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Abstract

Atomistic simulations have become an invaluable tool for industrial applications ranging from the optimization of protein-
ligand interactions for drug discovery to the design of new materials for energy applications. Here we review recent advances 
in the use of machine learning (ML) methods for accelerated simulations based on a quantum mechanical (QM) description 
of the system. We show how recent progress in ML methods has dramatically extended the applicability range of conven-
tional QM-based simulations, allowing to calculate industrially relevant properties with enhanced accuracy, at reduced 
computational cost, and for length and time scales that would have otherwise not been accessible. We illustrate the benefits 
of ML-accelerated atomistic simulations for industrial R&D processes by showcasing relevant applications from two very 
different areas, drug discovery (pharmaceuticals) and energy materials. Writing from the perspective of both a molecular 
and a materials modeling scientist, this review aims to provide a unified picture of the impact of ML-accelerated atomistic 
simulations on the pharmaceutical, chemical, and materials industries and gives an outlook on the exciting opportunities 
that could emerge in the future.

Keywords Quantum mechanics · Machine learning · Neural networks · Drug discovery · Energy materials · Industrial 
applications

Introduction

Computational methods play an increasingly important role 
in R&D processes across the pharmaceutical, chemical, and 
materials industries. Computer-aided drug design [1–3] has 
the potential to lower the cost, decrease the failure rates, and 
speed up the discovery process. Computational materials 
methods help to identify novel materials [4, 5], for exam-
ple, for renewable energy applications [6] such as catalytic 
energy conversion [7] and energy storage [8]. Results from 
atomistic simulations aid in the interpretation of experi-
mental measurements and give insights into the structure, 

dynamics and mechanisms of processes occurring on the 
atomic scale.

In the last decades a new class of atomistic simulation 
techniques has emerged that combines machine learning 
(ML) with simulation methods based on quantum mechani-
cal (QM) calculations. Such ML-based acceleration can dra-
matically increase the computational efficiency of QM-based 
simulations and enable to reach the large system sizes and 
long timescales required to access properties with relevance 
for industry.

Here, we review a selection of ML-accelerated QM meth-
ods and their applications to drug design and materials dis-
covery. In the next section we briefly summarize the two 
main conventional approaches for atomistic simulations, 
based on molecular mechanics (MM) and QM, respectively, 
and we show how ML can help overcome their limitations. 
This is followed by a discussion of recent methodological 
advances in ML-based interatomic potentials (force fields) 
for the modeling of complex molecular and materials sys-
tems. Finally, we review recent applications of these meth-
ods in the fields of drug discovery and materials design. 
We show that ML-accelerated QM simulations have now 

 * Nongnuch Artrith 
 nartrith@atomistic.net

 Tobias Morawietz 
 tobias.morawietz@bayer.com

1 Bayer AG, Pharmaceuticals, R&D, Digital Technologies, 
Computational Molecular Design, 42096 Wuppertal, 
Germany

2 Department of Chemical Engineering, Columbia University, 
New York, NY 10027, USA

http://orcid.org/0000-0002-9385-8721
http://orcid.org/0000-0003-1153-6583
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-020-00346-6&domain=pdf


558 Journal of Computer-Aided Molecular Design (2021) 35:557–586

1 3

matured to the point where they can have a large impact on 
industrial processes.

Atomistic simulation methods

The central quantity in atomistic simulations is the potential-
energy surface (PES), a high-dimensional function of the 
position of all atoms in the system. The potential energy 
is the basic ingredient for Monte Carlo (MD) simulations, 
while the derivative of the PES yields the atomic forces that 
are required to numerically solve Newton’s equations of 
motion in molecular dynamics (MD) simulations [9, 10]. 
The choice between MD and MC simulations depends on the 
system and physical process one wants to investigate. MC 
methods can be employed to obtain structural properties, are 
efficient in overcoming energy barriers, and can be used for 
simulating processes in which the number of particles varies. 
The continuous trajectories generated in MD simulations on 
the other hand allow to obtain dynamic properties such as 
vibrational spectra and diffusion coefficients.

When applying atomistic simulations to a given research 
question, one of the most important considerations is the 
choice of the simulation method that describes the PES 
and produces the energy and (possibly) atomic forces that 
drive the simulation. Depending on the degree of physical 

approximation, simulation methods are more or less com-

putationally efficient.
Physically most accurate and computationally most 

expensive are non-empirical QM-based methods that 
describe the electronic structure and the atomic structures 
with all degrees of freedom. QM-based simulations are 
typically limited to small system sizes of less than thousand 
atoms and short time scales on the order of picoseconds. On 
the other end of the scale are simulation methods based on 
empirical molecular mechanics (MM) that do not explic-
itly describe the electronic structure and may additionally 
coarse-grain atomic structures by removing select degrees of 
freedom. Simulation methods that are direct non-empirical 
approximations to QM are (usually) transferable across the 
periodic table and across different atomic structures (e.g., 
organic molecules, bio-polymers, inorganic solids), whereas 
empirical methods are parametrized for a specific applica-
tion and are typically not transferable to other situations.

Finally, the usability of a simulation method also depends 
on the availability of accessible and well-documented soft-
ware implementations. Hence, the choice of simulation 
method depends on the physical approximation that is called 
for by the given research question, and is generally informed 
by the following four aspects: 

1. The types of physical approximations made,
2. The computational efficiency of the method,

3. Its transferability, and
4. Its usability.

Note that a specific research question also determines the 
relevant length and time scales (e.g., proteins vs. small mol-
ecules), and a given application might simultaneously call 
for high physical accuracy and large length/long time scales. 
Such research questions cannot be addressed with conven-
tional simulation methods. Novel ML methods, discussed in 
Sect. Machine learning potentials for atomistic simulations, 
can overcome this limitation.

A schematic overview of the interrelationship of physi-
cal approximation and computational efficiency is shown 
in Fig. 1. In the following, we briefly review conventional 
atomistic simulation methods before discussing how these 
methods can be accelerated and generalized using ML 
techniques.

MM‑based simulations

In MM-based simulations analytical functions with a small 
number of parameters often derived from experimental 
input are employed to describe the PES. They are typi-
cally developed for a specific system or application and are 
called force fields in the context of bio-molecular simula-
tions [11] or interatomic potentials for the description of 
materials systems [12]. Commonly used force fields (such 
as AMBER [13], CHARMM [14], GROMOS [15], and 
OPLS [16]) are computationally very efficient since they 
employ simple pairwise interaction terms and fixed atomic 
charges. They also rely on the definition of atomic connec-
tivities and atom types and are therefore non-reactive. Exam-
ples for interatomic potentials for the descriptions of solids 
and surfaces are the Lennard-Jones pair potential [17], the 
embedded atom model (EAM) [18], and bond order poten-
tials such as the Tersoff potential [19].

MD simulations with force fields have become a key tech-
nique for different stages in the drug discovery pipeline [20, 
21]. One specific example is their use in the early discov-
ery phase for the calculation of relative binding affinities of 
ligand molecules to a protein binding site. The ability to effi-
ciently calculate the associated binding free energy [22–24] 
can provide valuable contributions to the ligand optimiza-
tion phase, allowing to rank ligands, optimize selectivity, 
and estimate off-target interactions. With recent advances in 
the free energy methods and underlying simulation models, 
the calculation of free energies from atomistic MD simu-
lations has become a reliable tool with several examples 
of successful industrial applications [25–29]. Multi-scale 
approaches in which atomistic force fields are combined 
with coarse-grained models that were built for specific appli-
cations can further reduce the computational cost and allow 
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to study even larger systems such as membrane-bound ion 
channels [30].

A general drawback of empirical MM simulations is the 
fact that the obtained results depend on the experimental 
data the models are based on, which restricts their predictive 
power and transferability to conditions not included in the 
optimization process. Standard force fields for example are 
parametrized to a limited set of chemical elements and can-
not be easily applied to metal-containing proteins. Another 
serious limitation is the inability to describe the breaking 
and forming of chemical bonds, prohibiting their use for 
industrially relevant processes such as the investigation of 
enzymatic reactions for covalent inhibitor design [31] or of 
catalytic reactions at metal oxide surfaces [32].

To address these limitations several extensions of empiri-
cal force fields and potentials have been developed. Exam-
ples are approaches that go beyond atom types using the 
SMARTS chemical perception language [33] developed by 
the Open Force Field Initiative [34], reactive force fields that 
allow the breaking of chemical bonds [35], and the develop-
ment of frameworks for systematic and reproducible para-
metrization procedures [36, 37]. All these approaches have 
in common that the employed functional form to approxi-
mate the PES is predetermined and for the sake of efficiency 
approximated by simplified functions with a small number 
of model parameters.

QM‑based simulations

QM-based simulation methods (also called ab initio molecu-
lar dynamics [AIMD] or first principles simulations) [38, 39] 
circumvent the problem of defining a functional form for the 
PES. Here, energy and atomic forces are obtained on-the-fly, 
in each step of the simulation, by (approximately) solving the 
Schrödinger equation using an electronic structure method 
like density-functional theory (DFT) [40]. QM simulations 
are fully reactive and can describe the complex bonding pat-
terns, polarization effects and charge transfer processes that 
govern the behaviour of biological systems [41]. In combi-
nation with path integral approaches also nuclear quantum 
effects (NQEs) [42, 43] like zero-point motion and tun-
neling can be included, processes that are important for the 
description of systems containing hydrogen-bond networks 
and acidic protons. QM-based simulations can be applied 
to obtain a large set of materials properties, for example the 
stability of crystal structures, elastic constants, and trans-
port phenomena. In addition to energies and forces, other 
observables can be directly calculated by QM methods such 
as dipole moments, polarizabilities, chemical shifts, and 
phonon frequencies for the spectroscopic characterization 
of molecular and materials systems.

