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Machine learning accurate exchange and
correlation functionals of the electronic density
Sebastian Dick 1,2✉ & Marivi Fernandez-Serra 1,2✉

Density functional theory (DFT) is the standard formalism to study the electronic structure of

matter at the atomic scale. In Kohn–Sham DFT simulations, the balance between accuracy

and computational cost depends on the choice of exchange and correlation functional, which

only exists in approximate form. Here, we propose a framework to create density functionals

using supervised machine learning, termed NeuralXC. These machine-learned functionals are

designed to lift the accuracy of baseline functionals towards that provided by more accurate

methods while maintaining their efficiency. We show that the functionals learn a meaningful

representation of the physical information contained in the training data, making them

transferable across systems. A NeuralXC functional optimized for water outperforms other

methods characterizing bond breaking and excels when comparing against experimental

results. This work demonstrates that NeuralXC is a first step towards the design of a

universal, highly accurate functional valid for both molecules and solids.
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F
or many years, density functional theory (DFT) has served
as the standard tool to study the electronic structure of
materials and condensed systems. Striking an optimal bal-

ance between accuracy and computational cost1, DFT makes a
first-principles description of complex and large systems possible
that is otherwise out of reach for more accurate ab initio
approaches. To achieve this balance, DFT is mapped onto a
mean-field single-electron description within the Kohn–Sham
(KS)2 approach. In KS–DFT, all the complexities of the many-
body electron–electron interaction are reduced within a func-
tional of the density. This functional consists of an exchange (X)
and a correlation (C) part, the former capturing effects from Pauli
exchange, and the latter approximating correlations of electrons
within the many-body wave function.

There is a well-defined roadmap to creating more accurate XC
functional formulations, the so-called Jacob’s ladder of John
Perdew3,4, with each rung representing increasing levels of
complexity and decreasing levels of approximation to the exact
XC functional. The construction of functionals following this map
allows for the incorporation of the added complexities in a
controlled and physically motivated way, imposing the necessary
constraints that these formulations should satisfy to correctly and
universally describe the underlying physics.

A completely different approach to obtaining more accurate
functionals is to replace the physically motivated path by a data-
driven search. Functionals created following this approach are
often referred to as semiempirical5, and versions of these func-
tionals implement approximations from all rungs of the afore-
mentioned Jacob’s ladder. In recent years, unprecedented
computational capacity has made the calculation of physical
properties of molecules and solids with ab initio fully correlated
accuracy possible. Such developments have allowed researchers to
take the semiempirical approach to the extreme, inaugurating an
era of machine learning (ML) methods in density functional
development. This path produced the recent ωB97M-V6, a range-
separated hybrid meta-GGA with nonlocal correlation. It was
designed using a combinatorial technique taking Becke’s B97
family of semiempirical functionals7, augmented with hybrid and
nonlocal correlation components as primary ingredients. The fit
was done using a database of accurate single-point calculations on
a few thousand molecules. Similarly, using a simple mathematical
formulation coined data projection on the parameter subspace,
Fritz et al.8 showed that it was possible to optimize a GGA
functional with nonlocal correlations for liquid water. This
functional was fitted to highly accurate data from coupled-cluster
calculations that were also used to optimize the water force field
MB-pol9–11.

While these latter functionals can already be considered
members of the ML family, other modern ML approaches make
use of algorithms such as artificial neural networks (ANN), kernel
ridge regression, and Gaussian process regression. Grifasi et al.12

have shown that the electron density for small hydrocarbons can
be directly predicted from structural information and Fabrizio
et al.13 have been able to extend this work to noncovalently
bonded systems. Chandrasekaran et al.14 were able to achieve the
same goal for solid-state systems by introducing a grid-based
structure to electron density mapping using an ANN. Both
approaches show great promise to significantly speed up ab
initio calculations as they completely circumvent solving the
cubic-scaling self-consistent field (SCF) equations. Other works,
including the one presented here, have attempted to parametrize
an XC functional with ML, and we discuss related methods15–17

