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Machine-learned interatomic potentials by active learning:

amorphous and liquid hafnium dioxide
Ganesh Sivaraman 1, Anand Narayanan Krishnamoorthy2,3, Matthias Baur 2, Christian Holm2, Marius Stan4, Gábor Csányi5,
Chris Benmore6 and Álvaro Vázquez-Mayagoitia 7✉

We propose an active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the
Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme
coupled with a Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2)
dataset generated from a “melt-quench” ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning
scheme, with no prior knowledge of the dataset, is able to extract a configuration that reaches the required energy fit tolerance.
Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144 atom systems of amorphous
and liquid state elucidate the structural properties of HfO2 with near ab initio precision and quench rates (i.e., 1.0 K/ps) not
accessible via AIMD. The melt and amorphous X-ray structural factors generated from our simulation are in good agreement with
experiment. In addition, the calculated diffusion constants are in good agreement with previous ab initio studies.
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INTRODUCTION

Ab initio molecular dynamics (AIMD) simulations based on Density
Functional Theory (DFT)1,2 can provide atomistic structural
descriptions of materials with quantum mechanical accuracy3.
But such calculations are severely limited by the finite system size
(10–100’s of atoms) and short timescales (~10’s of ps). Classical
molecular dynamics (MD) simulations based on interatomic
potentials derived from empirical and physical approximations,
on the other hand, can provide access to larger system sizes
(millions of atoms) with longer timescales (~100–1000’s of ns) by
sacrificing the quantum mechanical accuracy. Inverse modeling
techniques such as Reverse Monte Carlo (RMC)4, along with
advanced experimental techniques such as synchrotron based
high-energy X-ray diffraction, have certainly aided in improved
understanding of the atomic structure of materials. But such
techniques can only provide a statistical description of the local
atomic environment5. More recently, an improved version of RMC
has been used to develop classical interatomic potentials where
molecules are modeled using bonds, angles and dihedral
potential terms with added nonbonded interaction parameters,
thus making it more suitable to model larger molecules which are
intractable using the traditional approach. In particular, recent
research also showed the application of RMC in the development
of a quantum mechanical-accurate model for amorphous
silicon6,7.
In the age of “big data”-driven materials informatics8, there

emerged a new generation of machine learning (ML) interatomic
potentials9–16. Unlike classical interatomic potentials, these
potentials employ ML techniques such as neural networks and
kernel based methods to map the direct functional relationship
between atomic configuration and energy from reference
quantum mechanical calculated datasets. Much like the atomic

configurations in Cartesian coordinates, the ML interatomic
potentials must satisfy translation, rotation, and permutation
invariances. This is typically enforced by transforming the atomic
coordinates into descriptors that capture the local atomic
environment and satisfy the invariances. The ML interatomic
potentials are regression models of the descriptors. Subsequently,
many recent applications of ML interatomic potentials have
achieved simulation lengths and timescales accessible to classical
interatomic potentials, with near quantum mechanical accu-
racy17,18. Despite the progress, training the ML interatomic
potentials remains a challenging task. The challenge is finding
the right hyperparameters for the chosen method of fitting and
sampling the correct training data that would lead to meaningful
interpolation for the property of interest19. If there are large
samples of datasets, then educatedly handpicking the training
configurations becomes a cumbersome task.
Active learning (AL) is an ML strategy where a learning

algorithm iteratively queries a very large pool of unlabeled data
to extract a minimum number of training data that would lead to
a supervised ML model with superior accuracy compared to a
training model with educated handpicking20. Within the context
of this article, our goal is to devise an active learner that can
automatically select a minimum number of training configurations
that would result in a near DFT accuracy ML interatomic potential.
In addition, reducing the number of training samples lowers the
computational resources required to train and evaluate the ML
interatomic potential. Inspired by the original work of Dasgupta
et al.21, we propose an active learner which aims to exploit the
cluster structure embedded in a given unlabeled dataset so as to
arrive at a minimum number of training configurations. The term
“unlabeled dataset” implies that the proposed AL query strategy
based on clustering22 would only rely on input atomic
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configurations. We apply our AL scheme to fit the Gaussian
Approximation Potential (GAP) framework23. The full details of the
AL scheme are discussed in the “Methods” section. We also refer
the reader to the recent success in the applications of AL24–26.
To showcase the overall capability of the AL scheme to fit the

