, we align the
aforementioned descriptions with rml mapping language.
In Section 5.1, we introduce the language, and in Sec-
tion 5.2, we concretely define how rml Logical Sources are
obtained via such dataset and service descriptions in the
frame of rml. Finally, in Section 5.3 we introduce required
extension to the rml mapping language to entirely support
such logical sources. Detailed documentation regarding dif-
ferent access interfaces supported by rml is available at
http://rml.io/RML_Input.html

5.1 RML
rml [11] extends rrml [8], the wc-recommended map-

ping language for defining mappings of data in relational
databases to the rdf data model, by broadens its scope.
rml covers also mappings from data sources in different
(semi-)structured formats, such as csv, xml, and json.

1 <#Person> rml:logicalSource <#InputX> ;
2 rr:subjectMap [
3 rr:template "http://ex.com/{ID}";
4 rr:class foaf:Person];
5 rr:predicateObjectMap [
6 rr:predicate foaf:account;
7 rr:objectMap [rr:parentTriplesMap <#TwitterAcount>]] .
8

9 <#TwitterAcount> rml:logicalSource <#InputY> ;
10 rr:subjectMap [
11 rr:template "http://ex.com/{account_ID}";
12 rr:class foaf:OnlineAccount];
13 rr:predicateObjectMap [
14 [rr:predicate foaf:accountName;
15 rr:objectMap [rml:reference "name"]],
16 [rr:predicate foaf:accountServiceHomepage;
17 rr:objectMap [rml:reference "resource"]] .

Listing 6: RML mapping definitions

rml documents contain rules defining how the input data
is represented in rdf. An rml document (e.g., Listing 6)
contains one or more Triples Maps (line 1 and 9). A Triples Map

defines how triples of the form (subject, predicate, object)
are generated and consists of three main parts: the Logi-

cal Source, the Subject Map and zero or more Predicate-Object

Maps. The Subject Map (line 2, 10) defines how unique iden-
tifiers (uris) are generated for the resources and is used as
the subject of all rdf triples generated from this Triples Map.
A Predicate-Object Map (line 5 and 13) consists of Predicate

Maps, which define the rule that generates the triple’s pred-
icate (line 6, 14 and 16) and Object Maps (line 14 and 16) or
Referencing Object Maps (line 6), which define how the triple’s
object is generated.

1 <#InputX>
2 rml:source "/.../.../file.csv" ;
3 rml:referenceFormulation ql:CSV.

Listing 7: RML Logical Source definition - local file

A Logical Source (e.g., Listing 7) is used to determine the
input source (line 2) with the data to be mapped and how to
refer to them (line 3). rml deals with different data serialisa-
tions which use different ways to refer to their elements/ob-

http://www.w3.org/ns/sparql-service-description#
http://www.w3.org/ns/sparql-service-description#
http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#
http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#
http://rml.io/RML_Input.html

jects. rml considers that any reference to the Logical Source

should be defined in a form relevant to the input data, e.g.
XPath for xml files or jsonpath for json files. To this end,
the Reference Formulation (line 3) declaration is stated indi-
cating the formulation (for instance, a standard or a query
language) used to refer to its data. At the current version
of rml, the ql:CSV, ql:XPath, ql:JSONPath and ql:CSS3 Reference

Formulations are predefined, but not limited.

5.2 Dataset and service access descriptions
as RML Logical Sources

rml provides a generic way to define the mappings that
is easily transferable to cover references to other data struc-
tures. rml needs to deal with different data serialisations
which use different ways to refer to their data fragments.
Since rml aims is generic, there is no uniform way of re-
ferring to these data fragments. rml considers that any
reference to the source should be defined in a form rele-
vant to the input data, e.g. xpath for xml files or jsonpath
for json files. This is defined using the Reference Formu-
lation (rml:referenceFormulation) declaration that indicates
the formulation (for instance, a standard or a query lan-
guage) used to refer to source’s data fragments.