in detail in Supplementary Note 1.
In this manuscript, we propose a pathway to construct fully

machine-learned functionals that depend explicitly on the elec-
tronic density and implicitly on the atomic positions and are built

on top of physically motivated functionals in a Δ-learning type
approach. These functionals are created for a specific dataset and
hence are not universal. They follow the philosophy of other
optimized density functionals8, which opt to prioritize the
system-dependent accuracy over their transferability. We will
show that using our proposed method, it is possible to create
specialized functionals that perform close to coupled-cluster level
of accuracy when used in systems with sufficient similarity to the
training data. Functionals exhibit promising transferability from
gas to condensed phase and from small to larger molecules within
the same type of chemical bonding. Moreover, far outside their
training domain, these functionals are shown not to decrease the
accuracy of their baseline method.

Our method is an evolution of our recent work18, in which we
developed machine-learned correcting functionals (MLCFs) to
correct energies and forces by learning from the electron density.
Building on it, in this manuscript, we show that it is possible to take
the functional derivative of MLCFs thus creating semilocal ML KS
density functionals that can be used in self-consistent calculations.
We call this overall method NeuralXC. We show that these func-
tionals encode meaningful chemical information that extends
beyond the training set, hence making the functionals transferable.
Despite not using the density as a target in the training process, we
discuss how the resulting self-consistent densities compare to the
exact (at the coupled cluster with singles, doubles and perturbative
triples (CCSD(T)) level) densities. Except for some specific
moments of the density distribution, we do not observe a major
improvement. We discuss approaches to overcome this limitation,
which will be further developed in future work.

Results
Density representation. The charge density is represented fol-
lowing our earlier work18 by projecting it onto a set of atom-
centered basis functions. Throughout this work the inner cutoff
radius was set to zero, resulting in radial basis functions defined as

~ζnðrÞ ¼
1
N
r2 ro � rð Þnþ2 for r < ro

0 else

(

ð1Þ

with an outer cutoff radius ro and a normalization factor N. The full
basis is then given as ψnlm(r)= Ylm(θ, ϕ)ζn(r), where Ylm(θ, ϕ) are
real spherical harmonics and ζn the orthogonalized radial basis
functions (for details see ref. 18). The basis set parameters chosen
for every model used in this work are summarized in Supplemen-
tary Table 1.

The descriptors cInlm for atom I of species αI at position RI are
obtained by projecting the electron density ρ onto the
corresponding basis functions ψ

αI
nlm.

cInlm � cnlm½ρðrÞ;RI ; αI � ¼

Z

r

ρðrÞψ
αI
nlmðr� RIÞ: ð2Þ

We found it beneficial for certain models to use the modified
electron density δρ instead of ρ in Eq. (2). This δρ is defined as the
difference between the full electron density and atomic electron
density ρatm the latter being constructed by filling the basis
functions with appropriate valence charges (see ref. 19 for details):

δρðrÞ ¼ ρðrÞ � ρatmðrÞ: ð3Þ

Using this neutral density has the advantage that it is generally
smoother than ρ, as peaks around the ion cores cancel out.
Moreover, δρ always integrates to zero, regardless of the atomic
species involved, suggesting that models trained on it will show
better transferability across chemical environments. We have
used δρ in all models introduced below except for the one trained
on water clusters. Here, cross-validation has determined ρ to
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produce lower generalization errors (see “Methods” section for
details).

To avoid erroneous behavior during deployment, the model
must respect all physical symmetries. These symmetries include
permutations of atoms of the same species, rotations, and
reflections. We opted to enforce these symmetries in two ways:
permutational invariance is imposed by the architecture of
our neural network as discussed below, whereas rotational
invariance and invariance under reflection is encoded in the
features themselves.