GAP model, we have chosen the specific application example of a
binary amorphous oxide, namely Hafnium dioxide (HfO2) or
hafnia. Hafnia is a relevant material in semiconductor process
technology such as high-k gate dielectrics27,28, as a potential
replacement for silicon dioxide (SiO2). In particular, high-k gate
dielectrics applications require thin films of amorphous HfO2

(a-HfO2)
29,30. The density of the a-HfO2 is shown to significantly

influence the atomistic structure and oxygen diffusion31,32.
Furthermore, hafnia is used as a high-temperature refractory
material33 and also has applications in nuclear technologies34. We
have chosen this specific application example given that the high-
temperature refractory nature of this material requires exploration
across a wide regime of thermodynamic configuration space. Our
aim is to construct AL-driven fitting of GAP model for a-HfO2 and
liquid hafnia (l-HfO2). For this purpose, we generated a reference
HfO2 dataset from an NVT “melt-quench” AIMD simulations, details
of which are discussed in the “Methods” section. We demonstrate
that the AL scheme reaches the high accuracy in energy and force
fit for the GAP model trained with very few configurations
sampled from this reference datasets. The active learned GAP
model is used to perform melt-quench MD simulations for two
different system sizes. The effect of quench rate is investigated via
the order parameters extracted from the MD simulation of a
medium size system (768 atom). To showcase the scalability and
stability of the active learned GAP model, additionally we have
performed a melt-quench MD on a large system size (6144 atoms)
to generate a-HfO2. Overall, we demonstrate that the active
learned GAP model accurately reproduces the AIMD computed
results. Further, the results are validated against X-ray diffraction
measurements. We stress the fact that all the AL-driven GAP
models are trained only on the ab initio data, and experimental
entities are used for benchmarks purposes to improve the training
dataset. Finally, we demonstrate that the active learned GAP
potential can be used to perform NPT quench on a 6144 atom
system to estimate the density of the a-HfO2.

RESULTS

Active learning

We begin by discussing the results of applying the AL workflow to
HfO2 datasets generated from NVT “melt-quench” AIMD simula-
tions. The AIMD datasets are summarized in the inset of the Fig. 1.
The details of the AL workflow and the AIMD simulations are
described in the “Methods” section. The optimal learning
configuration for building up the potentials are chosen with the
AL workflow in order to achieve standard error convergence
pertaining to the range of properties measured7. The validation
plot for the active learned a-HfO2 potential is shown in Fig. 1. We
start by discussing the inset table of Fig. 1, where the details of
the active learned training configurations have been summarized.
The energy tolerance value, Etol, was set to 5 meV/atom for
quenching dataset, 2 meV/atom for the liquid and amorphous,
respectively. In the case of amorphous and liquid phases, the AL
workflow ended up with optimal training configurations with very
few data iterations. It can be observed that the nonequilibrium
nature of the quenching procedure over a large temperature
range leads to significant challenges in picking the right training
configuration. Consequently, it took the AL workflow 11 data
iterations to reach the requested accuracy. But Ntrain= 260 is a
meager 0.8% of the entire AIMD quench dataset. This would be a
significant human effort if done by handpicking configurations
from the ab initio dataset. The human choice of training dataset is
based on previous experience and literature reviews, combined
with trial-and-error principle to achieve the desired error
convergence. However, for the system relevant to this study, the
AL workflow gives an automated path to achieve the desired
accuracy without human intervention. Interested readers are
advised to refer to the Supplementary Discussion on manual
configuration selection and its benchmark with respect to the AL
scheme presented here.
The individual active learned configurations was combined to

train the final a-HfO2 potential. The details of the hyperparameters
are available in the Supplementary Table 1. We turn our attention
now to the quality of this active learned a-HfO2 potential, by
validating on a test dataset independent from the data used for
training. It can be seen that the active learned potential gives
close-to-linear fit in predicted GAP energies vs DFT energies. The
overall mean absolute error (MAE) for GAP-predicted energy is