While MM-based simulations are only possible when 
reliable force fields (or interatomic potentials) for the given 
system are available, QM methods are in principle appli-
cable to all chemical species. In practice, there is no single 
QM method that is computationally affordable and reliable 

Fig. 1  Atomistic simulation methods can be broadly categorized 
into two classes depending on the way the system is described: using 
quantum mechanical (QM) calculations based on the electronic struc-
ture or molecular mechanics (MM) methods with predefined func-
tional forms. Due to their higher computational cost QM-based simu-
lations are limited to smaller systems while MM-based methods are 

more efficient but rely on many approximations and are often derived 
from experimental input. The goal of QM-based machine learning is 
to raise the efficiency of QM methods without sacrificing their trans-
ferability, predictive power and ability to describe complex bonding 
patterns including the breaking and forming of chemical bonds
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for every system, and the approximations made in a chosen 
method still need to be carefully validated [40]. The largest 
bottleneck of QM-based simulations is the high computa-
tional cost of the electronic structure calculations that have 
to be executed in each simulation step. Even for efficient 
QM methods such as DFT the algorithmic scaling is typi-
cally of order O(N3) in the number of electrons N, which 
means that an increase in system size by a factor of 10 leads 
to an increase in processing time of a factor of 1000. This 
severely limits the application of QM simulations to small, 
often idealized model structures containing not more than a 
few hundred atoms. Semi-empirical methods [44–47] such 
as density functional tight binding (DFTB) [48–50] lower 
the computational burden and can even describe full pro-
teins [51] but their efficiency comes at the cost of transfer-
ability and accuracy.

Overcoming the limitations of QM‑based 
simulations with machine learning

As detailed in the previous two sections, MM-based atom-
istic simulation methods can be computationally highly 

efficient but have limited transferability owing to their high 
degree of physical approximation. Conversely, QM-based 
methods can be highly accurate but are computationally too 
demanding for many applications of industrial relevance. 
While mixed quantum mechanics/molecular mechanics 
(QM/MM) approaches  [52–55] can, in principle, com-
bine the strengths of both worlds, QM/MM is technically 
involved and usability is therefore not always given. Modi-
fications [56, 57] of the original Car-Parrinello method [38] 
can reduce the computational burden of QM simulations 
to some extend but are still much more costly compared 
to MM-based simulations. If a research question requires 
simultaneously high accuracy and high computational effi-
ciency (the top left corner of the schematic in Fig. 1), this 
means in practice often that it cannot be addressed with con-
ventional atomistic simulation methods.

To overcome this limitation, a number of methodologies 
based on ML have been developed during the last decades. 
The purpose of the different ML strategies generally falls 
into one of the following four categories: 

1. Extension of the applicability range of QM simulations 
to larger length and time scales;

2. Prediction of properties calculated from QM methods;
3. Automated analysis of simulation data; and
4. Inversion of atomistic calculations to generate atomic 

structures for a given set of properties.

Strategy (1) is based on the development of machine-learn-
ing potentials (MLP) that achieve an accuracy that is close 
to (or identical to) QM-based methods but at significantly 

reduced computational cost that scales linearly with the sys-
tem size. MLPs can be taken as drop-in replacement for 
conventional interatomic potentials or force fields, which 
ensures a high usability.

In strategy (2), ML models are trained to yield the out-
come of QM-based calculations either using optimized 
structures or configurations obtained from atomistic simu-
lations. Examples are ML predictions of atomization ener-
gies [58, 59] of small organic molecules, nuclear magnetic 
resonance (NMR) shifts [60] and band gaps [61–63] of inor-
ganic solids, and adsorption energies of electrocatalysts [64]. 
By design, ML models of type (2) are less general than 
MLPs as they are specific to one or few QM properties and 
do not easily transfer to others. The increasing availabil-
ity of QM databases enables training such ML models for 
an ever growing number of QM properties, and we discuss 
examples in Sect. Spectroscopic techniques for structure 
characterization.

MD and MC simulations of complex atomistic systems 
can yield data that are challenging or time-consuming to 
interpret for humans, such as MD trajectories with frames 
(atomic coordinates) from billions of time steps. Strategy (3) 
uses ML techniques for the analysis of simulation data, for 
example for the automatic identification of crystal struc-
tures [65] or the extraction of free energy surfaces from 
enhanced-sampling MD simulations [66, 67].

Finally, the inverse design strategy (4) holds great prom-
ise for the future of molecular and materials design but is 
currently in its infancy with few published examples. For 
examples of inverse molecular design, we refer to a recent 
review by Sanchez-Lengelin and Aspuru-Guzik [68]. In 
general, methods that implement ML models of type (4) 
are not yet standardized and usability is therefore generally 
not yet given.

In this review we focus on ML approaches of strategy 
(1) and (2), i.e. MLPs for accelerated simulations and ML 
models that predict the outcome of QM calculations, since 
those are the most mature and offer a reasonable balance 
of usability and pay-off for industrial applications. More 
general applications of ML approaches, for example for 
retrosynthesis [69, 70], direct prediction of experimental 
properties [71–73], and molecule generation and optimi-
zation [74–76], are discussed in references [77–80]. In the 
following section, we discuss different types of MLPs and 
approaches for their construction.

Machine learning potentials for atomistic 
simulations

As discussed in the previous section, atomistic simulations 
sample the PES of collections of atoms, and the description 
of the PES may be either based on first principles QM or on 
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approximate physical or ad-hoc mathematical expressions. If 
a PES is described by a mathematical function that does not 
have any direct correspondence in the laws of physics, the 
PES can nevertheless be highly accurate if it interpolates the 
true QM potential energy faithfully for all relevant atomic 
arrangements. For example, the mathematical form of the 
repulsive branch of the (12-6) Lennard-Jones pair poten-
tial [17] was originally chosen for computational simplicity 
and does not reflect the true exponential behavior known 
from QM, but the Lennard-Jones potential nevertheless 
describes noble gas dimers with great accuracy because it 
provides a good interpolation of the QM potential energy 
for all relevant bond lengths. An atomistic simulation of an 
argon dimer with a Lennard-Jones potential can therefore be 
just as accurate as a full quantum-mechanical calculation, 
while it is computationally more efficient by several orders 
of magnitude.

What if we had a flexible mathematical function that is 

able to accurately interpolate the QM potential energy for 

any arbitrary atomic system, not only for dimers or select 

classes of materials?

As it turns out, it can be shown that artificial neural net-
works (ANN) [81] with finite numbers of parameters can 
represent any real-valued continuous function, such as PESs, 
with arbitrary accuracy. This is in simple terms the con-
clusion of the universal approximation theorem[82, 83], 
and similar theorems have been derived also for other ML 
regression methods such as Gaussian process regression 
(GPR) [84]. Hence, carefully constructed ML regression 
models can in principle replace any QM PES without loss 
of accuracy.

The regression or interpolation of PESs with ML, is at 
the core of ML potentials. Fig. 2 shows an overview of the 
main steps involved in the construction and application 
of ML potentials for accelerated QM-based simulations: 

(1) reference calculations, (2) model training, (3) model 
application. The various ML potential methods differ in the 
ML method used for regression and the descriptor approach 
used for the translation of atomic structures to features that 
are suitable as input for ML models.

Several ML methods have been used for the task of learn-
ing PESs, from ANNs [85, 86], to GPR [87, 88], and kernel 
ridge regression (KRR) [89]. The discussion here focuses on 
ANN-based ML potentials, which have been applied to the 
widest range of materials and compositions.

Representation of PESs with ANNs

On a fundamental level, ANNs are non-linear vector func-
tions that take a vector as input and produce another vector 
as output. The functional form of ANNs consists of a combi-
nation of elemental building blocks that may be interpreted 
as artificial neurons, since they perform an operation that is 
on a basic level similar to that of a biological neuron. Each 
artificial neuron takes the weighted sum of one or more input 
values x

i
 and applies a non-linear activation function f

a
 to 

the result

where a
i
 is the weight of the i-th input and b is a bias weight 

that allows for an additional constant shift that does not 
depend on the input values. An ANN is the combination 
of interconnected artificial neurons such that the outputs of 
some neurons are the inputs of others. In a feed-forward 

ANN, the neurons are organized in layers, and all connec-
tions are in one direction, i.e., outputs from all neurons of 
one layer are the inputs of the neuron of the subsequent 

(1)y = f
a

(

∑

i

aixi + b

)

Fig. 2  Workflow for machine learning-accelerated atomistic simula-
tions: first, reference calculations are performed for a set of configu-
rations using a quantum mechanical (QM) method such as density-
functional theory (DFT). The resulting QM energies (and potentially 
forces) are then used to train a machine learning model that maps the 
atomic structure to its corresponding energy and by that learns the 

potential-energy surface (PES) of the atomistic system. Once trained, 
the resulting ML model yields a continuous representation of the PES 
that can be efficiently evaluated and allows to perform molecular 
dynamics (MD) or Monte Carlo (MD) simulations for larger systems 
and on longer time-scales than possible with direct QM-based simu-
lations
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layer. The graph representation of a feed-forward ANN is 
shown under the label “interpolation” in Fig. 2. ANN train-

ing is the process of optimizing the weight parameters {a
i
} 

and {b} for each neuron to reproduce reference data within 
a training set.

In principle, feed-forward ANNs can be directly used 
for the interpolation of PESs in the sense that is indicated 
in Fig. 2. In this scheme, the atomic positions, e.g., the 
Cartesian coordinates of all atoms, are the input of the 
ANN, and the potential energy is the output. Variations of 
this approach have been used in theoretical chemistry since 
the 1990s [90–93] to accelerate the modeling of select 
molecular systems.

This naïve interpolation, however, disregards funda-
mental symmetries of the potential energy with respect 
to rotation/translation of the atomic structure and the 
exchange of equivalent atoms. Hence, care must be taken 
that the ANN-interpolated PES does not exhibit unphysi-
cal features. In addition, the input dimension of the ANN 
is fixed to the number of degrees of freedom of a specific 
atomistic system, and it is not possible to use the same 
ANN to predict the potential energy of atomic structures 
with fewer or more atoms.

Lorenz et al. [94] introduced a transformation of the 
Cartesian atomic coordinates into a set of coordinates that 
incorporates the symmetries of the PES before the ANN 
interpolation, to describe the dissociation of an H

2
 mol-

ecule over the Pd(100) surface. The limitation to a fixed 
number of atoms was removed by the high-dimensional 
neural network potential approach.

High‑dimensional neural network potentials

To overcome the limitations of ANN-interpolated PESs, 
in 2007 Behler and Parrinello proposed an ANN potential 
methodology [85] that is based on an implicit decomposi-
tion of the total potential energy E(�) of an atomic struc-
ture � into atomic energy contributions E

i

In equation (2), �
i
 is the local structural environment of atom 

i that contains only the coordinates �� and chemical species 
tj of those atoms that are within a cutoff distance R

cut
 from 

the position �
i
 of atom i. In the high-dimensional neural 

network potential method, ANNs are trained to predict the 
atomic energy E

i
.