Starting from our original descriptors cnlm, we can obtain a
rotationally invariant version by applying the transformation

dnl ¼
X

l

m¼�l

c2nlm: ð4Þ

Machine-learned functional. As in previous work by the
authors18, the permutationally invariant Behler–Parrinello net-
works (BPN)20 were used to parametrize the energy functional.
The network maps the rotationally invariant descriptors dnl onto
the energy, which is represented as a sum of atomic contributions
to ensure permutation symmetry (Fig. 1). The energy functional
can therefore be written as

EML½ρðrÞ� ¼ EMLðd½ρðrÞ�Þ ¼
X

I

ϵαI ðd½ρðrÞ;RI ; αI �Þ; ð5Þ

where ϵα are the outputs of the atomic networks, i.e. the last layer
inside the BPN before the global summation. We have further
used dI as a short-hand notation for the collection of dnl over all
allowed values for n and l.

The functional is built on top of a physically motivated, non-
ML baseline functional Ebase, which in this work was chosen to be
PBE21. Other choices for this baseline functional are possible
but will lead to a different trade-off between accuracy and
computational cost.

Once the energy functional has been fitted, the potential VML,
which is required to perform self-consistent calculations, can be
obtained through

VML½ρðrÞ� ¼
δEML½ρ�

δρðrÞ
: ð6Þ

Here, δ
δρðrÞ indicates the functional derivative and should not be

confused with the modified electron density in Eq. (3). Together
with Eq. (2) this translates to

VML½ρðrÞ� ¼
X

β

∂EML

∂cβ

δcβ½ρ�

δρðrÞ
¼

X

β

∂EML

∂cβ
ψβðrÞ: ð7Þ

Here, we have used β as a composite index, summarizing the
indices n, l and m as well as the atomic index I. Using Eq. (4), the
partial derivatives can be computed as

∂EML

∂cβ
�

∂EML

∂cnlm
¼ 2

∂EML

∂dnl
cnlm: ð8Þ

The resulting potential is therefore a linear combination of the
original basis functions, with coefficients depending on the
derivatives of the machine-learned energy functional with respect
to its input features. These derivatives are usually implemented in
ML software packages and thus straightforward to obtain. The
machine-learned potential and energy are both added back to
their baseline counterparts

ENXC½ρ� ¼ Ebase½ρ� þ EML½ρ�; ð9Þ

VNXC½ρ� ¼ Vbase½ρ� þ VML½ρ�: ð10Þ

The combined functionals (NXC for NeuralXC) can in principle
be used in any DFT code.

It is clear that the energy functional has an implicit dependency
on both, the atomic species αI and the nuclear coordinates RI,
setting it apart from traditional semilocal functionals and some
other ML approaches (see above). While the former dependency
can be lifted by simply using the same basis set and atomic neural
network for every atom regardless of species, the latter is inherent
to our method and cannot be circumvented. Previous work on
machine-learned kinetic energy functionals seems to indicate that
encoding information about the atomic positions in the features
can be beneficial22.

At this point it should be highlighted that we do not create a
single functional, but a collection of functionals. Each functional
within this collection is trained on and therefore closely linked to
a specific dataset. These datasets were chosen in order to test and
illustrate certain properties of our proposed method. We named
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Fig. 1 Implementation of NeuralXC. Starting from the electron density in real space, obtained with a converged DFT calculation (using the baseline

functional Ebase), the projector maps this density to a set of descriptors cnlm. The symmetrizer creates rotationally invariant versions of these descriptors dnl,

which, after preprocessing (not depicted here), are passed through a Behler–Parrinello type neural network architecture. By using the same network for

descriptors of a given atomic species, we ensure permutation invariance. Once the energy EML is obtained, its derivative can be backpropagated using the

chain rule to obtain the machine-learned potential VML. VML is added back to the baseline potential Vbase= δEbase/δn(r), to create the full VNXC(r), which can

be used in subsequent self-consistent calculations.
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the three datasets used in this work after the methods they
originate from: sGDML23, MOB-ML24 and MB-Pol9–11. These
sets contain total energies for a variety of structures calculated at
the coupled cluster with singles doubles and perturbative triples
(CCSD(T)) level. For further details, we refer the reader to
Supplementary Note 2.