Fig. 1 The GAP-predicted vs DFT energy validation plot for the active learned a-HfO2 potential. The validation was performed on a test
dataset independent from the training data. The scatter color indicates the AIMD dataset source from which the test data point was chosen.
(Inset table) Summary of the AIMD datasets, and active learning settings. Ntrain is the number of active learned training configurations. Etol is
the user-specified energy tolerance value in meV/atom. Niter is the number of data iterations required to converge the active learning
workflow. (Inset plot) Force validation plot.
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2.6 meV/atom. In the inset, we also show force convergence with
an overall MAE of 0.28 eV/Å. This supports the argument that
GAP-based atomistic models predict the local properties of the
systems with good accuracy of MAE < 5meV/atom for liquid and
amorphous states35,36.

Active learned GAP MD. With the active learned GAP potentials,
MD simulations are performed using the LAMMPS package37. The
simulation setup is shown in Fig. 2. We considered medium (768
atom) and large (6144) system size for the melt-quench simulation
to generate the amorphous structure. The details of the melt-
quench scheme are discussed in the “Methods” section.
We begin by a discussion of the results of the NVT melt-quench.

As noted in the “Methods” section, we have fixed the density of l-
HfO2 and a-HfO2 to values of 8.16 and 7.69 g cm−3, respectively, as
reported in an experiment study31. The X-ray structure factor of
molten hafnia at 3173.15 K (2900 °C) is measured to a Q-value of
22.5Å−1. The simulated atom–atom partial X-ray structure factors
are obtained via inverse Fourier transforms of pair distribution
functions (PDFs), weighted by the appropriate (Q-space) X-ray
form and concentration factors, summed and compared directly
with the experimental data. Figures 2 and 3 represent the

structure factor of l-HfO2 and a-HfO2, respectively. We can see a
very good agreement of our GAP model structure factor with that
of the experimental X-ray diffraction experiments for l-HfO2.
Furthermore, our GAP model shows good agreement with the
long-range and short-range ordering for the a-HfO2, whereas the
middle-range ordering from 5 <Q(Å−1) < 8 shows deviations from
the experimental structure factor. Our GAP model is capable of
capturing the salient structural features upon changing from an
equilibrium liquid structure to a nonequilibrium amorphous state.
To highlight the detailed structural rearrangements between the
liquid and amorphous structures, we plot Q[S(Q)− 1] to empha-
size the strong oscillations in amorphous signal in the range
Q ~ 5–15Å−1, which are heavily damped in the liquid signal. As
expected, the oscillations decay for Q > 5Å−1 in the liquid
structure factor due to the increased local disorder at higher
temperatures.
The objective of using our GAP model is to attain ab initio

accuracy with scaling which cannot be accessed with DFT. As
described in the “Methods” section, the ab initio reference data
have a 96 atom system and our GAP-MD simulation consists of a
system with 6144 atoms in total with box size of 4.4 × 4.4 ×
4.4 nm3. From Fig. 2, it can be seen that with an increase in scale,
the accuracy of structure factor of 6144 atoms l-HfO2 is
comparable to that of the experiments. This supports the
argument that our GAP-based atomistic model can retain DFT
accuracy at large scales with increased simulation times with
linear scaling7.
To characterize the atomic structure in finer detail, we show the