Following the idea by Lorenz et al. [94], the ANN input 
is obtained by representing features of the local atomic 
environment �

i
 with symmetry functions  [85, 95] that 

(2)

E(�) ≈

atoms∑

i

Ei(�i)with �i =
{
�j, tj for |�j − �i| ≤ Rcut

}
.

incorporate the rotational symmetry and the symmetry 
with respect to the exchange of equivalent atoms. Other 
symmetry-invariant descriptors or fingerprints of local 
atomic environments have since been developed, and key 
methods are reviewed in Sect. Descriptor of the local 
atomic environment.

The original Behler-Parrinello method was limited to a 
single atomic species. In 2011, the method was extended to 
multicomponent compositions by Artrith, Morawietz, and 
Behler by training separate ANNs for different atomic types 
t [96]. The total energy in the multicomponent ANN poten-
tial method is given by

where �̃
i
 is the symmetry-invariant descriptor (fingerprint) 

of the local atomic environment �
i
 and ANN

t
 is the atomic 

ANN for atoms of type t.
Figure 3 shows a graph representation of a high-dimen-

sional neural network potential including the translation of 
the atomic coordinates �

i
 to an invariant fingerprint of the 

local atomic environment �̃
i
 and the prediction of the atomic 

energies E
i
 by the atomic ANNs.

Note that training ANN potentials that are based on 
atomic energy contributions is technically more involved 
than the direct ANN interpolation of the PESs discussed 
in Sect.  Representation of PESs with ANNs, since the 
atomic energies are not uniquely defined in QM simulation 
methods and are therefore not directly available as refer-
ence. In most ANN potential methods the atomic energy is 
learned implicitly from the total energy, i.e., the reference 
data for the ANN potential training are total energies (and 

(3)
E(�) ≈ EANN(�) =

atom

types
∑

t

atoms of

type t
∑

i

ANN
t
(�̃

i
),

Fig. 3  Diagram of the high-dimensional neural network that com-
bines the atomic ANNs of all atoms in a structure for an N-atom sys-
tem. The output is the total energy E, which is the sum of the indi-
vidual atomic energy contributions E

i
 , which are in turn the outputs 

of atomic feed-forward ANNs
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its derivatives). Alternatively, the QM total energies can be 
first decomposed into atomic energy contributions via non-
unique schemes [97], which can improve the training effi-
ciency but introduces an additional step in data preparation.

A fundamental assumption of the multicomponent ANN 
potential approach as expressed in Eq. (3) is that the total 
energy is entirely given by a sum of short-ranged atomic 
energy contributions. However, some contributions to the 
total energy are known to be long-ranged. Specifically, 
atomic structures with ionic species or ionic bonding contri-
butions exhibit long-ranged electrostatic interactions. Also, 
long-ranged dispersive (London or van der Waals) interac-
tions are of crucial importance, for example, for (bio)poly-
mers and for adsorption phenomena.

ANN potentials with long‑ranged electrostatic 
interactions

The energy contribution from the electrostatic interaction of 
two charged atoms i and j is given by Coulomb’s law

where qi and qj are the atomic charges, Rij = |�j − �i| is the 
interatomic distance, and �

0
 is the permittivity of the vac-

uum. Since Coulomb interactions decay only as 1∕Rij with 
the interatomic distance, they cannot be generally truncated 
at any cutoff, hence, the ANN potential expression of Eq. (3) 
would be inappropriate irrespective of the cutoff chosen for 
the local atomic environment. Note that electrostatic interac-
tions in dense media, such as solids or liquids, are screened 
and can often be treated as effectively short-ranged [98]. It 
should be also kept in mind that the distance dependence 
of the ANN forces is twice as large as the chosen cutoff 
that defines the size of the local atomic environments [96, 
99–101]. If screening cannot be assumed, the ANN potential 
approach needs to be extended.

To address this need, Artrith, Morawietz, and Behler pro-
posed an extension of the ANN potential method by a sec-
ond set of ANNs that are trained to reproduce environment-
dependent atomic charges [96, 101–103]. In this approach, 
the total energy is given by

where the short-range energy contribution Eshort

ANN
 is given by 

the expression of Eq. (3). The long-range energy contribu-
tion takes the usual Coulomb form

(4)Eelec

i,j
(�i,��, qi, qj) =

1

4��0

qiqj

Rij

,

(5)E
total
ANN

= E
short
ANN

+ E
long

ANN
,

(6)E
long

ANN
=

atoms
∑

i,j

Eelec
i,j

(�i,��, qi, qj),

which can be evaluated, for example, with the Ewald sum-
mation technique [104] or using approximate damped tech-
niques such as the pairwise approach by Fennell and Gez-
elter [105]. The atomic charges in Eq. (6), qk = ANN

q

t (�̃k) , 
are represented by ANNs as function of the local atomic 
environment. A schematic of the electrostatic extension of 
the high-dimensional ANN potential method is shown in 
Fig. 4.

The original approach [96, 102] trained the charge ANNs 
on Hirshfeld charges [106]. Since the decomposition of the 
total charge density into atomic contributions is not uniquely 
defined, other charge partitioning schemes  [107] would 
have been equally valid. To avoid training potentially ill-
defined atomic charges directly, Yao et al. trained atomic 
charges implicitly such that they reproduce molecular dipole 
moments [108], which are physical observables. In the case 
of ionic crystals, a static charge approach in which the 
atomic charges are independent of the environment has also 
been demonstrated to work [109]. Finally, the restriction of 
long-ranged electrostatic interactions to the Coulomb form 
and to explicit atomic charges might be avoidable by intro-
ducing an energy term that depends on long-ranged features 
of the atomic structure, which Grisafi and Ceriotti recently 
demonstrated for a simplified model [110].

ANN potentials with dispersive interactions

In addition to splitting off electrostatic interactions, also dis-
persive van der Waals (vdW) interactions can be treated sep-
arately. Morawietz and Behler [111] introduced an extended 
energy expression,

Fig. 4  Diagram of the high-dimensional neural network potential for 
multicomponent systems: The total energy of the system is obtained 
as a sum of a short-range energy (E

s
 ) obtained as shown in Fig.  3 

and a long-range electrostatic energy (E
el
 ), which is calculated from 

atomic charges Qi . Both the short-range atomic energies and the 
atomic charges depend on the local atomic environments and are con-
structed by atomic ANNs [96]
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where Edisp is an analytic correction term which improves 
the description of dispersion interactions using Grimme’s 
D3 method [112]. A similar approach was taken by Yao 
et al. [108] based on the D2 correction scheme [113].

While the main reason for introducing explicit electro-
statics is their long-ranged nature which cannot be repre-
sented by short-range atomic energies, the need to include 
a separate dispersion term depends on the employed refer-
ence method and the system. A vdW correction term might 
be required if DFT is used as the reference method, since 
(semi-)local density-functionals suffer from an inaccurate 
description of these interactions. Having an explicit vdW 
correction term that is added to the short-range energy 
represented by the ANN has the additional benefit that its 
interactions are not truncated at a short distance. However, 
for the description of homogeneous systems in which long-
range forces are screened, it is also valid to add the vdW 
term to the short-range reference data and train ANNs on 

(7)E
total

= E
short
ANN

+ E
elec
ANN

+ E
disp, The choice of the optimal descriptor method depends on 

the application, as some methods are better suited for iso-
lated molecular systems where others were designed for peri-
odic solids. Another factor in the descriptor selection is the 
balance of computational efficiency and accuracy. Various 
approaches have been proposed [88, 95, 118–126], and we 
limit the discussion here to the ones that are most commonly 
used and are available in public software implementations.

The descriptor introduced with the original method by 
Behler and Parrinello is based on an representation of the 
coordinates within the local atomic environments in symme-

try functions [85, 95]. The symmetry functions and modified 
variants are commonly used as descriptors in public ANN 
potential implementations, such as ænet [127], AMP [128], 
ANI [129], TensorMol [108], and N2P2 [130].

Behler proposed two classes of symmetry functions [95], 
radial functions that capture the interatomic distances within 
the local atomic environment and angular functions that 
describe the bond-angle distribution. The symmetry func-
tions have the general functional form

(8)Gradial(�i) =
∑

j∈�i

g1(Rij)fc(Rij), Gangular(�i) =
∑

j,k∈�i

g2(Rij, Rik, Rjk)fc(Rij)fc(Rik)fc(Rjk),

the joined energies and forces. This was for example done 
to study the impact of vdW interactions on the properties 
of ice and liquid water by training ANNs to represent two 
density-functionals with and without inclusion of a vdW 
correction term [114].

Descriptor of the local atomic environment

The explicit or implicit decomposition of the total structural 
energy, either into atomic contributions as in Eq. (2) or into 
the contributions of bonds or other fragments is a general 
feature of transferable ANN potentials. However, the vari-
ous ANN potential methods developed today differ often in 
the symmetry-invariant descriptor (fingerprint) used for the 
feature extraction from atomic or fragment environments.

Widely adopted descriptor methods are based on the 
expansion of the atomic positions or bond-length and angle 
distributions. Recently, Xie and Grossman proposed a graph 
convolution approach as descriptor for molecular and periodic 
atomic structures [115]. This descriptor was further adapted 
by Chen et al. [116], who applied it to the development of 
accurate ML models for property prediction. While most 
ANN potential methods rely on hand-crafted descriptors that 
were designed based on chemical intuition, the recent deep 
ANN potential method by Schütt et al. [117] avoids the need 
for empirical feature extraction by means of a general convo-
lution approach akin to those used in computer vision.

where f
c
 is a cutoff function that smoothly goes to zero at 

the cutoff of the local atomic environment, and gi are para-
metrized functions designed to sample the distributions of 
bond lengths and angles, respectively. The dependence on 
the interatomic distance Rjk may be omitted in Gangular . Dur-
ing the construction of an ANN potential, the number of 
symmetry functions and the parametrization of the functions 
g

1
 and g

2
 are meta parameters that have to be optimized. In 

addition to Behler’s original set of symmetry functions [85, 
95], the ANN potential implementation ANI introduced a 
set of modified symmetry functions with slightly different 
definitions of the functions gi [129]. A schematic of the bond 
length and angle distribution within a local atomic environ-
ment is shown in Fig. 5.

