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ABSTRACT

Parallel compilers need detail architectural knowledge about the target
machines to optimize user programs. The knowledge is needed in order to
realize the potential parallelism provided by the hardware and to match the

program parallelism with the machine parallelism. In most parallel com
pilers, the architectural infonnation of the target machine are blurred into
the control structures of the compilers. Consequently, these parallel com
pilers are inflexible and substantial efforts are needed to modify them or to

port them to different machines. A solution to this problem is to separate
the hardware features from the knowledge for the program optimization and

describe the later based on these features. In this way, the control of paral
lel compilers relies explicitly on the computational model that is described

by machine features rather than the hard-coded heuristics. High degree of

flexibility. portability and knowledge sharing can be achieved among
different target machines.

In this paper. a parallel machine knowledge representation scheme that
features hierarchical structure and object oriented approach is presented.
Under the scheme, machine features are represented as objects and are

organized into hierarchical structures based on relationship between the

feature objects. An abstraction process which translates basic machine
features into different levels of abstraction is presented. Optimizing com
pilers can select the levels that suit its objectives and tasks most to work

with. The parallel machine knowledge manipulation system is imple
mented in Prolog and includes mechanism for interactive feature

specification. feature classification, and support for reasoning based on the
features.
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1. Introduction

Despite the decade long of effort that have gone into studying the utilization of paral

lelism, there is still a wide discrepancy between the available parallelism and the utilized

parallelism. Software development continues to be the major problem in the realization of

massive parallelism which was promised by the hardware advances. The difficulty lies

with two problems: first, our lack of experiences in handling massive parallelism and

secondly, the difficulty in integrating the huge amount of knowledge that is needed to

optimize the parallelism. The problem is complicated by the fact that most parallel archi

tectures use different tricks to speed up the computations. Programs need to be twisted

extensively in order to match the underlying hardware and thus hurts the portability of the

programs.

One trend that is emerging and has high potential to success is to build parallel pro

gramming environments that can optimize programs for different parallel architectures.

Under this environment, the users can concentrate on improving algorithms to utilize

higher fraction of potential parallelism of the system. The programming environments are

left with the responsibility of transfonning the programs to suit different target machines.

This approach relieves the users from the ever complicated program optimization problem

for parallel computers but its success relies on the richness of the expertise that the parallel

t Revised ScpL 1990.
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programming environment possesses. Despite the widely accepted success of the vector

compilers, the promises of parallel compilers and parallel programming environments have

yella be realized.

Like other software systems where many context dependent decisions need to be

made, parallel compilers and programming environments can take advantages of the expert

system technology where situation recognition with conflict resolution strategies rather

than "algorithmic" control is used. Knowledge based compilers control the optimization

of the programs based on the context of program and target machine. It employs many

program optimization heuristics to restructure the program to explore the machine parallel

ism. The knowledge based approach has the following advantages: adding or modifying

knowledge is easy. incomplete knowledge can be incorporated, and knowledge can be built

up incrementally. The reasoning ability and learning potential of the knowledge based

approach makes it possible to build intelligent parallel compilers that traditional compiler

technologies are unable to reac;h.

One important step that is often overlooked in building parallel compilers is to isolate

machine dependent features from the optimization heuristics. Successful implementation

of the knowledge based compilers and multiple target machines parallel compilers relies

on a suitable knowledge representation and processing scheme for both the program optim

ization and machine parallelism knowledge. Without the machine knowledge separating

process, the implementation of multiple target machine programming environment would

be practically impossible.

One problem that makes optimizing programs for parallel architectures hard is that

the decision trees of the transformations are normally quite large for even small program

modules. Exhausting all paths of possible transformations is usually too costly to be real

istic. Applying transformations blindly may actually decrease the degree of parallelism

instead of increasing it. Most program transformation systems "solve" this problem by

using pre-detennined paths to avoid exhausted searches or allowing user interaction, asser

tions or directions to guide the compiler. In other words, these program restructuring sys

tems either force the programmers to settle with non·optimal solutions or ask them to

make the hard decisions.
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It is apparent that a real solution is to have intelligence built into the parallel com

piler so that it can make these hard decisions intelligently with minimal intervening from

the users. One key issue is the balance between the available resources (the computing

power that the user is willing to pay for optimization) and the degree of optimization

obtained. In other words, it does not only need to make good decisions, it also has to

derive the decisions within a reasonable time and cost. To achieve this goal, the parallel

compilers and programming environments need to have a good machine knowledge

representation scheme to support its "intelligent operations."

1.1. Feature-Directed Program Optimization

Methodologies for optimizing parallelism on a particular parallel machine can often

be linked to features of the architecture. Under the feature-directed program optimization

modeL [Wang90d] optimizing parallel compilers use the features of the program and

machine explicitly to control the restructuring of the programs. Unlike other parallel com

pilers where decisions for program optimization are based on the implicit heuristics that

are hardwired and scattered in the programs, this approach allows the compiler to base its

decisions on features of both the target machine and the program. In this way, the com

piler is actually "programmed" by the features of the chosen target machine and the pro

gram to be optimized. For example, figure 1 shows the flow graph of a simple heuristic

for loop blocking that is based on machine features.
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Vector Loop Blocking

has_vecter_capability V > 0 and V < N Irmennost loop Lk

/:~rre~sre~=v n=rerOfl~~
number of vector registers = R Lk is vectorizable

machine feature list program dependence graph

Figure 1. A simple example to illustrate feature-directed program optimization.

The feature-directed program optimization model allows one to build generic parallel

program optimization tools and retargetable parallel compilers that can be applied to (and

perfonn well on) a wide variety of parallel machines.