However, the rml specification is focused on the rules
defining how to generate the rdf data. rml considers a
given original data input but the way this input is retrieved
remains out of scope, in the same way as it remains out of
scope for rrml specification how the sql connection is es-
tablished. The input data is specified with the Logical Source,
as well as how to refer to this data, but not how to access
and retrieve this data. Namely, the Logical Source consists of
some data without further defining how to retrieve the data.

The access descriptions, that advertise services or datasets,
could be considered as the Triples Map’s Source (rml:source).
For instance, the Logical Source specified at Listing 6 for the
<#Person> Triples Map, instead of having been specified as a
local file (Listing 7), it could have been published on a data
catalogue and, thus, it is an instance of dcat:Distribution.
The corresponding description then would be as follows:

1 <#InputX>
2 rml:source [a dcat:Distribution ;
3 dcat:downloadURL "http://ex.com/file.csv"];
4 rml:referenceFormulation ql:CSV .

Listing 8: Data dump in catoague as Input Source

For the other Triples Map, <#TwitterAccount>, the data to
be mapped might be derived from a user’s twitter account,
and could have been stored locally in a file retrieved at
some point from the Twitter api, or the request could have
been hard-coded in the implementation. Nevertheless the
required request could have just been described using the
Hydra vocabulary or could have been provided using directly
the resource advertising the api. In the aforementioned ex-
ample of Listing 6, the Logical Source for the <#TwitterAccount>

Triples Map could have been described as follows:

1 <#InputY> a hydra:IriTemplate
2 hydra:template "https://api.twitter.com/1.1/followers/ids.

json?screen_name={name}";
3 hydra:mapping [
4 hydra:variable "name";
5 hydra:required true] .

Listing 9: Web API as Input Source

5.3 RML Referencing Object Map and
Heterogeneous Data Retrieval

The use of data derived from such a Logical Source, formed
by instantiating an access description, is straightforward in
most cases. Dataset and service descriptions either are de-
rived from data owners/publishers or explicitly defined by
data publishers/consumers. Mapping processors take them
into consideration to be informed regarding how to access
the data and instantiate the Logical Sources. The access
description might be static or dynamic. If dynamically cre-
ated, it is often required to instantiate a template, e.g., a
uri template or a sql/sparql query template. The values
to instantiate the template might be provided by the user
who executes the mapping or the variables might be replaced
with values derived from another input source, as it occurs
in the case of Referencing Object Maps.

Binding condition

A Referencing Object Map (line 3) allows using the subject of
another Triples Map(line 9) as the objects generated by a
Predicate Object Map. and the two Triples Maps may be based
on different Logical Sources.

A Referencing Object Map might have a template-valued in-
put source that requires one or more values to fill in the
template. In order to address this issue, we introduced the
Binding Condition. The Binding Condition specifies how the Log-

ical Source of the Referencing Object Map is instantiated either
with a value retrieved from the input source that is currently
mapped, or with a constant value. In the first case, a refer-
ence that exists in the Logical Source of the Triples Map that
contains the Referencing Object Map is provided. In the later
case, a constant value is provided. If the Referencing Object

Map’s Logical Source has more than one variables required,
equal number of Binding Conditions is expected.

1 <#Person>
2 rr:predicateObjectMap [rr:predicate foaf:account;
3 rr:objectMap [
4 rr:parentTriplesMap <#TwitterAcount> ;
5 crml:bindCondition [
6 rml:reference "id" ;
7 crml:condition "name"]]].
8

9 <#InputY> rml:source [
10 a hydra:IriTemplate
11 hydra:template "https://api.twitter.com/1.1/followers/ids.

json?screen_name={name}";
12 hydra:mapping [
13 hydra:variable "name";
14 hydra:required true]];
15 rml:referenceFormulation ql:JSONPath.