The manual parametrization of g
1
 and g

2
 in the symmetry 

functions of Eq. (8) has advantages for ordered structures 
and molecular systems with well-known bonds and angles, 
but it complicates the construction of general ANN poten-
tials when no such assumptions can be made. Recently, Li 
et al. proposed a formalism for the automatic optimization 
of symmetry function parameters based on pair-distribution 
functions [133].

As an alternative, Artrith, Urban, and Ceder developed a 
descriptor that is based on a formal expansions of the radial 
and angular distribution functions in an orthonormal basis 
set {��} [132]. For the radial distribution function (RDF) 
around atom i, this expansion can be written as
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where the expansion coefficients {c
(2)
�
} are invariant features 

of the local atomic environment and are given by

(9)RDF
i
(r) =

∑

�

c
(2)

�
��(r),

(10)c(2)
�

=
∑

�j∈�i

��(Rij) f
c
(Rij)wtj

.

The expansion of the angular distribution functions is com-
pletely analogous. Equations (9) and (10) introduce the basis 
functions �� and an atom-type (chemical species) specific 
weight parameter wtj

 . Artrith et al. [132] chose Chebyshev 
polynomials as orthonormal basis set (see Fig. 6a), and the 
radial and angular distributions can be refined to arbitrary 
accuracy by including polynomials with increasing order 

Fig. 5  Schematic of radial 
and angular descriptors used 
for the representation of local 
atomic environments (left). The 
descriptor functions extract 
features that are used as input 
values for atomic energy ANNs. 
Separate ANNs for each atomic 
species (chemical element) are 
trained, so that the total energy 
of a binary material consist of 
two terms (right)

Fig. 6  The Chebyshev descriptor (implemented in ænet  [127]) ena-
bles the simulation of multicomponent compositions with many dif-
ferent chemical species. (a) Basis functions {��} of Eqs. (9) and (10) 
(Chebyshev polynomials) up to order 5 for a cutoff radius of 8.0 Å. 
The polynomial of order 0 is constant 1 and not shown. (b)  and  (c) 
show the accuracy of artificial neural network (ANN) potentials in 
terms of the root-mean-squared error (RMSE) compared to the QM 
reference method (DFT) as function of the size of the structural fin-

gerprint (descriptor) for (b) an inorganic solid ( LiMO
2
 ) with increas-

ing number of chemical species (from the set Li, O, Ti, Ni, Mn, Sc, 
V, Cr, Fe, Co, and Cu) and (c) a data set with conformations of the 
20  proteinogenic amino acids (5  chemical species: H, C, N, O, S; 
green diamonds) and their complexes with divalent cations (amino 
acid data taken from Ref. [131]). (Reproduced with permission from 
Ref. [132]. Copyright (2017), American Physical Society.)



566 Journal of Computer-Aided Molecular Design (2021) 35:557–586

1 3

without the need for manual parametrization. Faber 
et al. [121] previously employed a Fourier expansion.

The symmetry functions allow constructing a represen-
tation of the local structure but do not encode the chemical 
species, which is also needed for an accurate ANN potential. 
In the original multicomponent ANN potential method [96], 
the chemical species are distinguished with separate sets 
of symmetry functions for each combination of two (radial 
functions) and three (angular functions) chemical species. 
This approach results in an increase of the descriptor dimen-
sion and thus the computational effort with the number of 
atomic species, which makes it challenging to construct 
ANN potentials for more than a few chemical elements [86].

The Chebyshev descriptor [132] removes this scaling by 
introducing a weight parameter, wtj

 in Eq. (10), that is differ-
ent for each chemical species tj . In fact, the descriptor con-
tains two sets of expansion coefficients; the first set is evalu-
ated without distinguishing between chemical species, i.e., 
for wtj

= 1 , to represent local structure information. The 
second set of coefficients is evaluated with species-specific 

weights to capture differences in the local chemistry. By 
combining both local structure and chemistry, changes in the 
atomic positions and in the chemical species can be clearly 
distinguished. The dimension of the Chebyshev descriptor 
does not depend on the number of chemical species, and thus 
compositions with many chemical species do not result in 
any computational overhead [132]. Gastegger et al. later 
introduced species weights also to Behler-Parrinello sym-
metry functions in the weighted atom-centered symmetry 

functions method  [134], though this approach does not 
include a separate structure descriptor. As seen in Fig. 6b–c, 
the accuracy that ANN potentials with the Chebyshev 
descriptor can achieve is not significantly affected by an 
increasing number of chemical species.

Training ANN potentials

The training of ANN potentials is the process of optimizing 
the weight parameters {a

i
} and {b} in Eq. 1 for all artificial 

neurons. In the conventional ANN potential method, train-
ing on reference total energies from QM methods is most 

Fig. 7  Illustration of the systematic construction of ML potentials 
through the refinement of the reference data set in an active learning 
setup. The error |ΔE| , i.e., the difference between the reference DFT 
and the ANN energies, for structures obtained in MD simulations 

decreases upon each iteration, from Fit 1 to Fit 3, as the sampling of 
the configurational space improves. (Adapted with permission from 
Ref. [102])
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efficient, though approaches for the training of interatomic 
forces [130, 135] in addition to the energy have been devel-
oped. Chmiela et al. developed an alternative approach in 
which the forces are the only optimization target that uses 
an energy conservation criterion to avoid overfitting [136].

Irrespective of the training method, the reference data 
set is of critical importance for the transferability of ANN 
potentials. To guarantee complete reference data, active 
learning approaches are usually employed to systematically 
improve the data set [99]. A schematic of such an iterative 
refinement is shown in Fig. 7.

The principal idea behind active learning techniques is 
to make use of preliminary ANN potentials for the sam-
pling of underrepresented structures. As such, oftentimes 
an initial data set is constructed based on chemical intuition, 
for example, by modification of ideal crystal structures or 
molecular geometries through scaling or deformation [127]. 
A preliminary ML potential is trained on this initial data 
and used in MC or MD simulations related to the eventual 
target application. A subset of the sampled structures is com-
pared with the QM reference method, and if the discrepancy 
between the ANN prediction and the reference is too large, 
the structure is added to the reference data set. By repeating 
this procedure multiple times, the ANN potential becomes 
increasingly robust and transferable.

We outline here a basic active learning strategy but note 
that advanced techniques that improve the structure selection 
step are currently a very active field of research.

Overview of MLP methods and implementations

Thanks to the decomposition of the total energy into atomic 
contributions, Eq. (2), the computational complexity of the 
ANN potential method scales linearly with the number of 
atoms and can be implemented in efficient computer code 
(Fig. 8). Robust and easy-to-use public implementations 
have been emerging over recent years. Since the field of ML 
methods for atomistic simulations is advancing rapidly and 
new software implementations, descriptors, ML approaches, 
and training frameworks are published at a high rate, we 
refer here to a collection of publicly available tools and data-
bases that will be continuously updated to include the most 
recent developments in the field: https ://githu b.com/atomi 
sticn et/tools -and-data.

Applications to industry

The previous chapter has summarized the methodological 
advances that now enable to apply ML approaches to com-
plex molecular and materials systems under realistic condi-
tions. In the remainder of this review we will discuss recent 
examples in which MLPs and ML models are used to accel-
erate the calculation of industrially relevant properties with 
focus on drug discovery and materials design. A selection 
of the obtained properties, compared to their corresponding 
reference values where available, is summarized in Table 1.

Drug discovery applications

In this section we discuss the use ML potentials and models 
for the prediction of properties that are relevant for drug 
discovery with the focus on two types of applications: the 
calculation of free energies and the prediction of spectro-
scopic properties.

A major challenge in calculating these properties lies in 
the complexity of the involved systems. The employed mod-
els have to be able to accurately describe small molecules, 
large molecular crystals and proteins interacting with small 
ligands in a solvent. These systems are governed by a diverse 
set of interactions between many different chemical elements 
involving diverse bonding types and (potentially) chemical 
reactivity. In contrast to simpler materials system, large units 
cells are required which makes it challenging to perform QM 
calculations. This is not only a problem for obtaining ener-
gies and forces required to perform MD or MC simulations 
but also for calculating other observables that are not (or 
only approximately) available from force fields. QM calcula-
tions in principle allow to calculate molecular dipoles, polar-
izabilities, and chemical shifts for simulating infrared (IR), 
Raman, and NMR spectra. Having access to these spectra 
allows to link experimentally observed spectral features to 

Fig. 8  The computational complexity of ANN potentials scales lin-
early with the number of atoms. The plot shows the evaluation time 
per atom as function of the number of atoms for periodic TiO

2
 struc-

tures with increasing size up to one million atoms. (Reproduced with 
permission from [127])

https://github.com/atomisticnet/tools-and-data
https://github.com/atomisticnet/tools-and-data
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their corresponding molecular motion which in turn enables 
to identify molecular structures.

As discussed in the previous section, the application of 
MLPs to complex systems with diverse chemical environ-
ments has now become possible with new methodological 
improvements including more general descriptors for multi-
component systems, automated training set generation, and 
force training. Even though these new approaches have just 
been developed (and continue to being extended) there are 
already several impactful applications of QM-based MLPs 
and ML models applied to bio-molecular systems relevant 
for the drug discovery process. Here we highlight some 
recent examples covering the investigation of chemical reac-
tions in solution and solvation processes, the extension of 
force fields and semi-empirical QM/MM methods for simu-
lations with improved accuracy, and the prediction of spec-
troscopic properties for the characterization of molecules 
and molecular crystals.

Reaction and solvation free energies

As discussed in the introduction, knowledge of binding free 
energies [22–24] allows to estimate relative binding affini-
ties of a series of ligands and to rank them accordingly. Free 
energies are also central to understanding reaction mecha-
nisms and transport processes. Solvation free energies deter-
mine the transport of a drug molecule to the target, which 
involves traveling through both aqueous media (blood) and 
lipophilic media (membranes) followed by desolvation 
before forming a ligand-protein complex [157]. The main 
challenges for obtaining reliable free energy values are insuf-
ficient sampling times and an inaccurate description of the 
PES.

Shen and Yang[137] employed ANNs to improve the 
accuracy of free energy calculations for two chemical reac-
tions in solution, an S 

N
 2 reaction and the intramolecular 

proton transfer reaction for glycine in water. Since chemical 
bonds are broken and formed during the process, a quantum 
mechanical description of the system for example within 
a QM/MM setup is required. To lower the computational 

Table 1  Examples of properties calculated from machine learning (ML) potential simulations or using ML models based on quantum mechani-
cal reference data compared to reference values, where available

x is the relative lithium content in the amorphous Li-Si alloys and varies during battery charge and discharge

Property System ML Prediction Reference value Year Refs.