partial PDFs from GAP MD simulations for both l-HfO2 and a-HfO2

in Fig. 4. The calculated partial PDFs illustrate the growth of
intermediate range ordering in a-HfO2 compared to liquid in real
space (see Fig. 4). The first peak at ~2Å corresponds to the
average bond length between hafnium and oxygen. For l-HfO2,
there are single broad peaks associated with the Hf–O and Hf–Hf
correlations, but for a-HfO2, the Hf–O peak becomes narrower and
increases in intensity. Moreover, the broad Hf–Hf peak in the liquid
splits into two peaks in the amorphous form, corresponding to
well-defined edge-sharing polyhedra at 3.4Å and corner-sharing
polyhedra 3.9Å. The ratio of the edge/corner-sharing ratio is
known to be density dependent32 and leads to the formation of a
disordered network at distances r > 8Å in the amorphous phase,
which have also been observed in previous ab initio studies and
experiments31. The light blue dotted lines in Fig. 4 represent the
partial PDFs obtained from AIMD simulations, and our GAP-MD
model for 6144 atoms accurately reproduces the Hf–Hf peak split
corresponding to the edge-sharing and corner-sharing polyhedra
seen in the baseline DFT. This shows that the active learned GAP

Fig. 2 The simulation setup for GAP MD. A 768 atom cell was generated by 2 × 2 × 2 replication of a random snapshot extracted from the
AIMD liquid dataset. Another set of 6144 atom simulation cell was generated by 4 × 4 × 4 replication of a Packmol generated 96 atom
configurations. Hf (silver), oxygen (red). (Right panel) Comparison of X-ray structure factors for l-HfO2 with simulated structure factors
obtained from GAP-MD.

Fig. 3 Comparison of X-ray structure factors for a-HfO2. The red
line shows experiment structure factors. Simulated structure factor
obtained from NVT GAP-MD shown in Blue dots. The shifted green
curve shows the simulated structure factors obtained from NPT
GAP-MD.
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MD model can reproduce structural properties of hafnia with DFT
accuracy.
Previous studies31,32 have shown that the structure of a-HfO2 is

strongly density dependent. Here, we have performed the GAP
MD for the a-HfO2 with a fixed density of 7.69 g cm−3. Further,
with the analysis of the partial PDFs from Fig. 4, we showed that
the active learned GAP model accurately matches with AIMD
results. From Fig. 3, we can see deviations for the middle range
ordering of a-HfO2 for this density from our trained ab initio
dataset. Now from Figs. 4 and 3, it can be seen that Hf–Hf
interactions dominate the middle range ordering (5 <Q(Å−1) < 8)
of a-HfO2. To elucidate the density dependence, we run NPT
simulations with our GAP model. The details of NPT simulations
are explained in “Methods” section. These simulations are
performed to let the volume change in the system and the
resulting density of a-HfO2 is found to be 9.25 g cm−3. The
simulated structure factor at this density is shown in Fig. 3 (shifted
green curve). Here, we can clearly see an improved middle range
ordering (5 <Q(Å−1) < 8) compared to the low-density a-HfO2.
Thus the natural increase in density due to NPT simulations from
our GAP model is already able to improve the polyhedral
connectivity observed in a-HfO2. Further we stress the fact that
the accuracy of structure factor can also be increased by
benchmarking the training configurations in relevance to the
experiments which could be performed by RMC modeling7.
Table 1 gives the coordination numbers and bond lengths of a-

HfO2 and l-HfO2 in comparison to the experiments. GAP MD gives
a very close agreement with the Hf–O coordination number and
bond lengths with experiments. From Table 1, it can also be seen
that hafnium gives a sevenfold coordination with oxygen, which is
similar to the monoclinic phase asymmetric arrangements of Hf–O
bond distances at 2.03–2.25Å, as reported in previous study38. To
articulate the argument from the above, we calculated the bond
angle distribution of Hf–O–Hf of a-HfO2, the results of which are

discussed below.
The bond angle distributions derived from the GAP-MD are

shown in Fig. 5. For a-HfO2, it can be seen that there are two peaks
at Hf–O–Hf angles of 107° and 142°. Previous studies have
attributed these peaks to the existence of edge and corner-
sharing polyhedra, respectively32. In the GAP models, the two
Hf–O–Hf peaks suggests a structural morphology in a-HfO2