Listing 10: RML Binding Condition

Detailed documentation regarding the RML Bind Condi-
tion is available at http://rml.io/cRML_bindCondition.html.

5.4 Implementation
An rmlprocessor can be implemented using two alterna-

tive models: (i) mapping-driven, where the processing is
driven by the mapping module; or (ii) data-driven, where
the processing is driven by the extraction module [12]. When
the rml mappings are processed, the mapping module deals
with the mapping definitions execution, while the extraction
module deals with the target language expressions (expres-
sion using the corresponding Reference Formulation).
On the mapping-driven occasion, the mapping module re-

http://rml.io/cRML_bindCondition.html

quests an extract of data from the extraction module, con-
sidering the iteration pattern specified at the Logical Source.
On the extraction-driven occasion, an extract of data is
passed to the mapping module, which applies the applicable
mapping definitions for this particular extract.

A new additional independent retrieval module is intro-
duced which deals with the retrieval of data that form the
Logical Source. The retrieval module relies on the access de-
scription to retrieve the data. The access description can
be provided either by the data owner/publisher or by the
data consumer/publisher, but in both cases the descriptions
are equally treated. Moreover, if the access description is
dynamically generated either user input is taken into con-
sideration to bind the template variables with values, or
values derived from another Logical Source Overall, none
of the two aforementioned cases (mapping- or data-driven)
is affected by the way the data is retrieved. A separate
project, RMLDataRetrieval, is introduced as part of the
rmlprocessor19 that deals with data retrieval. The RML-
DataRetrieval project is included in the rmlprocessor and
currently supports most of the access interfaces described in
Section 4.

5.5 Discussion
Being able to consider diverse access interfaces facilitates

the description of the interaction models while the original
data remains independent, interoperable and granular. In
the same time, the alignment of dataset and service descrip-
tions with the mapping definitions as proposed in this work,
demands certain clarifications. Firstly, it is required to ad-
dress the cases where both the data publishers/consumer
provides access descriptions and the data publishers/owner.
Then, it is required to elucidate how the mapping defini-
tions should be defined depending on whether the database
connectivity description is specified or not. Last, the role
of rdf data, accessed e.g., via sparql-sd, as input source
should be clarified.

Published vs. Defined Data Access Description

If the service provides access metadata, the data publish-
ers/consumer can just point to the resource that describes
them. If not, the minimum required information for each
access interface should be defined. In case the data access
is described by the data publisher/consumer, its description
prevails over the one provided by the data publisher/owner.
For instance, in the case of a hydra:PagedCollection instance,
the data publisher/consumer might define at the data ac-
cess description that a hundred items per page should be
returned and five pages should be taken into consideration.
If the publishing service returns an answer that contains ten
pages of data, only the five of them should be mapped. If
the data publisher/consumer does not specify the pages, all
of them will be considered for mapping.

Database connectivity description
with RML Logical Source and R2RML Logical Table

A Logical Source (e.g., Listing 7) extends rrml’s Logical

Table and is used to determine the input source with the data
to be mapped and how to refer to them. The rrml Logical

Table definition determines a database’s table, using the Table

Name. Nevertheless, how the connection to the database is

19
https://github.com/mmlab/rmlprocessor

achieved is not specified at the rrml specification, since
it remains out of its scope. Moreover, rrml is specific for
sql databases, while a drq description may refer to other
databases too. In order to deal with database retrieval, we
rely on such descrptions as specified in another mapping
language, namely, drq.

Thus, in order to take advantage of database connectiv-
ity descriptions and, thus, deal with data retrieval from
databases, connectivity descriptions are considered. For in-
stance, in the case of an sql query against the table DEPT
of a database, the rrml Logical Table would have been
defined as follows:

1 [] rr:logicalTable [rr:sqlQuery """
2 SELECT DEPTNO, DNAME, LOC,
3 (SELECT COUNT(*) FROM EMP WHERE EMP.DEPTNO=DEPT.DEPTNO)
4 AS STAFF FROM DEPT; """].