Drug discovery
Reaction free energy Glycine proton transfer 7.7 kcal/mol DFT: 8.1 kcal/mol 2018 [137]
Reaction barrier Glycine proton transfer 9.9 kcal/mol DFT: 10.2 kcal/mol 2018 [137]
Solvation free energy Acetic acid −7.3 kcal/mol DFT: −7.5 kcal/mol 2019 [138]

Acetamide −11.7 kcal/mol DFT: −12.1 kcal/mol 2019 [138]
Acetone −3.9 kcal/mol DFT: −4.3 kcal/mol 2019 [138]
Benzene −0.6 kcal/mol DFT: −0.6 kcal/mol 2019 [138]
Ethanol −4.6 kcal/mol DFT: −4.8 kcal/mol 2019 [138]
Methylamine −2.5 kcal/mol DFT: −5.2 kcal/mol 2019 [138]
Aqueous LiF pair −231.5 kcal/mol Exp.[139]: −232.9 kcal/mol 2020 [140]

Li-ion batteries
Amorphous silicon anode

Li diffusivity a − Li
x
Si ( 0.75 < x < 3.50) 10

−14− 10
−10 cm2 s−1 Exp.[141–144]:

10
−14 − 10

−10 cm2 s−1

2019 [145]

Activation energy a − Li
x
Si ( 0.75 < x < 3.50) 0.5 − 0.8 eV N/A 2019 [145]

a − Li
x
Si ( 0.02 < x < 0.06) 1.21-1.46 eV Exp.[146]: 1.38 − 1.46 eV 2020 [147]

Solid electrolytes

Amorphous-Li
3
PO

4
0.55 eV Exp.[148]: 0.58 eV 2017 [149]

Li
10

GeP
2
S

12
0.16 eV Exp.[150]: 0.22 eV 2020 [151]

Li
7
La

3
Zr

2
O

12
0.2 − 0.22 eV Exp.[152]: 0.21 − 0.22 eV 2020 [151]

Cathode coating materials

Li
2
B

7
O

12
0.56 ± 0.05 eV N/A 2020 [153]

Li
3
Sc

2
(PO

4
)
3

0.62 ± 0.04 eV Exp.: [154] 0.65 eV 2020 [153]
Li

2
B

6
O

9
F

2
0.79 ± 0.10 eV Exp.: [155] 0.92 eV 2020 [153]

LiCl 1.11 ± 0.13 eV Exp.: [156] 0.83 eV 2020 [153]
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effort, the QM part can be replaced by a semi-empirical 
(SQM) method such as scc-DFTB [158] which results in a 
more efficient but less accurate description of the system. 
As shown in Fig. 9a the neutral form of aqueous glycine is 
incorrectly predicted as the dominant one. To improve on 
that, the authors developed the QM/MM-NN approach in 
which the energy difference between the lower-level SQM 
method and the high-level QM method is predicted by an 
ANN potential. An earlier example of such a composite 
strategy in which an ML correction is added to a computa-
tionally efficient but less accurate QM method is the delta-
machine learning approach by Ramakrishnan et al. [159]. 
An important ingredient of the approach by Shen and Yang 
is the use of an adaptive procedure in which an initial MLP 
is iteratively improved by new structures, selected when the 
ANN input variables are outside of their training set bounda-
ries. Using the QM/MM-NN setup with the MLP correction 
term, in each iteration of the potential the description of 
the free energy along the reaction coordinate improves until 

with the 5th iteration it is closely aligned with the high-level 
QM result (see Fig. 9a and Table 1) and correctly predicts 
the zwitterionic form as having the lowest free energy. For 
the glycine system, the difference MLP leads to a total CPU 
time for the QM/MM-NN MD simulations that is only about 
1–8% of the time required to perform simulations with the 
conventional QM/MM setup, yielding an increase in effi-
ciency by a factor of 10–100. This comparison already 
includes the additional computational cost of running the 
QM reference calculations and training the MLP.

In a follow-up paper Zhang et al. [138] calculated sol-
vation free energies for six small organic molecules (see 
Table 1) with an extended approach that addresses two 
challenges, (1) the identification of insufficiently sampled 
reference structures, and (2) the re-optimization process 
of the model after new structures were added to the train-
ing set. The selection criterion used in the previous work 
is based on the descriptor boundaries and by that has the 
potential to miss new data points that could lie inside the 

Fig. 9  Machine learning simulations for free energy calculations: a 
Intramolecular proton transfer reaction of glycine in water by Shen 
and Yang  [137] using a QM/MM-NN setup in which an MLP is 
iteratively trained (top) to represent the energy difference between a 
low-level (DFTB) and a high-level (B3LYP) QM method. In the final 
iteration (bottom) the MLP correctly predicts the zwitterionic gly-
cine tautomer as the predominant form, improving on the inaccurate 
description with the low-level method. b Solvation free energy of LiF 

in water by Jinnouchi et al.  [140] obtained from MLP-accelerated 
simulations trained on only the thermodynamic endpoints. The top 
panels show snapshots from thermodynamic integration simulations 
that correspond to the fully interacting system (left) and the system 
at small interactions (right), respectively. In the bottom panel pair-
correlation functions of LiF in water obtained from the MLP (black 
line) are compared to results from QM simulations (red dashed line). 
A comparison of the ion solvation free energies is reported in Table 1
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boundary region but be still very different from the current 
training structures. The authors therefore explored other 
approaches based on the energy range and different cluster-
ing algorithms. The training process was improved by using 
the component-wise gradient boosting algorithm [160] as a 
method to re-optimize the model with new data rather than 
each time training new models from scratch. These improve-
ments enabled further time savings compared to the previ-
ous approach, requiring shorter simulations time and fewer 
additional structures for obtaining converged potentials. 
While in the extended approach a linear regression model 
was employed it will be interesting to see if an extension to 
more complex ML models such as ANNs can lead to further 
improvements.

Jinnouchi et al. [140] made use of a previously developed 
learn-on-the-fly ML approach [161, 162] to calculate solva-
tion free energies of aqueous LiF ions at low computational 
cost. The solvation free energies of ions in water determine 
the properties of electrolyte solutions and greatly impact 
pK

a
 values [163] and protein stability [164]. Ion solvation 

free energies can in principle be obtained from QM simu-
lations [165] by methods like thermodynamic perturbation 
theory (TPT) [166] or thermodynamic integration (TI) [166, 
167] but have large error bars. In an TI approach one can 
perform a coupling constant integration from a reference 
system comprising of the non-interacting ion pair in solvent 
to a system where all atoms fully interact (see Fig. 9b). The 
authors now employed a variant of the Gaussian Approxima-
tion Potential (GAP) approach [87] with the Smooth Overlap 
of Atomic Positions (SOAP) descriptor [88] for the on-the-
fly generation of an MLP [161, 162] to speed up the TI simu-
lations and obtain converged results. This approach employs 
self-learning to reduce the need for human intervention by 
using Bayesian inference to identify structures with high 
uncertainties which where then recalculated with the refer-
ence QM method and used to refine the MLP. A keys feature 
of the TI approach is that is requires only model training for 
the thermodynamic end points (the non-interacting and the 
fully interacting system). As shown in Table 1, the final free 
energy values obtained with the ML approach agree closely 
with the experimental values and also with results from QM 
simulations [163] while 10 times longer simulation times 
could be employed to reduce error bars and obtain converged 
values. Since the method is general and applicable to differ-
ent systems it could be extended to obtain molecular solva-
tion energies.

Spectroscopic techniques for structure characterization

Combining experimental measurements with QM calcula-
tions of infra red (IR), Raman, or NMR spectra is a power-
ful way to characterize the structure of molecular systems. 
Such combined approaches can for example help to identify 

the crystal structure of drugs that are available in form of 
molecular crystals which is the case for many marketed 
drugs. Understanding their crystalline form is crucial since 
it has an impact on several important properties such as sta-
bility, solubility, and bioavailability [173]. ML methods can 
help in two ways to improve the calculation of spectroscopic 
properties from atomistic simulations. They can (1) be used 
to represent the observables (dipoles, polarizabilities, NMR 
nuclear shifts) that are the ingredient for obtaining the spec-
trum and whose calculation by QM methods is often the 
computational bottleneck. Here, the structures for which the 
ML model predicts the spectrum are generated by perform-
ing a regular MM- or QM-based simulation. In approach 
(2), MLPs are trained to represent the PES of the system 
of interest and then efficiently generate the structures on 
which QM calculations are performed to calculate the spec-
troscopic property. Carrying out QM-calculations in such a 
post-processing step has the benefit that these calculations 
can be performed in parallel, as opposed to a purely QM-
based approach in which a continuous trajectory has to be 
generated with a small time step and the observables are 
calculated on-the-fly. Approaches (1) and (2) can also be 
combined in a setup where the simulation is performed by 
an MLP and an additional ML model is used to represent 
the QM-trained spectroscopic observable. Here we dis-
cuss a number of recent examples in which ML approaches 
are applied to obtain spectroscopic properties for organic 
molecules in the gas phase, hydrogen-bonded liquids, and 
molecular solids.

IR spectra for bio-molecular systems are often obtained 
from static calculations with a normal mode analysis based 
on the harmonic approximation, thus neglecting important 
anharmonic and temperature effects. QM-based simulations 
allow to include these dynamic effects (and also reactive 
proton transfer events) but at high computational costs. A 
composite ML approach for the calculation of anharmonic 
IR spectra was developed by Gastegger  et al.  [168] in 
which the need for explicit QM calculations is fully circum-
vented by combining MLPs with an ML model to repre-
sent molecular dipoles. They employed ANNs to represent 
the PES, making use of an adaptive scheme for selecting 
new structures and training on atomic forces [174] which 
allowed the use of a small number of QM training points 
( ∼700 for the alanine tripeptide). To be able to train the 
MLP on large systems, a fragmentation approach was used 
in which large molecules are divided into smaller fragments 
for which reference QM calculations are more feasible. The 
molecular dipole moments were modelled by another ANN 
representing environment-dependent atomic charges. Since 
atomic charges are no observables, there is no unique way 
to calculate them. The solution used by the authors was to 
use the total dipole moment and molecular charge of the 
entire system as the target property. Equivalent to the atomic 
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energies which are the output of atomic ANNs and in sum 
give the total energy of the system, the atomic charges can 
be seen as latent variables. The ML model that represents 
the environment-dependent charges therefore acts as a data-
driven partitioning scheme without any constraints other 
then to match the target. Among other organic molecules, 
the protonated alanine tripeptide was used as test system 
to evaluate the ability of the combined ML approach to 
describe anharmonic, conformational, and dynamic effects, 
including proton transfer events, that all contribute to the IR 
spectrum (see Fig. 10a). While it was found that the resulting 
IR spectra show a strong dependence on the QM reference 
method, the efficiency of the ML approach (with timings of 

1 hour instead of > 100 days on a single CPU for obtain-
ing the full spectrum) allows to quickly benchmark different 
QM methods to find the most suitable one for the system at 
hand. The authors also suggested that ANN-learned atomic 
charges could not only be used to obtain vibrational spectra 
but also for the augmentation of classical force fields, a route 
that was taken in the following application.