resembling that of the monoclinic phase, rather than a single
broad peak around 120° observed in the tetragonal and cubic
phases. However, a major difference between the amorphous
Hf–O–Hf bond angle distribution and that of the crystalline
monoclinc form is the width and intensity of the 142° peak. The
broad nature of this peak in a-HfO2 is indicative of a wide
distribution of packing arrangements of corner-shared HfOn

polyhedra compared to m-HfO2. The similarity of the 107°
Hf–O–Hf bond angle peak between a-HfO2 and m-HfO2 can be
understood due to the strict geometric requirements of edge-
shared units. Previous ab initio studies have predicted two
different types of amorphous structure formation using the
melt-quench scheme to investigate the amorphous-to-crystalline
phase transition. They related these structures to tetragonal type
and monoclinic type with respect to their long-range ordering and
volume energy curve31,32,38. The l-HfO2, on the other hand, has a
single asymmetric Hf–O–Hf bond angle distribution peak located
at ~115°, similar to that of the cubic and tetragonal phases of
hafnia, which have bond angle distribution peaks in the interval of
~117°–120°.
In summary, we have validated the active learned GAP models

using structural properties. Furthermore, we also note that the
diffusive behavior of amorphous and l-HfO2 has been studied
previously for their dielectric properties in RRAM31,32. To calculate

Fig. 4 The partial radial distribution functions for l-HfO2, and a-HfO2. The GAP MD simulation performed with a 6144 atom cell. The dotted
line shows the baseline Hf–Hf PDFs derived from DFT 96 atom cell. The dotted line has been shifted along y-axes for clarity.

Table 1. Local structure properties extracted from experiment31, a
classical force field (Broglia et al.32) and GAP MD (this work).

Method Hf–O (CN) Hf–O Peak
(Å)

Hf–Hf Peak (Å) Density
(g cm−3)

Exp a-HfO2 6.8 ± 0.6 2.13 3.38(1), 3.89(1) 7.69

GAP a-HfO2 6.6 2.12 3.41, 3.92 7.69

Broglia a-HfO2 6.2 2.15 3.37, 3.92 7.69

Exp l-HfO2 7.0 ± 0.6 2.05 3.67 8.16

GAP l-HfO2 6.13 2.00 3.59 8.16

The experimental liquid Hf–O CN was determined by the Gaussian fitting
of two peaks corresponding to CN= 5.0 (at 2.05Å)+ 2.0 (at 2.51Å). The
GAP-MD CN’s were determined by integration to the first minimum of the
Hf–O PDF.

Fig. 5 Angle distribution functions (ADF) obtained from AIMD of
pure phases of HfO2. GAP-predicted ADF for a-HfO2. The distribu-
tions have been shifted in vertical axes for clarity. The inset plots
show the ADF from the GAP model for l-HfO2.
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diffusion constants, the l-HfO2 trajectory was sampled for more
than 1 ns at 3100 K. The obtained hafnium and oxygen self
diffusion constants were Hf: 3.3796 (±0.1) × 10−5 cm2/s and O:
6.2971 (±0.1) × 10−5 cm2/s, respectively. To account for correlated
diffusion, we also calculated the distinct diffusion constants39–43

and the calculated distinct diffusion constants of Hf: 3.6 (±0.009) ×
10−5 cm2/s, O: 6.425 (±0.002) × 10−5 cm2/s. The impact of correla-
tion is obtained from the ratio of DA

Dσ

and is found to be >0.9. This is
in good agreement with the previous ab inito study performed by
Hong et al.44 reported at 3100 K Hf: 2.4 (± 0.1) × 10−5 cm2/s, O: 5.2
(±0.2) × 10−5 cm2/s. As reported in the Table I of Hong et al., the
computational cost associated with that ab initio calculation to
achieve 56 ps of trajectory for a system size of 270 atom is 21,500
CPU hours. Our GAP model with 6144 atom unit cell on the other
hand achieved 110 ps with a computational cost of 1080 CPU
hours, while keeping almost ab inito accuracy.