The effectiveness of knowledge-based compilers and multiple target parallel com

pilers relies on a rich set of program transfonnation techniques and knowledge to utilize

these techniques to improve the parallelism of the program for the target machine. Suc

cessful implementation of such compilers requires a suitable knowledge representation and

processing schemes for representation and manipulation of the machine parallelism and

program optimization knowledge.

The machine knowledge representation scheme needs to provide a foundation for the

integration and organization of the program optimization knowledge and supports perfor

mance evaluation and reasoning. In section 2, machine features and their uses in parallel

compilers are discussed. In section 3, we present an object-oriented machine knowledge

representation scheme which features modular knowledge representation, various degrees

of abstraction, and hierarchical reasoning.

Recognizing and collecting useful heuristics and analyzing and separating machine

features from the program optimization heuristics are very involved jobs. A good
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knowledge manipulation system can help knowledge engineers comb through the complex

and ill-organized knowledge and identify the essential elements of the knowledge and help

them transfonn fragmented heuristics into wellwdefined programs. Automatic tools to help

knowledge engineers to program parallel compilers are highly desired and are long over

due. In section 4 we introduce a machine knowledge manipulation system that is based on

the knowledge representation scheme discussed in section 3. The machine knowledge

manipulation system can be used interactively to analyze heuristics for optimizing parallel

ism, comparing machine features. abstracting new machine knowledge. and installing new

target machines.

2. Machine Features and Parallel Compilers

2.1. Machine Features

Properties of the target machine that affect the concurrent execution of the machine

are called machine features. Definition of the machine features records the distinct proper

ties of the architecture that need to be considered in utilizing the parallelism on the archi

tecture. The manipulation of machine knowledge includes representation and organization

of the machine features, inference and modification of the machine features, and supports

for reasoning based on the machine features.

A detailed discussion of the machine features and their effects on program transfor

mation was presented in [WaGa89].

2.2. Building up Understanding of Parallelism From Machine Features

A collection of machine features of a parallel computer is usually fragmented and

lack a complete understanding of the whole architecture that the features describe. In

order for the system to build up an understanding of the target machine, the knowledge

needs to be connected by relationships between the features and the knowledge of how

these features affect the parallelism of the target machine. This implies that the knowledge

representation will have to support the composition of the knowledge and mold pieces of

the knowledge together to obtain a whole view. To avoid a tedious specification process,

the task of finding relationships between features should be done only once for each pair
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of features and not repeated for other machines.

In section 3, an object-oriented knowledge representation scheme which allows one to

build up the structure among the features is described.

2.3. The Uses of Machine Features in Parallel Compilers

The machine features can be used in almost every aspect of parallel compilers. In

[WaGa89] we described an expert-system based parallel compiler that encodes expert

knowledge based on the program and machine features. The heuristics are analyzed and

the features of the machine are explicitly represented in the rules that guide the optimiza

tion process. Optimizing the program on a target machine requires a cheap but accurate

perfonnance prediction mechanism to estimate the perfonnance of a program or effects of

a program transfonnation on the execution. A performance prediction model for parallel

compilers that uses machine features to choose performance characterization factors and

compute evaluation functions is discussed in [Wang90a].

An intelligent parallel compiler, that implements the feature-directed program optimi

zation, uses machine features and the performance prediction model to guide the sys

tematic state-space search and planning or the heuristic-guided decision making

[Wang90d]. The selection and application of transformations (such as array reshaping

[Wang90b], message consolidation [Wang90c], etc) are also relied heavily on the features

of the target machine.

As opposite to the stepwise refinement of program transformations, the pre-optimized

algorithm substitution approach [Wang90el, replaces fragment of a program with an algo·

rithm that are pre~optimized for the target machine. Machine features are used to choose

the best applicable pre-optimized algorithms or to fine-tune the selected pre-optimized

algorithm to match the target architecture that the algorithm may not be optimized for.

3. Design Considerations for Machine Knowledge Representation Schemes

Few design decisions need to be made to support the reasoning capability of the

feature-directed program restructuring model. Several questions need to be considered.

Should the machine -knowledge base be organized as a flat-structured feature list or a
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hierarchical-structured tree? Should the representation allow implicit knowledge implica

tion or should all relationships be spelled out explicitly? Does the compiler need to have

knowledge for multiple parallel architectures or, like traditional parallel compilers, is only

infonnation about a particular target machine needed? These decisions affect both the

power and elegance of the representation scheme. We chose to incorporate knowledge of

multiple parallel machines into one system, which allows hierarchical organization of

features and implicit and explicit knowledge implication.

Flat structure vs. hierarchical structure

Representing the machine features in a flat structure has the advantage of being sim

ple and explicit. In [WaGa87J, a flat-structured, unifonn machine feature representation

scheme is used to represent and model parallel computers. All basic features are

represented as facts in the database. When a target machine is specified, the features of

the machine are loaded into the kernel of the expert system. The features are abstracted by

applying a set of rules to the facts. This approach is simple and yet powerful enough to

model the parallel architectures. Specification of the machine can be done feature by

feature and is straightforward. However, the flat-structure representation does not have a

mechanism to show the relation and interaction between machine features. The relations

between the features must be encoded by using other constructs such as the rules and pre

conditions used in the above system. To find the relationship between particular features,

one must exhaust the rules to find the rules that define the relation between them. This

makes manipulation and maintenance of the system an involved task.

A hierarchical knowledge representation scheme incorporates the relationship

between knowledge into the representation of the knowledge. The relationships between

the machine features are mostly architecture independent and can be inherited from the

previous known structures. Therefore, they do not need to be redefined when a new target

architecture is defined. On the other hand, it is important to have the ability to define new

relationships so that similar architectures can share most of the knowledge but are allowed

to specify the differences explicitly.