Kato et al. [175] constructed ML models to predict accu-
rate charges for three proteins based on fragment molecular 
orbital (FMO) calculations. Commonly used force fields 
use fixed atomic charges and therefore neglect electronic 
polarization. Since the force field charges cannot adjust to 
a changing environment the description of the molecular 

Fig. 10  Machine learning prediction of spectroscopic properties: 
a IR spectrum of the protonated alanine tripeptide by Gastegger et 

al. [168] obtained from a composite ML approach in which the inter-
atomic potential and the molecular dipoles are represented by indi-
vidual ML models (Reproduced with permission from Ref.  [168]—
Published by The Royal Society of Chemistry). In the top panel, 
the calculated spectrum obtained from ML models representing two 
different QM methods (BP86 and BLYP) is compared to the experi-
mental spectrum  [169]. The bottom panels show spectral contribu-
tions from the three main conformers. b Temperature-dependent 

Raman spectra of liquid water by Morawietz et al. [170, 171] calcu-
lated from MLP simulations and compared to experimental measure-
ments. As shown in the top panels (Reprinted with permission from 
Ref. [170]. Copyright 2018 American Chemical Society), MLP-based 
simulations are able to accurately capture subtle spectral features like 
the bimodal OH stretching region and allow to identify molecules 
in overcoordinated environments by linking vibrational motion to 
structural parameters (bottom panel, Reprinted with permission from 
Ref. [171]. Copyright 2019 American Chemical Society)
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recognition process between a protein and a ligand molecule 
might suffer. To address this issue, the authors trained an 
ANN model to learn atomic partial charges from QM calcu-
lations that take into account electronic polarization. They 
faced the challenging task to perform QM reference calcula-
tions for three complete proteins (polyQ10, Trip-Cage, and 
BRD2) containing up to 111 amino acids. Similar to the 
work by Gastegger et al. this was addressed by employing 
a fragmentation approach with the FMO method. Element-
specific ANNs using atom-centered symmetry functions 
where then trained to learn atomic charges from restrained 
electrostatic potential (RESP) calculations. In future appli-
cations, ML charge models could be combined with force 
fields to develop simulation methods that take into account 
polarization effects for the improved description of protein-
ligand interactions. Energies and atomic charges from FMO 
calculations of 1074 proteins were made freely available by 
the authors.

Returning to ML applications for the simulation of 
vibrational spectra, Morawietz et al. [170, 171] simulated 
temperature-dependent Raman spectra for liquid water using 
MLPs. They initially employed a variant of approach (2) in 
which trajectories at different temperatures where generated 
from ML-based MD simulations. QM calculations were then 
performed on these structures to obtain the polarizabilities 
required to calculate Raman spectra. As shown in Fig. 10b 
(top), these spectra accurately reproduce experimental meas-
urements across the full liquid temperature range. In a sec-
ond step, the authors bypassed the use of QM calculations 
and used the vibrational density of states (VDOS), obtained 
from the atomic velocities, as a proxy for the vibrational 
Raman features. In an combined effort with experimental 
decomposition techniques they made use of the VDOS to 
identify the structural origin of subtle vibrational features 
in the Raman spectrum. This analysis could for example 
identify the vibrational fingerprints of molecules residing in 
over-coordinated hydrogen-bond environments, species that 
play an important role in the transport of protons through 
membranes and the coordination of hydrophobic groups (see 
Fig. 10b, bottom).

In a complementary approach, Raimbault et al. [172] 
predicted anharmonic Raman spectra of paracetamol using 
QM simulations to generate the trajectories and an ML 
model to predict polarizabilities. They compared differ-
ent GPR methods to learn polarizability and susceptibil-
ity of molecules and molecular crystals for reference data 
from QM calculations using density-functional perturba-
tion theory (DFPT) calculations. DFPT results for anhar-
monic vibrational Raman spectra of molecular crystals were 
taken from prior work and made available in the NOMAD 
database [176, 177]. DFPT calculations are typically four 
times more expensive then evaluating the forces during an 
MD simulation [177]. A symmetry-adapted GPR version 

(SA-GPR) [178] was found to be most suitable for describ-
ing tensorial properties such as polarizabilities. The SA-
GPR approach has been also successfully applied to the 
prediction of Raman and IR spectra for liquid water and ice 
based on path integral MD simulations that include nuclear 
quantum effects [179]. Using an ensemble of 16 ML mod-
els to estimate uncertainties, Raimbault et al. applied their 
approach to calculate the Raman spectrum of two crystal 
forms of paracetamol (see Fig. 11). Impressively, the ML 
model trained only on crystal form I is able to accurately 
predict the spectral lineshape for form II, even though the 
low-frequency modes that correspond to the intermolecu-
lar interactions vary considerably between the two forms. 
The high degree of transferability demonstrates the benefit 
of using a local approach in which total polarizabilities are 
decomposed into atom-centered contributions based on local 
environments. While this approach still relies on QM simu-
lations, we expect to see an increase in the number of “ML-
only” approaches (as in Ref. [168]]) where MLPs are used 
to perform MD simulations and ML models (for example 
based on GPR) represent observables like dipole moments 
and polarizabilities to obtain accurate spectra with greatly 
reduced computational costs.

In the final example by Paruzzo et al. [180], NMR chemi-
cal shifts for molecular crystals were predicted by ML mod-
els based on the GPR approach. Chemical shifts are key data 
for determining structure and dynamics of bio-molecular 
systems and can for example help to identify the protona-
tion state of enzyme active sites [181]. While many empiri-
cal tools have been developed to aid in the the assignment 
of experimental NMR spectra they are often optimized for 
a small subset of systems and neglect dynamical effects. 
Calculating chemical shift with QM methods [182, 183] 
has a more general validity for different chemical envi-
ronments [184]. Combining QM calculations with NMR 
measurements enable chemical shift-based crystallography 
for validating the structure of molecular solids [185, 186]. 
Paruzzo et al. employed a GPR framework with the SOAP 
kernel [88] to learn DFT chemical shifts for structures from 
the CSD database [187] with estimated uncertainties based 
on a previously introduced resampling scheme [188]. The 
ML model was trained on 500 structures randomly sampled 
from a CSD subset containing 61,000 structures that are 
small enough (<200 atoms) to perform QM calculations and 
then applied to calculate chemical shifts of six molecular 
crystals comprising of up to 1500 atoms. The authors then 
demonstrated that, without making use of experimental 
chemical shifts, their method is accurate enough to correctly 
determine the structure of two molecular solids: cocaine and 
the drug AZD8329. This application again exemplifies the 
benefit of employing local ML models: they can be transfer-
able to larger systems without loss of accuracy and in addi-
tion scale linear with system size. Calculating the full set of 
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chemical shifts for six molecular crystals took a few minutes 
with the ML model which, for the largest model, is a speed-
up of a factor of 106 compared to a direct QM approach. The 
ML tool to predict NMR chemical shifts for the elements 1 H, 
13 C, 15 N, 17 O and 33 S is publicly available [189].

Materials discovery applications

In correspondence to drug discovery applications, the appli-
cation of ML models to materials discovery has also seen a 
steep rise of research activity during the last decade, owing 
to the availability of methods, public implementations, and 
increased computer power [190]. In this section, we review 
some of the recent successful applications in the area with a 
focus on inorganic solid materials.

Phase diagram predictions

Before considering any other properties of a potential func-
tional material, the first requirement for computational 

materials design is the ability to predict whether a hypo-
thetical compound is stable. Predicting the products of 
organic synthesis (such as drugs) requires knowledge of 
reaction kinetics. In contrast, the stability of inorganic sol-
ids is mostly governed by thermodynamics [191]. As such, 
in good approximation, predicting the likely stability of a 
novel material is equivalent with predicting the thermody-
namic phase diagram. This approximation can be further 
improved by considering also the kinetics of nucleation, e.g., 
by modeling the nucleation and growth of inorganic phases.

Brute-force atomistic calculations of phase diagrams 
are challenging because the time scales on which phase 
transitions occur are often not achievable with QM simula-
tion methods. Here, ML potentials can be used as a drop-
in replacement in some cases. For example, Morawietz 
et al. simulated the melting of ice with MD simulations 
using ANN potentials [114], revealing the importance of 
vdW interactions for a correct description of the mecha-
nism of the phase transition. Robinson et al. also used ML 
potential based MD simulations to determine the phase 
diagram of potassium as a function of the pressure and 

Fig. 11  Machine learning prediction of spectroscopic properties: 
Anharmonic Raman spectra of the Paracetamol crystal in forms I and 
II by Raimbault et al. [172] calculated with an ML model (SA-GPR) 
of the polarizability tensor trained on form I only. The top panels 
show the low- and high-frequency parts of the Raman spectrum for 
form I compared to the reference QM results (ab initio). ML results 

were obtained from an ensemble of 16 models from which uncertain-
ties have been estimated (shaded area). The results for form II in the 
bottom panels demonstrate the high transferability of the ML model 
which can accurately represent the overall lineshape of the unseen 
molecular crystal
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temperature [192], which exhibits a complex chain-melted 
phase that had previously not been characterized in detail. 
The MD simulations by Robinson et al. were initialized 
in the expected ground-state phase for a given pressure at 
200 K, and MD simulations in the NVT statistical ensemble 
were used to simulate phase transitions with temperature. 
The resulting phase diagram is shown in Fig. 12a.