DISCUSSION

We have shown that the AL workflow can automatically sample a
minimum number of training and test configuration for the GAP
model that result in near DFT accuracy for the fitted energy and
forces. Further, we show that this AL technique can improve the
quality of interatomic potentials used for MD simulations up to an
accuracy of ab inito training data. We understand that there will
be scenarios where human logic and interventions are required to
guide the training process. However, for the system relevant to
this study, the AL workflow gives an automated path to achieve
the desired accuracy without human intervention. We showed
here the proof of concept that the AL could be a possible
replacement to educated handpicking configuration method. The
AL schemes further benefit the automation and selection speed of
training and test configurations from the ab initio dataset, which
are required to construct the machine learned atomistic
potentials, as shown in Supplementary Fig. 2. Here, we used
GAP-based atomistic models to model a-HfO2 so as to showcase
the AL workflow. Our machine learned atomistic model showed
very good agreement with experimental liquid and amorphous X-
ray structure factors. Our model is able to predict the diffusion
constants at same accuracy as previous study44, but at a reduced
computational effort, due to the linear scaling of GAP models. We
also exemplify the fact that the accuracy of the atomistic potential
purely depends on the quality of quantum mechanical calcula-
tions used for training. This method can further be used to
enhance the speed of modeling amorphous and liquid systems of
interest. Our AL scheme uses an automated query strategy that
relies on unsupervised clustering. In addition, Bayesian optimiza-
tion (BO) is used on the fly to find the optimal hyperparameters of
the ML interatomic potential. Due to the generality of the query
strategy and BO framework, we stress that this approach can be
easily extended to other ML based interatomic potentials.

METHODS

AIMD dataset
The input for amorphous structures was generated using Packmol45 by
packing 96 random particles (32 Hf, 64 O) in a cubic box of density 8.16 g
cm−346. The density of this cubic box is taken to be experimental density
reported by Gallington et al.31. The initial configuration is heated to 3600 K
(500 K higher than melting point) and sampled for 12 ps. The final
snapshot from the liquid configuration at 3600 K is quenched to 300 K at a
rate of 100 K/ps. The final configuration of quench is rescaled to
experimental density of 7.69 g cm−3 and 12 ps of amorphous configura-
tions are generated. From the liquid and amorphous trajectories, the final
6 ps of snapshots are retained in the dataset. All of the 33 ps of quenching
trajectories were retained in the dataset. These same density values are
used through this study.
The atomic configurations, energy, force, and virial stress are calculated

in NVT ensemble with a Nosé–Hoover thermostat47,48 as implemented in

the Vienna Ab initio Simulation Package (VASP v5.4.4)49,50. A plane wave
cutoff of 520 eV (30% larger than the largest cutoff value), 2 × 2 × 2 K-grid
Monkhorst–Pack scheme, and 1 fs time step were used. The
Perdew–Burke–Ernzerhof exchange-correlation functional51 and projector
augmented wave method52 are employed. Further details are available in
the Supplementary Discussion.

Active learning
Our aim is to employ AL to automatically sample uncorrelated learning
configurations from the reference datasets, by exploiting the underlying
cluster structure embedded in the dataset21 and partition them into “N”
uncorrelated clusters53. The learning configurations are sequentially
sampled from the uncorrelated cluster and trained using the GAP model
till the desired accuracy has been achieved. The AL workflow has been
show in Fig. 6.
For the clustering, we use HDBSCAN54–56, a density-based hierarchical