Listing 11: R2RML Logical Table

However, if a database is specified, the Logical Table should
be expressed as an instance of its broader Logical Source and
the corresponding database connectivity description should
be provided, as follows (<#DB_source> was defined at Listing 5):

1 [] rr:logicalSource [
2 rml:query """
3 SELECT DEPTNO, DNAME, LOC,
4 (SELECT COUNT(*) FROM EMP WHERE EMP.DEPTNO=DEPT.DEPTNO)
5 AS STAFF FROM DEPT; """ ;
6 rml:source <#DB_source>].

Listing 12: RML Logical Source for Database Input

SPARQL service as Logical Source

Having a sparql-sd as Logical Source might seem contra-
dictory, as the data it contains are already semantically an-
notated and, thus, it is not required to be mapped to the
rdf data model. However, there are cases that a resource is
already defined and assigned a uri and no new uri is will-
ing to be generated, it is rather preferred to point to this
resource. For instance, there is a csv file containing some
data related to addresses, and among others, there is a col-
umn with country names and a certain cell might contain
e.g., Belgium. Instead of generating a new resource with
a new unique uri, a Referencing Object Map should be de-
fined instead, whose Logical Source is the result of executing
a query against, for instance, dbpedia endpoint, whose ac-
cess description is defined as a sd:Service, as follows:

1 <#Address> rr:predicateObjectMap [
2 rr:predicate ex:country ;
3 rr:objectMap [rr:parentTriplesMap <#Country>]].
4

5 <#Country> rr:logicalSource [
6 rml:query """
7 SELECT distinct ?Concept
8 WHERE {
9 ?Concept a <http://dbpedia.org/ontology/Country> ;

10 rdfs:label "Belgium"@en} """ ;
11 rml:source <#DBPedia>] ;
12 rr:subjectMap [rml:reference "/sparql/results/result/

binding/uri"].
13

14 <#DBPedia>
15 sd:endpoint <http://dbpedia.org/sparql/> ;
16 sd:supportedLanguage sd:SPARQL11Query ;
17 sd:resultFormat
18 <http://www.w3.org/ns/formats/SPARQL_Results_XML>.

Listing 13: SPARQL Endpoint for Input Source

https://github.com/mmlab/rmlprocessor

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce an approach that exploits vo-

cabularies originally used to advertise services or datasets,
to define how to access Web-based or other data sources.
The alignment of access descriptions with mapping defini-
tions provides a modular but robust way of specifying how
the input data is retrieved and mapped to the rdf data
model. With the proposed solution, the generation of rdf
representations is facilitated, as the description of the access
interface for the original data source remains independent,
interoperable and granular. In the future, we will investigate
the incorporation of custom third-party services.

7. ACKNOWLEDGEMENTS
Research activities described in this paper were funded by

Ghent University, iMinds (Interdisciplinary research insti-
tute for Technology founded by the Flemish Government),
the Institute for the Promotion of Innovation by Science
and Technology in Flanders (IWT), the Fund for Scientific
Research-Flanders (FWO-Flanders), and the EU.

8. REFERENCES

[1] K. Alexander, R. Cyganiak, M. Hausenblas, and
J. Zhao. Describing Linked Datasets with the VoID
Vocabulary. W3C Interest Group Note, Mar. 2011.

[2] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and
D. Aumueller. Triplify: Light-weight Linked Data
Publication from Relational Databases. In Proceedings
of the 18th International Conference on World Wide
Web, WWW ’09. ACM, 2009.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 2001.

[4] A. Brown. Web Services Glossary. W3C Working
Group Note, Feb. 2004.

[5] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3C Note, Mar. 2001.

[6] R. Cyganiak. Tarql SPARQL for Tables: Turn CSV
into RDF using SPARQL syntax. Technical report,
Aug. 2015.