To effectively support the hierarchical knowledge representation, the knowledge

representation scheme should support abstraction and classification. Classification closely
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groups relative features into distinct classes that possess special features, whereas abstrac

tion defines relationships between features of different levels. To visualize it. one can ima

gine that features are in a two-dimensional space; classification is a horizontal operation

that groups similar features together and abstraction is a vertical operation that defines the

relationship between different levels. For example, figure 3 (b) shows an organization of

the machine features; the vertical dimension shows the abstraction level of the architecture

and the horizontal dimension shows that related. features are grouped together to fann the

base of the abstraction. Together, classification and abstraction provide a powerful

mechanism for the integration of feature knowledge. Our representation scheme defines

the hierarchical structure by using the relationship between the subclass and superclass

plus relationship functions. Hierarchical and flat structured object modeling can done or

even converted by modification of relations.

Explicit vs implicit knowledge representalion

Knowledge of the machine can be explicitly expressed or implied by other

knowledge. Explicit knowledge has the advantage of being simple and explicit, but may

contain redundant knowledge and inflate the size of the knowledge base. On the other

hand, allowing implicit knowledge representation leads to more concise representation but

increases the difficulty of maintaining the knowledge base. To balance the tradeoff, it is a

good idea to make all knowledge implication rules explicit.

For example, in the following example, the feature cost ratio of global memory

access and computation is defined to be the ratio of the cost of a global memory fetch and

the cost of a floating point multiply. This property of the machine can be defined expli

citly or implicitly by the features cost of a global memory fetch, cost of a floating point

multiply, and rule 1 which explicitly defines the relation.

Rule 1 feature valuer'cost ratio of global memory access and computation', R) :

feature valueI'cost of a global memory fetch', Fi,

feature_valueI'cost of aj/oating point muitipiy', Mi,

R is F I M.
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The advantage of spelling out the relationship instead of specifying the value for the

infonnation is that when the feature is to be modified (for example, when the memory is

upgraded into fast memory), the feature cost ratio of global memory access and computa

tion does not need to be redefined. On the other hand, when doing the program optimiza

tion on a particular machine, it is the relative cost ratio that will affect the decisions. So

when the actual costs of memory access and computation are not required, the value of the

ratio can be specified explicitly.

Multiple target vs single target parallel compilers

Multiple target parallel compilers have many advantages over single target parallel

compilers: knowledge sharing. procedure sharing. organization of knowledge based on

machine features involved, comparison of performance on different architectures under the

same platform, etc. One advantage that single target parallel compilers have over multiple

target compilers lies in the efficiency: they are less expensive in feature access and

knowledge reasoning since all knowledge that has no relation with the target machine does

not need to be considered. We discuss in section 5.4 a methodology that achieves the

advantages of multiple target software systems but suffers no perfonnance penalties.

4. An Object-Oriented Knowledge Representation Scbeme For Parallel Computers

What kind of a machine knowledge representation scheme does an intelligent parallel

compiler require? From our point of view, an intelligent parallel compiler needs a "sim

ple" machine knowledge representation scheme that can support reasoning, knowledge

abstraction, organization, and heuristic comparison. The scheme we describe here is based

on the object-oriented knowledge representation paradigm, in which features about

machines are treated as objects and the understanding of a machine can be composed from

feature objects.

The object-oriented paradigm is a sound knowledge representation methodology. Its

modularity and hierarchical abstraction capability make it particularly appealing for the

representation of complicated real world knowledge, such as parallelism. The inheritance

and chaining of the paradigm allow compact and elegant representation of the relationships

between objects; this also makes porting the system to new machines easy. On the other
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hand, just like any other knowledge representation paradigms, there are many tradeoff in

the object-oriented paradigm and design decisions in implementation that must be made

based on the application domain. In this paper, we concentrate on just one application

domain -- multiple-target parallel compilers -- although most of the principles and metho

dologies we have discussed here can be applied or extended to other problem domains as

well.

Our knowledge representation scheme consists of three elements: the feature objects,

relationship between objects, and operators on the objects. Under this scheme, the

knowledge of the parallel computers can be decomposed into features and reassembled

into hierarchical models based on feature organization and abstraction techniques. This

knowledge representation scheme provides a vehicle for heuristic manipulation and intelli

gent compiler construction.

4.1. Feature Objects

We followed the convention of the object-oriented paradigm by which objects

representing machine features are represented by a set of basic objects that we call feature

objects. Feature objects are classes of objects that are the basic units for defining proper

ties of parallel computers. A feature object represents a particular property of the target

architecture and has slots to store infonnation about the property. These slots are called

the attributes of the feature object. The structure of the feature object varies based on the

type of the property it represents. Some attributes of the features are common to all

features and some apply only to certain features. The template of feature objects is

defined by a meta-class that we call afeature class.

Each entry in the feature class defines possible values for feature objects. An

instance of the feature class identifies the properties of a machine feature. These properties

include the name of the feature, type of the feature (used for type checking), conditions for

this feature to be meaningful, relation of the feature with other features, and the attributes

of this feature. The feature object, which defines what the instances of the feature should

be, is the foundation of the representation.
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class 'vector registers' subclass_oj 'processor' instance_of'register' with

pre-conditions: has_vector_capabilities,

static_dynamic: static.

type: [boolean, true],

number: [integer, 64J,

size: [integer, 32].

feature name: vector registers

pre-conditions: has_vectoccapabilities

static/dynamic: static

relations: parent(vectof_capabilities)

feature type: boolean

feature value: true

attributes: type value

number of vector registers integer 64

size of vector registers integer 32

other attributes: omitted

Figure 2. The definition of the feature object "vector registers."