clustering method. This algorithm has been successfully applied to
partition and analyze MD trajectories57. The individual AIMD trajectory
serves as the input to the AL workflow. For the distance metric, we
compute the pairwise root mean square deviations (RMSD) of atomic
positions58. The pairwise RMSD matrix computed from the trajectory is
input to HDBSCAN. HDBSCAN partitions the input trajectories into
uncorrelated clusters. Once the information on the clusters is extracted,
a series of trials is run to sample data from the uncorrelated clusters. In
each trial, samples are drawn from each cluster at intervals separated by
Kiter, where Kiter goes from Kmax to Kmin . Kmin and Kmax are the sample sizes
of the smallest and the largest clusters, respectively. For the sake of
consistency, an equal number of unique training (Ntrain) and test
configurations are sampled from each cluster per trial. The sampled
training configurations are used for training the GAP model and the test
configurations, which are samples drawn independent of the training
configurations used for validating the trained models. In the initial trial (i.e.,
first iteration), exactly one unique training and test configuration are
drawn from each cluster (i.e., sampling width is same as maximum sample
size, Kmax). This would mean that at the end of the first iteration,
the number of training and test configuration samples would be equal to
the total number of clusters. In the subsequent trials more configurations
are drawn from the cluster as the sampling width decreases. Now we turn
our attention to GAP model training and validation. For the AL workflow,
we only fit and evaluate the GAP model with respect to reference dataset
energy computed from DFT, as our goal is to arrive at the optimal training
configurations. We use MAE in the GAP-predicted energy on the test
dataset as the error metric. The GAP model, in turn, has a number of

Fig. 6. Active learning workflow. The AIMD trajectory is converted
in to distance matrix and passed to the Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) clustering
algorithm. Training and test data samples are sequentially drawn
from the clusters to fit the GAP model till the required accuracy is
achieved. For every data sampling iteration, Bayesian Optimization
perform on-the-fly hyperparamter tuning of the GAP model.
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hyperparameters that need to be tuned to arrive at the best model for a
sampled dataset. BO is a powerful technique for the automated
hyperparameter tuning of costly ML models59. Excellent review on this
subject is available elsewhere60. The BO consists of a surrogate model for
the objective function and an acquisition function to sample the next
hyperparameters. Initially the BO runs a number of explorations over
hyperparameter space to build the surrogate model over the error metric.
Then a series of exploitation’s are performed based on the knowledge
gained from the initial exploration so as to move towards improving the
surrogate model and getting better samples of hyperparameters that
might lead to the minimization of the error metric. If the best GAP model
generated from the BO does not achieve the required accuracy as gauged
by an arbitrary user-specified threshold tolerance value (Etol), then the next
trial is invoked to add more training and test data from the clusters. The
workflow stops the data iterations (number of data iteration, Niter) as soon
as the MAE in energy prediction for the best GAP model is on or below the
user-specified threshold energy tolerance value (Etol). The optimal
configuration active learned from each of the individual AIMD datasets is
sequentially combined to train the a-HfO2 potential. The cluster
parameters such as N, Kmin, and Kmax are outcomes of the unsupervised
learning; consequently, the sampling regime is expected to generalize
easily to new datasets and requires no hand tuning. Since we perform BO
of the ML interatomic potential as a part of the AL, the optimal
hyperparameters are readily accessible along with the optimal training
configurations. The details specific to the Python implementation of the
workflow has been discussed in the usage notes section. The technical
details of clustering algorithm and BO are available in the Supplementary
Discussion.

GAP-MD
The individual active learned datasets are combined to train the final a-
HfO2 GAP potential. In order to prevent unphysical clustering of oxygen
atoms at high-temperature simulations, a nonparametric two-body term
was added to the Smooth Overlap of Atomic Position (SOAP) descrip-
tor61,62. The details of the training hyperparameters are provided in the
Supplementary Table 1. The a-HfO2 GAP potential is used to perform melt-
quench MD simulations using the LAMMPS MD package37. Two different
system sizes are considered for the simulations. The melt-quench MD (up
to 1 K/ps) is performed in an NVT ensemble with a Nosé–Hoover
thermostat47,48 to sample the configurations with a time step of 1 fs. The
liquid and amorphous configurations are sampled for 100–200 ps. For
scaling, we have performed MD simulations of liquid configurations up to
1.2 ns, and diffusion coefficients are estimated from this trajectory. For the
GAP-based NVT quench, we use the same procedure as used in the AIMD
dataset generation step by fixing the liquid and amorphous simulation
setup density to values previously reported in experiment31. Different
system sizes are also investigated, details of which are discussed in the
results section. To estimate the density of a-HfO2, starting from melt, we
performed a quench in NPT ensemble with a Nosé–Hoover thermostat47,48