While the process of melting is challenging to model, the 
reverse, i.e., crystallization from the melt, typically occurs at 
even longer timescales owing to nucleation barriers. In few 
cases, rapid crystallization can be modeled with direct MD 
simulations. Sosso et al. investigated the fast crystallization 
of GeTe, a phase-change compound, from the supercooled 

liquid using ML potential MD simulations and identified the 
atomic-scale mechanism responsible for the rapid nuclea-
tion rate [195]. The same system was also investigated by 
Gabardi et al.  who observed the nucleation of crystalline 
GeTe in 3 ns long melt-quench MD simulations with an 
ANN potential [196], finding that a crystallization mecha-
nism similar to that in supercooled liquids can be achieved.

For many materials, phase transitions between solid 
phases or crystallization cannot be modeled with direct 
MD simulations as the time scale remains inaccessible 
despite the speed-up from ML potentials. In such cases, 
ML potentials in combination with accelerated MD tech-
niques, such as the metadynamics approach by Parrinello 

Fig. 12  ML-based simulations for the exploration of phase diagrams 
of inorganic materials. a Temperature and pressure dependent phase 
diagram of potassium obtained from MD simulations using an ML 
potential [192]. Each point in the figure represents the result from an 
individual ML-based MD simulation in the NVT statistical ensemble. 
Symbols distinguish between different equilibrium phases. (Repro-
duced with permission from  [192]). b  Phase diagram of gallium 
nucleation from the melt using metadynamics MD simulations with 

an ML potential  [193]. The predicted phase diagram (red lines) is 
compared to the experimentally measured phase diagram (blue lines). 
c Crystal structures of the CuZr alloys and of the Cu and Zr constitu-
ents used for training of an ANN potential by Andolina et al.  [194]. 
The ANN potential trained on the crystalline phases was shown to 
predict the properties of the amorphous CuZr alloy with remarkable 
accuracy



575Journal of Computer-Aided Molecular Design (2021) 35:557–586 

1 3

and coworkers [54, 197], have been successfully employed. 
Behler and Parrinello modeled the polymorphic phase tran-
sitions in elemental Si using metadynamics [198], and a sim-
ilar approach was used by Eshet et al. for the construction of 
the P − T  phase diagram of elemental sodium [199]. Bonati 
and Parrinello investigated crystallization of silicon from 
the melt with well-tempered metadynamics [197] using an 
ANN potential [200], identifying a single collective variable 
derived from the Debye structure factor to steer the crys-
tallization. A related approach was employed by Niu et al. 
for the calculation of the phase diagram for gallium nuclea-
tion from the melt [193]. Gallium exhibits a complex phase 
behavior owing to the mixed covalent and metallic bonding, 
making the element a challenging benchmark case for phase 
diagram calculations. As seen in Fig. 12b, the phase diagram 
predicted by accelerated ML potential MD simulations is in 
excellent agreement with the experimental reference, dem-
onstrating that ML potentials are sufficiently flexible to cap-
ture the complex atomic interactions of elemental gallium.

ML potentials have also been used for the modeling of 
polymorphism and phases with variable compositions in 
compounds that consist of multiple chemical species. In two 
separate studies, Artrith and coworkers showed that an ANN 
potential can accurately reproduce the stability of different 
ZnO [96] and TiO

2
  [127] polymorphs. Kong et al. used 

ANN potentials and an ML-augmented sampling technique 
to determine the phase diagram of CoO phases with vary-
ing Co:O ratio [201]. ANN potentials have been also used 
to model multicomponent alloys with varying composition, 
such as the AuCu alloys, both in the bulk and in nanoparti-
cles [202, 203].

Apart from crystalline phases, the increased efficiency 
of ANN potentials compared to DFT calculations makes 
modeling disordered or amorphous phases accessible, which 
generally require larger structure models than crystal struc-
tures. Artrith et al. employed a combination of an evolu-
tionary algorithm and an ANN potential to determine the 
phase diagram of the amorphous LiSi alloys [204]. In this 
study, the amorphous phase was explicitly sampled and char-
acteristic structural motifs were included in the reference 
data set for the ANN potential training. Recently, Andolina 
et al. [194] trained an ANN potential on the crystalline CuZr 
alloy phases (Fig. 12c) and demonstrated that the resulting 
potential can accurately predict the properties of amorphous 
CuZr phases as well, which is a remarkable display of the 
transferability that ML potentials can achieve.

Properties of catalyst materials

The design and discovery of novel materials for heterogene-
ous catalysis is an area of great relevance for the chemical 
industry [206], and QM calculations for the computational 
prediction of the properties of catalyst materials are well 

established [207]. However, most computational studies 
make use of simplified catalyst models, such as single-crys-
tal surfaces in vacuum, whereas catalytically active sites may 
in reality depend on the environment and on defects in the 
catalyst material. The greater computational efficiency of 
ML potentials has enabled the modeling of more realistic 
catalytic conditions and materials in recent years. Here, we 
focus again on applications of ANN potentials. Other ML 
applications for catalysis have recently been reviewed by 
Goldsmith et al. [208] and by Kitchin [209].

ML potential simulations have been of particular use for 
the modeling of non-idealized catalyst structures. For exam-
ple, Artrith et al. constructed an ANN potential for the simu-
lation of ZnO-supported Cu nanoparticles [100], the cata-
lyst for methanol synthesis [210, 211], and investigated the 
dynamic structure changes of the catalyst at 1,000 K using 
MD simulations. Such large-scale MD simulations would 
not have been possible with first principles QM methods, 
and conventional interatomic potentials would not have been 
able to capture the mixed metallic and ionic bonding in the 
Cu/ZnO interface region.

Even unsupported catalyst nanoparticles are often beyond 
the length-scale limit of QM methods, especially when 
extensive sampling of atomic configurations is needed. 
Artrith and Kolpak showed that ANN potentials trained 
on surface structures and cluster configurations of CuAu 
alloys can reproduce the surface phase diagrams and Wulff 
shapes of the different alloys as a function of the chemical 
potentials (Fig. 13a) [202]. These ANN potentials were then 
used in large-scale MC simulations to determine low-energy 
atomic orderings in nanoparticles with up to 6500 atoms 
and in AuCu clusters and surfaces in contact with water, 
which showed the strong impact of water on the alloy sur-
face termination and could explain the catalytic activity of 
CuAu nanoalloys for CO

2
 reduction [202]. The same authors 

also employed ANN potentials to investigate the tempera-
ture-dependent dynamics of CuAu nanoparticles in grand-
canonical ( �VT ) MD simulations [203]. The phase diagrams 
and the stability region of icosahedral CuAu nanoparticles 
compared to nanoparticles with truncated face-centered 
cubic shape are shown in Fig. 13b. Kolsbjerg et al. dem-
onstrated for small Pt

13
 clusters how a combination of an 

ANN potential and an evolutionary algorithm can be used 
for the search for low-energy cluster structures [212], finding 
that a thermal ensemble of low-energy structures provides a 
better description for the catalyst than the zero temperature 
ground state structure alone. Sun and Sautet also used an 
evolutionary optimization strategy coupled with an ANN 
potential to determine the structures of Pt nanoparticles in 
hydrogen-rich atmosphere [205], which revealed a complex 
interplay of the Pt particles with the hydrogen gas result-
ing in a rich distribution of thermally accessible metastable 
Pt nanoparticles with very different properties. Example 
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particle configurations and statistics of the Pt-Pt nearest-
neighbor distribution and Pt coordination numbers (CN) are 
shown in Fig. 13c–d.

Properties of battery materials

The second major class of functional materials that has 
been investigated using ML potentials are materials for 
lithium ion batteries. Lithium ion batteries (LIB) consist 
essentially of two electrodes, the cathode and anode, that are 
submerged in or separated by electrolyte and are in contact 
with an external circuit. When an LIB is discharged (i.e., 
the battery is used), Li

+ cations are shuttled from the anode 
through the electrolyte to the cathode, and simultaneously 
electrons are released from the anode, perform work while 
they travel along the external circuit, and eventually arrive 

at the cathode as well. This process is reversed when the 
LIB is charged.

First principles QM calculations are widely used for the 
calculation of many properties of LIBs, such as the voltage 
and the electrochemical or thermal stability of the compo-
nents [8]. However, QM based modeling is most practical for 
crystalline materials, although both non-crystalline electrode 
and electrolyte materials are of great relevance for LIBs. 
This limitation is especially significant for the investigation 
of Li transport in electrodes, the electrolyte, and interface 
regions, which can become rate limiting in LIBs. Recently, 
ANN potentials have enabled the simulation of Li diffu-
sion in non-crystalline phases that had previously not been 
accessible.

For example, nanostructured amorphous silicon (a-Si) is 
a promising anode material for the next-generation of LIBs 
but its reaction with lithium has not been well understood 

Fig. 13  ML potential simulation of catalyst materials: a surface phase 
diagrams of the of low-index surfaces of the Cu

2
Au

2
 alloy with dif-

ferent terminations (Au, Cu, and mixed) as function of the Au/
Cu chemical potentials, as predicted by DFT (top) and by an ANN 
potential (bottom). Symbols denote different facets, and surface ter-
minations are indicated by line types and colors (yellow  =  Au ter-
minated, blue = mixed, green = Cu). Exemplary Wulff constructions 
corresponding to three different chemical potentials are also shown. 
(Reproduced with permission from Ref. [202]) b Formation energies 

and convex hull construction for CuAu nanoparticles with 55 atoms. 
Different colors and point sizes indicate different chemical potentials 
used in grand canonical ( �VT  ) MC simulations. (Reproduced with 
permission from Ref. [203].). c Low-energy structures of Pt nanopar-
ticles in hydrogen atmosphere. The energies of the particle structures 
are shown relative to the most stable configuration. Statistics of the 
Pt-Pt nearest neighbor distances and the average Pt coordination num-
ber as function of the relative energy are shown in panel (d). (Repro-
duced with permission from Ref. [205])
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on the atomic scale [215]. Artrith et al. employed a com-
bination of ANN potentials and an evolutionary algorithm 
to model electrochemical amorphization and to sample the 
phase diagram of the amorphous LiSi alloys [204]. The 
resulting ANN potential (based on a QM database reported 
in Ref. [216]) was subsequently used by the same authors 
to investigate Li transport in realistic LiSi nanoparticles 
containing up to 12,000 atoms including the amorphiza-
tion and the change of the Li diffusivity upon delithiation 
(Fig. 14aI–III) [145]. One conclusion from these simula-
tions is that the distribution of Si atoms within the struc-
ture strongly affects the Li diffusion, and Li rich regions are 
beneficial for Li diffusion (Fig. 14aIV–V). Onat et al. also 
trained ANN potentials for the modeling of amorphous LiSi 
structures [213]. The authors proposed an implanted neural 

network (INN) approach, in which the ANN potential is first 

pre-trained on the individual components (Li, Si) before it 
is used for the amorphous LiSi alloys (Fig. 14b). Li trans-
port in the amorphous LiSi alloys was also investigated by 
Li et al. using ANN potential based MD simulations [147], 
also finding a strong dependence of the Li diffusivity on the 
local Si environment. Using the structure models from ANN 
potential simulations, the authors performed an electronic-
structure analysis of the bonding in the atomic structures 
with DFT, finding that undercoordinated Si atoms interact 
more strongly with Li atoms and can impede Li diffusion 
(Fig. 14c), which is in agreement with the observations by 
Artrith et al. [145].