The example shown in figure 2 defines a feature named vector registers. In the

example, the feature object vector registers is active only when the target machine has

vector capabilities. This object is an instance of the object register. Slots in the first part

of the template are common for all feature objects (inherited from the classjeature object).

Slots in the second part are the attributes of the feature.

An individual property described by an object is called the instance of the object. An

instance of a feature object is defined when a value is associated with the object by an
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feature assignment statement: featureDejine. For example, the following Prolog function

causes a message to be sent to the object "vector registers" and selS the value of attributes

of the object to be 64, 32, respectively.

jeatureDejine('vector registers', •number'. 64)

/eatureDefine{'vector registers', 'size'. 32)

When defining the machine features, the following alternative fann is also accepted:

the 'number' of 'vector registers' is 64.

the 'size' of 'vector registers' is 32.

The statement featureValue provides a unifonn way of accessing the feature instances.

For example,jeatureValue('vector registers', 'number', N) returns the value of the current

instance of the 'number' of the feature 'vector registers' in variable N.

4.2. Attributes Associated with Ohjects

New attributes can be associated with a feature object through the feature-attribute

assignment statements:

featureAttribute(ObjectName, AttributeName)

featureAttribute(ObjectName, AttributeName, Type, DeiaultValue).

The first statement defines the relationship between the attribute and the feature, and in the

second statement both the relationship and the value are defined. A feature attribute

assignment statement explicitly and dynamically defines the binding between the feature

object and its properties.

A object defined to be dynamic may have more than one instance but only one

instance can be current. In some cases, allowing more than one instance of the same

object provides a degree of "non·determinism." This is useful when the target machine

contains multiple characteristics. For example, on hypercube computers, the communica

tion network can simulate different kinds of networks such as rings, meshes, shuffle

exchange networks, and trees. Different algorithms can utilize anyone of the communica

tion patterns. On the other hand, the current instance mechanism provides a way to obtain

the detenninistic effects.
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4.3. Feature Organization

Feature objects fonn the basis of the representation for parallel computers. In the

real world, knowledge of objects is not isolated. Instead, relationships exist between

knowledge on different levels of abstraction. Therefore, representation of the relationships

between objects using a higher level of abstraction and organization is needed so that the

relationships can be recorded and manipulated. From the bottom~up approach, feature

objects of similar properties can be grouped to fonn a feature object of higher level. From

the top-down approach, one may decompose the feature objects into more detailed descrip

tions and continue expanding until the feature becomes a basic fact With either approach,

the feature classes are organized into hierarchical structures based on the relationship

abstraction of the features that we call relation functions. The relation functions explicitly

define the relation between feature objects of different levels. This includes predefined

relations such as parent, children, exclude, complement, associate, compose, or user

defined relation functions. The relation functions serve two purposes. First they define the

relationship between objects; second, they define the flow of control and messages. The

collection of the relation functions organizes the machine knowledge into a hierarchy of

features. Some of the relationships, such as parent and children, are inherited from the

organization of the hierarchy and are defined by the subclass_of or instance_of relations;

others need to be explicitly defined.

The organization of the features can simplify the representation of the features. For

example, the pre-condition 'has_vectoccapabilities' listed in the example in figure 2 is

redundant because the feature vector registers is the descendant of the feature vector capa

bilities, and this pre-condition is actually implicitly encoded in the hierarchy of the

features.

4.4. Operations On The Objects

4.4.1. Inheritance, Specification and Qualification

The notion of classes and meta-classes provides a mechanism for sharing infonnation

between different objects via inheritance. Inheritance means that the properties of a class

are shared by instances of the class. On the other hand, different properties of the class
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can be applied to different instances of the class by specification.

Inheritance and specification are used to group closely related knowledge into the

same class so that the information can be accessed locally in the system. Specification

helps to distinguish objects in the same class, while inheritance keeps the size of the sys

tem manageable.

Inheritance and specification are usually associated with qualification. That is, an

inheritance or specification for an attribute is applied to an instance of a class when certain

conditions are satisfied. For example, in distributed. computing, achieving a balance

between computation and communication is important And communication with proces

sors that are far away is normally discriminated against. These heuristics can be inherited

by knowledge of all distributed computers.

class 'distributed memory' subclass of 'memory hierarchy'

instance_of'memory' with

heuristics: {heuristic(' balance computation and communication ratio' J,

heuristic('avoid far access' J, ...J.

However, when the cost ratio of far-access and near-access is close to 1 (as in the

second generation of hypercube machines such as iPSC/2 or NCUBE/2), sending messages

to far away processes does not incur a significant penalty. In this case, the restriction can

be lifted by changing the attribute 'avoid far access' to 'far access OK' as below: In the

following example, the heuristic 'far access OK' is a specification that overwrites the

inherited heuristic 'avoid far access'; and the conditions in the qualification statement

in case validate the specification statement.
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'distributedMemory' instance of 'distributed memory' with

heuristics: [

heuristic(,far access OK' J

in_case (featureValue(distributedMemory, 'far/near access ratio', A),

isSmal/(A-l.O)))

J,

4.4.2. Feature Modification

As we discussed in section 3, the dynamic update of machine features is desirable to

provide flexibility to match algorithm decomposition and reasoning. Possible

modifications to a feature object include changing the feature value, changing the feature

attributes, and changing the heuristics associated with the feature. An instance of a feature

object can be modified by the featureDefine statement that we described above. For exam

ple, suppose the target machine is a hypercube computer. Since the hypercube can simu

late other network topology Oike mesh, trees, shuffle exchange networks, etc). at certain

stages of the algorithm, a particular type of communication topology may match the algo

rithm better than others. The communication pattern can be easily changed by two

featureDefine statements as below:

!eatureDejine(networ/(fopology, network, mesh, OItl1'opology).