and a barostat63–65 to allow for the volume to change. To avoid unnatural
pressure fluctuations, the l-HfO2 at 3600 K is equilibrated till 2500 K using
an NVT ensemble. We performed a zero pressure NPT quench from 2500 to
500 K. A quench to temperature below 500 K is not observed to result in
significant structural changes7. The GAP model is used to perform
conjugate-gradient minimization to relax cell and atomic position of the
NPT quenched configuration at 500 K into local minima.

Experiment
High-energy X-ray diffraction experiments on liquid and a-HfO2 were
performed on beamline 6-ID-D at the Advanced Photon Source. The details
have previously been reported elsewhere31, so only the salient information
is provided here. The liquid state diffraction measurements were
performed by laser heating in an aerodynamic levitator using 100.27 keV
X-rays, in combination with a large a-Si area detector. The experiments on
a-HfO2 were performed in a similar manner but using an incident energy of
131.74 keV to attain data out to higher Q-values and improve the real-
space resolution. The data were analyzed using standard correction
procedures, including corrections for background, Compton scattering,
fluorescence and oblique incidence to yield the Faber–Ziman total X-ray
structure factors. A sine Fourier transform was used to obtain the
corresponding X-ray PDFs.

Usage notes
The AL workflow is implemented through the “BayesOpt_SOAP.py”
workflow. This workflow internally calls the “activesample” Python class,
which performs the data processing, clustering and sampling, at once. This
class takes an extended XYZ file format as input, and it uses the MDTraj
library66 by calling the md.rmsd() to construct the distance matrix. MDTraj’s
md.rmsd() module computes the pairwise RMSD of atomic positions after
rotating and centering trajectory configurations. There are two hyperpara-
meters, namely the “minimum number of clusters” and “number of samples,”
which controls the performance of the clustering. These two hyperpara-
meters need to be carefully tuned in such a way as to minimize the noise
points67. In addition, setting the minimum number of clusters might
prevent a scenario in which all data points collapse into a single cluster. If
there are no user supplied inputs for these hyperparameters then a default
value of 10 is set to both, which was found to be a reasonable choice after
carefully evaluation across multiple trajectories. Since we are enforcing the
minimum number of clusters, the Kmin will have same value as this
hyperparameter. If there are scenarios in which more complex molecule
dynamics trajectories are encountered, then a custom distance matrix can
be supplied by the user. In the above code, this could be done using the
class attribute “data.distance.” Finally, we have used the BO as
implemented in the GPyOpt Python library68 to optimize the hyperpara-
meters of the SOAP descriptor61 and the GAP model23. These hyperpara-
meters are radial cutoff, number of radial basis functions (“n_max”),
spherical harmonics basis band limit (“l_max”), number of sparse points to
use in the sparsification of the Gaussian process (“n_sparse”), and the
standard deviation of the Gaussian process (delta). The active learned final
training and test configurations are written to “opt_train.extxyz” and
“opt_test.extxyz” files respectively. The detailed summary of the workflow
including information of each data sampling iterations as well as the
optimized hyperparameters are written to a JavaScript Object Notation
(JSON) formatted output (“activelearned_quipconfigs.json”). More detailed
discussions on workflow parameters and example usage are available in
the GitHub repository. The hyperparameters and results of an example
usage are discussed in “Active Learning Workflow Example Results”
subsection in the Supplementary Discussion.

A code example for the usage of the “activesample” class.

DATA AVAILABILITY

The “XML” formatted force field file and active learning benchmark dataset are
available at https://github.com/argonne-lcf/active-learning-md.

CODE AVAILABILITY

An implementation of the active learning workflow described in the paper is
available at https://github.com/argonne-lcf/active-learning-md.
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