[7] R. Cyganiak, C. Bizer, J. Garbers, O. Maresch, and
C. Becker. The D2RQ Mapping Language. Technical
report, Mar. 2012.

[8] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB
to RDF Mapping Language. Working group
recommendation, W3C, Sept. 2012.

[9] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel,

M. Hepp, U. Keller, M. Kifer, B. KÃűnig-Ries,
J. Kopecky, R. Lara, H. Lausen, E. Oren, A. Polleres,
D. Roman, J. Scicluna, and M. Stollberg. Web Service
Modeling Ontology (WSMO). W3C Member
Submission, June 2005.

[10] J. de Bruijn, D. Fensel, U. Keller, M. Kifer,
H. Lausen, R. Krummenacher, A. Polleres, and
L. Predoiu. Web Service Modeling Language (WSML).
W3C Member Submission, June 2005.

[11] A. Dimou, M. Vander Sande, P. Colpaert,
R. Verborgh, E. Mannens, and R. Van de Walle.
RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data. In Workshop on
Linked Data on the Web, 2014.

[12] A. Dimou, M. Vander Sande, J. Slepicka, P. Szekely,
E. Mannens, C. Knoblock, and R. Van de Walle.
Mapping hierarchical sources into RDF using the
RML mapping language. In Proceedings of the 8th
IEEE International Conference on Semantic
Computing, 2014.

[13] M. Hert, G. Reif, and H. C. Gall. A comparison of
RDB-to-RDF mapping languages. I-Semantics ’11,
pages 25–32. ACM, 2011.

[14] J. Kopecký. Web Services Description Language
(WSDL) Version 2.0: RDF Mapping. W3C Working
Group Note, June 2007.

[15] J. Kopecký, K. Gomadam, and T. Vitvar. hrests: An
html microformat for describing restful web services.
In Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and
Intelligent Agent Technology - Volume 01. IEEE
Computer Society, 2008.

[16] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell.
Sawsdl: Semantic annotations for wsdl and xml
schema. IEEE Internet Computing, 11, 2007.

[17] A. Langegger and W. Wöß. XLWrap – Querying and
Integrating Arbitrary Spreadsheets with SPARQL. In
Proceedings of 8th ISWC, pages 359–374. Springer,
2009.

[18] M. Lanthaler. Hydra Core Vocabulary. Unofficial
Draft, June 2014.

[19] R. Lara, D. Roman, A. Polleres, and D. Fensel. A
Conceptual Comparison of WSMO and OWL-S. In
Web Services, volume 3250 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2004.

[20] F. Maali and J. Erickson. Data Catalog Vocabulary
(DCAT). W3C Recommendation, Jan. 2014.

[21] M. Maleshkova, J. Kopecký, and C. Pedrinaci.
Adapting SAWSDL for Semantic Annotations of
RESTful Services. In On the Move to Meaningful
Internet Systems: OTM 2009 Workshops, volume
5872 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009.

[22] D. Martin, M. Burstein, J. Hobbs, O. Lassila,
D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. OWL-S: Semantic
Markup for Web Services. W3C Member Submission,
Nov. 2004.

[23] M. J. O’Connor, C. Halaschek-Wiener, and M. A.
Musen. Mapping Master: a flexible approach for
mapping spreadsheets to OWL. ISWC’10, 2010.

[24] C. Stadler, J. Unbehauen, P. Westphal,
M. Ahmed Sherif, and J. Lehmann. Simplified
RDB2RDF Mapping. In Workshop on Linked Data on
the Web, 2015.

[25] J. Tennison, G. Kellogg, and I. Herman. Model for
Tabular Data and Metadata on the Web. W3C
Working Draft, Apr. 2015.

[26] G. Todd Williams. SPARQL 1.1 Service Description.
W3C Recommendation, Mar. 2013.

[27] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel.
WSMO-Lite Annotations for Web Services. In The
Semantic Web: Research and Applications, volume
5021 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008.