..... communication using mesh .....

!eatureDejine(networkTop%gy, network, OItl1'opology, J
..... communication using OIdI'opology .....

The feature modification operation can only be applied to the tunable properties of the

architecture and attempts to modify static features will fail.
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4.4.3. State Adjustment with Dependences

One problem that arises from object modification involves maintaining integrity and

consistency. In our object-oriented scheme, this problem is addressed by providing a

dependence-mechanism to notify an object of changes in related objects. The relation

functions explicitly define the dependence relations between the objects involved. When

the source of the dependence is changed, the target object is notified. And the target

object may examine the change to decide whether to change its own state or not. For

example, the heuristic object utilizing vector registers depends on the feature objects avail

able vector registers and vector operations. If the object available vector registers is

changed and no vector register is available, then the object utilizing vector registers needs

either to move certain data in vector registers to memory to reclaim the vector register for

the next operand or get the next operand from the memory. What action to take depends

on the heuristics in the heuristic object.

4.5. A Simple Example

The specification of a feature involves defining the template (class) and the value

(instance) of the object. The fonnal is nonnally the task of the system implementor and

the latter is the task of system maintainer who installs a new machine. For example, the

following is a fragment of the program that specifies the template for the global memory

in a shared-memory architecture.
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class memory hierarchy with

type: one_of [shared,distributed,hybridJ,

structure: list_of [global,cluster,local,cacheJ.

class memory with

type: one_of [shared,distributed,hybridJ,

size: integer, % 1 unit = lK bytes

ratio_ofJetch_and_multiply_op: real,

ratio_ofJetch_and_registerJetch: real,

interleave: {integer, 4],

read_cost: real,

write_cost: real,

prefetch: [boolean,falseJ,

pre/etch size: integer in case pre/etch == true,

connection: one of [bus, network], % to processor

network_topology: one_of {hypercube, omega, crossbar, .. .]

in case connection = = network.

class local_memory instance_of memory subclass_of memory_hierarchy with

type: local,

size: [integer,4000J, % specify default value

connection: bus.

class global_memory instance_of memory subclass_of memory_hierarchy with

type: global,

size: [integer, 16000J, % default=16Mbytes

connection: network.

Under the above definition, the local memory on a NCUBE/2 can be defined as:
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memoryHierarchy instance_of memory_hierarchy with

type: distributed,

structure: (local].

loca/Memory instance_oj local_memory with

size: 1000,

size: 4000 in case pid < 16, % has uneven memory distribution

read cost:

write cost:

pre/etch: true.

connection: bus.

The entries can be accessed or updated in the following way:

jeatureValue(localMemolY, size, K).

the size of loca/Memory is K.

the connection of /ocalMemory is bus.

An interactive feature-specification scheme is described in section 6.2 as an alterna

tive way to interface with the machine feature manipulation system. Different people

involved with the system can choose different interface scheme to use. NH 2 Features of

the Parallel Machine Knowledge Representation Scheme

The most important feature of our knowledge manipulation scheme is in the flexibil

ity and the modularity of the scheme. The representation scheme can be used to achieve

the following features.

1. Allows dynamic modification of machine knowledge.

2. Has high flexibility in knowledge characterization and organization.

3. Has various abstraction levels of the knowledge.

4. Supports knowledge hidiog and global visibility.

5. Supports inference and knowledge encapsulation.
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Static and dynamic knowledge representation

Although most features of a parallel architecture are fixed after the configuration of

the system is set up, some features of the machine should be allowed to change dynami

cally. Allowing dynamic modification to some machine features has the following advan

tages. First, conceptual decomposition of the machine is possible. This means that the

programmer can decompose the computational model to match the algorithm decomposi

tion such as divide-and-conquer algorithms. Second, users are allowed to define' 'virtual

machines" based on the existing machine features and knowledge. This is ideal for test

ing new machine designs or programming heuristics. Third, computer vendors usually

provide many different configurations to suit specific needs of the users. Fourth,

specification for similar architectures can be more elegant and compact. The representa

tion scheme we defined above allows the representation of both static and dynamic

knowledge in a unifonn structure. Machine features that can be modified at run time are

marked as dynamic features by setting the attribute dynamicFeature to be true. Dynamic

machine features include the number of processors used in computing, system load, algor

ithmatic network topologies, and task control strategies. Features that are static overtime

are tenned static features and attempts to modify static features will be rejected by the sys

tem.

Flexibility in knowledge characterization and organization

Knowledge characterization is the basis for knowledge organization. Machine

features can be characterized in different ways under different constraints. For example,

features of a parallel computer can be categorized by the physical component modules

(such as processing units, memory modules, communication medium, clusters. and control)

or by the functionality of the features (such as program partitioning, data decomposition,

process scheduling, memory utilization. communication minimizing, and synchronization).

Each of these modules can be further characterized by smaller modules. For instance, the

physical configuration of the memory hierarchy is composed of global memory modules,

cluster memory modules, local memory modules, and cache memory modules. Features of

the modules can be refined by further decomposition. Different ways of organizing the

machine features have different advantages and tradeoff. Our knowledge representation
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scheme allows the application to choose the desired way of organizing the knowledge

according to the requirements of the application. Figure 3 shows two different ways to

represent the hierarchical structures of the parallel computers based on different character

izing schemes.
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Figure 3. Two highly simplified examples for characterizing parallel architectures.