Li transport is not only important in electrode materials, 
but also in the electrolyte and in electrode-electrolyte inter-
phases. Solid-state batteries (SSB) are a class of prospective 
high-energy-density LIBs in which the conventional liquid 

Fig. 14  Lithium transport in amorphous silicon anodes for lithium-
ion batteries. a Atomic structures of Li

x
Si alloy nanoparticle during 

delithiation (battery discharge)  [145]. The change of the composi-
tion in the core of the Li

x
Si nanoparticles is shown in subfigure (a.I), 

and the change in the Si coordination numbers are shown in (a.II 
and a.III). Panels (a.IV) and (a.V) show an Arrhenius plot with the 
temperature-dependent lithium diffusivity in bulk amorphous LiSi 
alloys and representative bulk structures for different Li:Si ratios, 
respectively. b  Formation energies of amorphous LiSi structures as 

predicted by two different ANN potential approaches (ANN and INN, 
implanted neural networks) compared to the DFT reference ener-
gies [213]. (c) Arrhenius plot for Li diffusion in different amorphous 
silicon structures (left) and visualization of the electron localization 
function (ELF) for different structural motifs in the amorphous LiSi, 
Li bonding to an undercoordinated Si atom (top) and Li bonding to a 
fully coordinated Si atom (bottom). The numbers indicate the Bader 
charges of the Li and Si atoms. (Reproduced with permission from 
reference [147])
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electrolytes are replaced with solid Li ion conductors [217, 
218]. The Li transport in such solid electrolytes and across 
electrode/electrolyte interfaces is crucial for the performance 
of SSBs.

In recent work, ML potentials have been employed to 
investigate Li diffusion in crystalline and non-crystalline 
solid electrolytes, which are otherwise challenging to model 
with QM methods. Wang et al. used an MTP based ML 
potential to carry out long MD simulations of Li diffusion in 
eight different prospective coating materials for electrodes in 
SSB [153]. The authors made use of an on-the-fly learning 
approach to accelerate QM based ab initio MD simulations 
and to enable simulating long time scales of up to 2 nanosec-
onds. Fig. 15 shows an Arrhenius plot with a comparison of 
the Li diffusivities from AIMD, which have large uncertain-
ties due to the limited sampling, with the more accurately 

determined diffusivities from ML potential simulations. The 
study also identified cases for which the Arrhenius law did 
not hold up to the temperatures accessible by DFT, demon-
strating that long MD simulations at low temperatures are 
needed to observe the relevant diffusion behavior.

Amorphous lithium phosphate ( Li
3
PO

4
 ) is a Li ion con-

ductor with potential applications as solid electrolyte in all-
solid batteries [219], that has attracted much interest because 
of its chemical and electrochemical stability. Li, Watanabe 
et al. employed ANN potential based MD simulations to 
investigate Li transport in amorphous Li

3
PO

4
 [149], consid-

ering also large structure models with up to ∼1,000 atoms 
and Li off-stoichiometries. The activation energies for Li 
diffusion were estimated to be ∼0.55 eV, in good agree-
ment with experiment. Nitrogen-doped amorphous Li

3
PO

4
 

(LiPON) exhibits better Li conductivity than pristine Li
3
PO

4
 

Fig. 15  Machine learning simulations for solid-state batteries: 
a  Arrhenius plot with Li diffusivities obtained from ab  initio MD 
(AIMD) simulations using a learning-on-the-fly (LOTF) ML poten-
tial based on the MTP method  [153]. The ML potential simulations 
make low temperatures accessible that are closer to room tempera-
ture, whereas conventional AIMD simulations are limited to very 
high temperatures that are not relevant for battery operation. (Repro-
duced with permission from Ref.  [153]) b  Representative structure 
(I) and DFT phase diagram (II) of LiPON near-ground-state crystal 
structures  [214]. Two different composition lines for nitrogen dop-

ing are indicated in yellow (Li replacement) and green (Li addition), 
respectively. Panel (III) shows the corresponding defect formation 
energies for nitrogen doping, as calculated with ANN-potential aug-
mented sampling and DFT calculations. All defect structures are 
predicted to be unstable with respect to decomposition into Li

2
O , 

Li
3
PO

4
 , and Li

2
PO

2
N , showing that amorphous LiPON is meta-

stable. Nitrogen doping via Li replacement is thermodynamically 
favored over doping with Li addition. (Reproduced with permission 
from Ref. [214])
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and was investigated using a combination of ANN potentials 
and DFT calculations by Lacivita et al. [214]. The authors 
employed an ANN-potential augmented sampling approach 
with an evolutionary algorithm to determine low-energy 
amorphous LiPON structure models, which were subse-
quently recomputed with DFT to ensure accuracy. Fig. 15b 
shows a representative structure model and the DFT forma-
tion energies for different amounts of N doping. The study 
concluded that amorphous LiPON is generally metastable 
and decomposition into Li

2
O , Li

3
PO

4
 , and Li

2
PO

2
N is ther-

modynamically favored. The comparison of two different 
reaction pathways for N doping showed, furthermore, that 
N substitution with simultaneous Li removal is energetically 
most likely.

Another example of transport simulations using ANN 
potentials is the work by Li et al.  who modeled Cu dif-
fusion in amorphous Ta

2
O

5
 [220]. In this study, the ANN 

potential was trained only on the energy differences caused 
by Cu intercalation, thereby reducing the complexity of the 
potential energy surface [220].

While the direct modeling of ionic diffusion with ML 
potentials is a powerful approach to investigate transport 
mechanisms, the computational screening for novel ionic 
conductors does not necessarily require the full complexity 
of atomistic diffusion simulations. We note, therefore, that 
ML has also been proposed for the discovery of solid-state 
Li ion conductors without explicit simulation. Two examples 
of such materials discovery applications are a study based on 
unsupervised learning by Zhang et al. [221] and a transfer-
learning approach applied to billions of candidate materials 
by Cubuk et al. [222].

Remaining challenges and outlook

There are still several remaining challenges in the construc-
tion and applications of QM-based ML approaches that we 
expect to be addressed in future developments. Specifically, 
the construction of ML models (1) still relies on manual 
validation to ensure reliability and transferability, and 
(2) requires large data sets from QM calculations that may 
incur computational overheads.

The construction of ML models such as ML potentials 
requires large reference data sets that come with a com-
putational overhead. It is therefore important to decide 
first whether a specific research question can be directly 
addressed with QM based calculations. An ML model is 
only cost-effective if that is not possible, or if the cost of the 
QM calculations would exceed the cost of producing the 
reference data and training an ML model. Note that some 
applications require length or time scales that cannot directly 
be accessed with QM methods but may be investigated using 
more efficient ML models because of the linear scaling of 

their computational cost (Fig. 8), such as the modeling of 
nanoparticles reviewed in Sects. “Spectroscopic techniques 
for structurecharacterization” and  “Properties of catalyst 
materials”.

It is important to keep in mind that ML models are only as 
good as the reference data that they were trained on, and, for 
example, ML potentials trained on DFT data will generally 
exhibit the same inaccuracies as the original DFT method.

Careful validation is needed, since the flexibility of the 
employed ML approaches leads to poor performance in 
describing data that lies outside the trained range, which can 
result in stability issues when new regions or conditions are 
explored. Possible solutions are the inclusion of additional 
local information (such as forces, curvatures, electronegativ-
ity, etc.) and physical constraints in the training process or 
the use of automated frameworks that generate only relevant 
structures that improve the description of configurations at 
the boundary of the training region.

Another challenge is data scarcity due to the high com-
putational cost of the QM reference calculations, espe-
cially in the case of unstructured systems that cannot be 
easily described by simplified models, such as proteins 
in solution. A partial solution already used in several of 
the discussed applications is to employ fragmentation 
approaches in which large molecules are divided into 
smaller fragments for which QM calculations are more 
feasible [168, 175, 223]. Transfer learning techniques can 
also be used to reduce the number of reference calcula-
tions, for example by training a model to a more efficient 
lower-level method first before re-training on a smaller 
data set obtained from a more expensive higher-level 
method [224]. Other possibilities are the use of multi-
task techniques, in which generalization performance is 
improved by simultaneously training on multiple related 
tasks, which could be for example applied to the spectros-
copy models summarized in Sect. “Spectroscopic tech-
niques for structurecharacterization”.

Finally, one could also imagine to completely circum-
vent the need to run converged MD simulations and employ 
hybrid approaches in which an ML model learns to pre-
dict a converged property from a small number of MD 
snapshots [225].

Despite the remaining challenges, the impressive applica-
tions reviewed in the previous chapter demonstrate that QM-
based ML approaches can now be applied to the complex 
systems required to simulate realistic processes of industrial 
relevance. It is now possible to obtain a diverse set of prop-
erties such as solvation free energies, vibrational spectra, 
phase diagrams, and transport coefficients with increased 
efficiency and accuracy, approaching the top left corner in 
Fig. 1. The rapidly growing number of ML simulations and 
models, most of which have just been published in the last 
few years, is a consequence of significant methodological 
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advances, including transferable descriptors and automated 
training procedures, and the availability of open-source 
tools. Additionally, community efforts have given rise to 
public repositories that facilitate the exchange of ML models 
and data sets. We compiled an extensible list of public tools, 
data sources, and repositories at https ://githu b.com/atomi 
sticn et/tools -and-data. Together, these resources offer excit-
ing opportunities for knowledge transfer and for exploration 
of new ML applications in academia and in industry.
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