In figure 3 (a) the organization is simpler but features are not as detailed as the ones

shown in figure 3 (b). For applications requiring minor optimization, the one in figure 3

(a) may be enough, but for more complicated optimization, a finer representation such as

the one in figure 3 (b) would be better. As a matter of fact, the representation can be
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refined by adding more feature objects and relationship functions as the system implemen

tation progresses. Thus, this refinement can be done incrementally without affecting the

part of the software that has already been done, although the behavior of the system should

be improved with more detailed machine knowledge. One good strategy in adding new

machine features is to check if this added feature can distinguish between conflicting

knowledge and help in making a better decision. On the other hand, new features may

lead to discovery of new relationships or heuristics.

Various abstraction levels of features

A key idea in automatic generation of high perfonnance parallel programs is to

express the knowledge of the machine and the program at an appropriate level of abstrac

tion. Abstracted features of the machines range from high level concepts such as

"shared-memory MIMD" or "distributed memory MlMD" or "topology of the intercon

nection network" to detailed properties such as "vector startup time" or "memory refer

ence costs." The most appropriate abstraction level for the specification of the machine

knowledge depends on the current state and goals of the compiler and the types of applica

tions that utilize the parallelism of the machine. Different types of applications will

require different levels of abstraction to express the computation model of the application.

In some cases, it is detennined by the extent of optimization that the compiler is seeking.

For example, to decide the patterns of data movement, only the topology of the communi

cation network is required. But to get the optimal data movement, other information such

as the dimension of the hypercube, the startup and unit costs for message transfers, net

work protocols, and optimal communication/computation ratio for the architecture are

needed. Allowing different abstraction levels simplifies the implementation of parallel

compilers, since different tasks of the compilers can deal with computational models at

different abstraction levels that are suitable for the tasks. On the other hand, it complicates

the implementation of the knowledge representation. Our program representation scheme

allows dynamic abstraction of the knowledge by encoding the relationship between the

knowledge at different abstraction levels. And the machine knowledge can be mapped to

the appropriate abstraction level at the run time of the compiler.
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Global visibility and knowledge hiding

Data abstraction hides the internal data representation of an object from the uses of

the object This concept has been proven to be useful in conceptual abstraction of the

objects and in the practice of modular programming. On the other hand, there are many

cases where the ability to access the states of the objects is desirable. For example, the

objects that define the relationships among objects are better visible globally. This is par

ticularly useful in keeping the representation scheme flexible enough so that accommodat

ing new architectures is easy. The framework of the representation needs to provide local

readability so that the features can be assessed and understood individually. OUf represen

tation scheme provides some mechanisms for knowledge to be either hidden in objects or

to be visualized globally. Inheritance is a mechanism that allows compact representation

and also provides information hiding. A two directional object-value search provides the

function of global visibility, while unifonn access procedures provide knowledge hiding.

Inference support and knowledge encapsulation

The knowledge representation scheme needs to support reasoning for intelligent deci

sion making. This includes a unifonn structure for systematic access and support for

representing heuristics. The properties of the system can be accessible to external systems

through queries, but the details of the representation should be invisible to the external

systems. The knowledge representation scheme provides a hook to link the related

knowledge to basic machine features. This knowledge encapsulation is combined with the

hierarchical structure so that a walk through the hierarchy gives a complete picture of the

architecture. This feature can be used to limit the scope of the system to a single target

machine and it creates a personalized system as described in section 5.4.

The object-oriented methodologies we adopted make the knowledge encapsulation

modular and provide a good foundation for reasoning supports. Intennediate results

created by the inference mechanism based on the machine features can also be treated as

machine features and receive a unifonn treatment.
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5. Implementation of the Knowledge Representation System

5.1. A Machine Knowledge Representation System

The machine knowledge representation system consists of a machine feature database,

an inference engine, an SQL relational database interpreter, and an interactive machine

feature specification system.

The Machine Knowledge Manipulation System.

system machine
knowledgf feature

base database

~//I
.-/

SQL interpreter I
Inference engiene I

*Interactive machine feature specification system

~ User interface

'f

Figure 4. The machine knowledge manipulation system.

The machine feature database contains three kinds of knowledge about machine

features: knowledge for feature definitions, knowledge for feature usages, and knowledge

of features of parallel computers. The inference engine can be used to compare and

deduce features to help the specification and classification of the features. A subset of the

SQL relational database language is implemented in Prolog to compare the features of the

machines and help the knowledge expert to abstract machine features from heuristics; this

provides a powerful mechanism for the manipulation of machine knowledge. The interac

tive machine feature specification system provides the man-machine interface for interac

tive specification and manipulation of the features of parallel computers. The interactive

machine feature specification system is interfaced to both the SQL database server and the

inference engine so that the user can query or analyze features of the machines.
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The machine knowledge manipulation system is implemented on top of the C-Prolog.

The system is menu-driven and the user is allowed to pick a fact or predicate known to the

system from the menu or to specify a new fact interactively. An interface to an X

Window front-end is under construction. Details of the procedures for machine feature

installation are given in the next section.

To effectively utilize parallel computers, a program optimization system needs to

have enough knowledge in two areas: the hardware features of the machine and the heuris

tics of using the machine. The machine knowledge manipulation system can assist the

parallel compiler writer to manipulate the parallel machine knowledge by providing the

following functionalities: specification of new machine features to the system, specification

of machine features for a new machine, finding relations of a feature with other features,

comparing features of different machines, and supporting the reasoning for intelligent com

pilers. The last three abilities are especially important when analyzing the machine

features to construct the system or collecting new heuristics to enhance the capability of

the system.

The process of installing new knowledge includes identifying, translating and

representing new machine features and heuristics. Human interaction is needed for this

process, but systematic system assistance can reduce the complexity of the task

significantly.

5.2. Machine Feature Abstraction and Installation

The process of collecting machine features is illustrated in figure 5. The figure shows

four components in the process: installing features for the machine, installing heuristics for

the machine, installing new machine features to the system, and installing new heuristics

to the system. These procedures are interrelated and can be carried out interactively.

5.2.1. Interactive Machine Feature Specification

New machines can be added to the system interactively with a user interface that

allows the user to specify the features one by one. The system composes queries to ask

for the features of the new machine based on its knowledge in its database and the

machine features specified so far. A top-down approach based on the hierarchical
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Figure 5. Machine feature specification and installation.

structure of the known machine features is adopted and the query session begins with high

level specification of the machine, such as computational modes, distributed or shared

memory. and gradually gets to the details of the machine features. The user does not need

to know the structure of the machine features. Based on the pre-conditions and the organi

zation of the features, the system is intelligent enough to ask only for the related features.

There are also commands to allow the user to input features that the system did not ask or
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does not know at all.

This interactive machine feature specification contains three kinds of activities:

1. The system asks the system programmer values of the related features of the

machine.

2. The programmer specifies the features that the machine does not know to ask.

3. If the feature specified by the programmer is a new feature to the system, the user

needs also to specify relationships between the feature and other features possibly

with help from the machine knowledge manipulation system. The system will also

help the user to specify the value of the new feature for machines already in the data

base of the system but whose corresponding feature values have not been specified

yet.

To specify a feature that the system already knows (has feature object definition for

the feature), the system prompts the user for the value of the feature with a menu dynami

cally constructed at run time. The user can also input the values of the features through

the keyboard.

A new feature is added to the system by defining the template of the new feature (by

defining the feature object) first. This process is illustrated by the example below.

After the new feature object is defined, the next step is to find relationships between

the new object and other features. This process is nonnally non-trivial and the reasoning

ability of the system may provide the user with help. After the user specifies some basic

relations, the system tries to help by finding all features that are related to these features

and providing this infonnation to the user.

Finally, after the new feature is installed. an attempt is made to relate this new

feature to the parallel computers already known to the system. In other words, the system

will try to enhance its data base by figuring out whether other machines in the database

have this feature, and if so what the values of the features are for these machines. The

user will have to decide whether the new feature can be applied to particular target

machines in the knowledge base of the system, but the system will be able to rule out

machines that cannot have the feature based on the relationship specified by the user.
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Figure 6. An interactive session to specify features of a target machine.

After the machine features are installed, the heuristics of using the machine can be

installed. For a given heuristics, one problem is to figure out what machine features are

involved in the heuristic. The machine feature comparison and deduction provided by the
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Figure 7. An interactive session to specify template of a feature.

machine feature manipulation system is very useful. To specify a heuristic, the user uses

menus to specify the preconditions and the actions of the rules. The menu can lead users

through the hierarchy of machine features from the top down and the knowledge base

keeps a list of abstractions of the program features so that the user can relate machine

features and the program features to the heuristics. The structure of the hierarchy and the
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computational models help the user to analyze the relationship between the features and

the heuristics. After the related features are picked, the system uses infonnation in the

feature objects to generate the preconditions and actions for the heuristics and translate

them into rules. If the heuristic involves features that are not in the knowledge base, then

the new features need to be installed.

As we noted above, getting a complete description of the machine features is difficult

but is usually unnecessary. Using a partial list of the machine features to represent the

machine adds two requirements in manipulation of the machine knowledge:

1. Knowing what features are relevant to the system and

2. Knowing the relationship of the new knowledge with the existing knowledge of the

system.

One simple methodology to decide what machine features to represent is based on the

heuristics of the system. When installing the heuristics, users represent the heuristics and

methodologies of utilizing the machine parallelism as a function of the machine features

and program properties. After the user finishes the specification of the heuristics, the sys

tem collects the list of machine features used and compares the list with the list of features

that it already knows. In this way, new features can be discovered and installed systemati

cally.

The procedures outlined above rely on two things: human interaction and the reason

ing ability of the knowledge manipulation system to help the human expert sort out the

complex relationship between the heuristics and the machine features. Systematic

knowledge manipulation can significantly reduce the complexity of the machine

knowledge abstraction and installation process. From our point of view, this is one of the

basic requirements for all retargetable software systems.

5.3. Feature Deduction And Comparison

Heuristics are knowledge without a theoretical background. In order to generalize the

heuristic to other parallel computers, heuristics need to be analyzed to detennine the fun

damental elements behind the heuristics. In this way. a new target machine can utilize the

heuristic if the machine possesses all the features involved in the heuristic.
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The ability to analyze relationships between machine features is needed because not

all machine features are represented at the same level. Some features may be derived from

other features and some may be preempted by other features. Similarly. when trying to

abstract the features of a machine or distill effective features from a new heuristic, it is

often necessary to compare features of the machines. The machine knowledge representa

tion scheme we propose supports both operations plus other reasoning mechanisms. A

knowledge base that features a simplified SQL database language plus inference mechan

ism is implemented to support the task of analyzing machine features and heuristics.

For example, it is possible to collect all machines that have feature F or find all

features that can be derived by a set of features with the simple reasoning mechanism we

described above.

Feature deduction is supported by the relation functions which are part of the object

oriented representations. Feature comparison of different machines is available by the

implementation of a relational database. For example, we can find all common features

or different sets of features of two machines with a relational database command: "find all

common features of A and B" or "find all features A subst B,"

5.4. Specializing Syslem Knowledge

The advantage of having a general purpose machine knowledge manipulation system

is that knowledge can be accumulated and shared among different architectures. The price

paid is that when reasoning is performed, the performance suffers because of the added

tests for checking the applicability of the heuristics at run time. We use a methodology

called knowledge caching to improve the performance of the inference system. The

method works as follows: At the compiler construction, maintaining and enhancing phases,

the system encodes the knowledge with the multiple target paradigm. At the distribution

phase, specialized single target parallel compilers are built by validating or invalidating the

rules in the knowledge base. This is done by pre-evaluating the rules based on the features

of the target machine. All conditions that are implied by the static features are eliminated

from the rules, and the resulting simplified rules are <'cached" in the specialized compiler.

Also, rules that are disqualified by the static features are deleted from the knowledge base

of the new compiler. This approach has the advantage of code re-use and knowledge
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sharing but does not suffer loss in system efficiency.

Our knowledge representation scheme also provides a runtime mechanism to optimize

feature access. The same procedure can be used at run time to further eliminate redundant

conditions or invalid rules based on the dynamic features. With the knowledge cache

mechanism, the most recently accessed or generated objects are kept in the system

memory so that subsequent access will be much cheaper. The resulting parallel compiler

is specialized for the target machine with the features of the machine implicitly built into

the rule base of the system. The rules for the program transfonnation can be linked with

the machine features by attributes of the features. Therefore, after the features of the

machine are specified, a personalized knowledge base can also be built for the particular

architecture and thus improve both space utilization and execution efficiency.

6. Other Applications Of The Representation Scheme

The machine knowledge manipulation system we described above can be applied to

many other software systems that need details of the target machines. Two such examples

are given here.

6.1. Distributed Computing Environments

A distributed computing environment is a system that contains a set of loosely con~

nected computers. Although not every distributed system needs detailed machine informa

tion of the computers in the system, some applications do require the system to have low

level knowledge of its members. An interesting example of this is as follows: in a net

work that contains a wide spectrum of architectures (for example, a network of worksta

tions, graphic workstations, main frames, and supercomputers), and applications. Suppose

the goal of the operating system is to assign a task to a machine that is most appropriate

(the objective may be adaptive) for the application; there is no way that the system can

make smart decisions without a clear understanding of the capabilities of each machine in

the system and some infonnation about the tasks. Our machine knowledge manipUlation

system allows the system to possess and manipulate knowledge of many computer systems

and support the match of machines and applications. Thus, it is possible to build a smart

task scheduler for distributed, heterogeneous, computing environments based on the
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machine knowledge manipulation system.

6.2. Flexible Parallel Computing System Simulation Systems

A product design cycle consists of requirement, specification, design, prototyping.

testing. and modification. The design of new computer architectures usually goes through

this cycle many times before the final product emerges. At each iteration of the design

cycle, requirement, specification, and design of the machine may be changed because of

technical difficulties, marketing considerations, and other unexpected problems. Any

changes can affect the subsequent phases and complicate the designing problem. Building

a hardware prototype is very time-consuming and expensive. In contrast, an electronic

prototype can shorten the design-testing cycles and decrease the product-developing lead

time. The machine knowledge manipulation system we discuss here provides a foundation

for building software simulation systems for parallel computers. When coupled with the

performance evaluation system discussed in [Wang90bl. a very flexible general purpose

parallel architecture simulation system can be built Under this model, revising the archi

tecture design is relatively easy since the machine knowledge manipulation system pro

vides easy modification of the machine feature entries. Furthermore, when integrated with

the program transfonnation system, the resulting system has two significant advantages:

• The domain that the architecture is targeting can be used to test and evaluate the

design before a hardware prototyping system is built. Problems in design can be

discovered at the early phase of the developing cycle.

• The experience accumulated from other parallel computers can be applied to the new

machine. Thus, a great deal of heuristics for using the machine exist even before the

machine is actually built.

7. Conclusions

In this paper, we have presented a machine knowledge representation scheme for

parallel computers that supports reasoning. Intelligent reasoning is possible because deci

sions can be made from analysis of machine features. The machine knowledge manipula

tion system forms the basis of a parallel programming environment we are implementing

which can restructure the program structure intelligently.
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The knowledge representation scheme we propose has the following significant

features:

1. Knowledge sharing. Separating the machine knowledge from the system heuristics

allows heuristics to be shared among different parallel computers.

2. Object-oriented presentation. The object-oriented representation scheme allows

modular and elegant knowledge representation and ease of manipulation. With

abstraction and classification operations, the parallel machines can be abstracted into

different levels of computational models.

3. Tolerance. Incomplete machine specification as well as incomplete system

knowledge is allowed. in this representation scheme. When a feature is not present,

the system simply assumes that the target machine does not have it. Even though the

performance may suffer, the more detailed. knowledge about a machine the system

contains, the better the approximation of the computational model is to the real

machine. However, the system works even with incomplete knowledge of the

machine so that knowledge about a new machine can be incorporated incrementally.

4. Flexibility in the organization of the knowledge. The machine knowledge can be

organized on different criteria. For example, at the higher layer, the machine

knowledge can be classified on the levels of parallelism (the multiprogramming level,

multiprocess level, inter instruction level, and instruction level). At the lower layer,

the machine knowledge can be grouped on the physical organization of the system

(processing units, memory hierarchy. communication network/bus, clusters of proces

sors, and control unit).

5. Test beds for complex systems. The proposed representation scheme allows easy

construction of test beds for complex software or hardware systems. Features and

relation functions can be added or removed to test the consequence of the action.

This property of the system can also be used to evaluate or study the effectiveness of

the features, relation functions or heuristics.

Although we are targeting the methodologies to the parallel compilers, the metho

dologies can be applied to any software systems that require detailed knowledge of the

underlying architectures, such as parallel simulation systems, distributed operating
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systems, and runtime environments.
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