Data efficiency. Frequently, training data is scarce or, as in our
case, expensive to obtain. Due to the unfavorable scaling of cor-
related quantum chemistry methods, the creation of highly
accurate datasets for medium to large-sized molecules remains
challenging to this day. We would, therefore, like to design an ML
method that utilizes information contained in the available
training data to its full extent.

In order to test the data efficiency of NeuralXC, we trained an
ML functional for every molecule contained in the sGDML
dataset23 while varying the amount of training data.

Figures 2 and 3 show how the generalization error changes as
the size of the training set is increased. For each training set size, a
new model was trained using the iterative approach described in
the “Methods” section, and self-consistent calculations were run
on the entire test set. We used two different metrics for the
evaluation: the mean absolute error (MAE) and the maximum
absolute error. It can be seen that the MAE starts to saturate at
values of 0.01 eV or below at roughly 100 training samples. Some
improvement in the maximum error can be observed as the
training set size is increased further. For malonaldehyde, at least
500 samples are required to reach a max. error below chemical
accuracy (1 kcal/mol or 0.043 eV), all other molecules pass that
threshold at 100 samples or fewer.

Transferability. Beyond being data-efficient, a useful ML model
generalizes well to unseen data. It is traditionally assumed that
both training and test set are independent identically distributed
samples of the same underlying distribution. There is no reason
to believe that a model should extrapolate beyond the population
on which it was trained.

In an apparent contrast to this, we would like to create a
machine-learned functional that, after being exposed to a small
sample of molecules, generalizes to more complex and larger
systems. However, even though molecules might differ signifi-
cantly in their structural variables from those contained in the
training set, locally, their charge distributions and, therefore, the
input to the network can still be similar as long as the underlying
chemistry does not change too much.

To test the transferability of our functional, we start by
comparing our method to that of Cheng et al.26 using the MOB-
ML dataset24. After being trained on 50 ethane and 20 propane
geometries, the model’s capability of correctly reproducing
relative energies for 100 n-butane and isobutane geometries is
assessed. Figure 4a shows that these energies are predicted well
beyond chemical accuracy with MAEs of 6.6 and 6.1 meV,
respectively, and that in fact, we are more accurate than Cheng
et al.’s26 state of the art method which achieves MAEs of 8.7 and
8.8 meV. Even after the training set size was decreased to 10
ethane and 5 propane structures, our model’s accuracy remains
comparable to that of Cheng et al.’s26, as can be seen in Table 1.
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Both specialized NeuralXC functionals as well as MOB-ML
(mod.) outperform SCAN and ωB97M-V (results obtained with
PySCF and a cc-pVDZ basis), two state of the art functionals, in
accuracy on the test data.

We would further like to assess how well our model generalizes
to other hybridizations of the carbon atom. Figure 4b shows the
prediction errors of the model used on an augmented test set
containing systems with double and triple bonds. While we see a
decline in performance for these systems, the model still improves
upon PBE. In particular, errors in total energy are within 1.6
mHartree or 44 meV of the reference values. The linear
correlation between prediction error and target value indicated
by their large R2 coefficients suggests the existence of systematic
errors. These errors are most likely due to the model’s failure to
treat physical effects deriving from the sp and sp2 hybridizations
of the carbon atom and could be compensated by including
relevant structures in the training set. Indeed, we have found that
by merely adding three ethylene structures to the training set, the
R2 coefficients for ethylene, propene, and acetylene decrease to
0.11, 0.01, and 0.30, respectively.

We have also tested how well our method generalizes to elements
other than those contained in the training set. Ideally, we would like
to create a general functional that can be used across a wide variety
of elements. To do so, it is necessary to remove any information
about the atomic species in the model input. While we predict that
an extensive and carefully curated training will be necessary
to achieve high accuracy across systems, we have shown in
Supplementary Note 5 and Supplementary Table 2 that a species-
independent NeuralXC can be trained on a set of O- and C-
containing molecules and exhibit some improvement for molecules
with S and Si. In particular, the average error in bond lengths for a
set of small molecules decreased by ~42%.

Condensed systems and molecular dynamics. The previous test
has focused on evaluating the transferability within single

molecule gas-phase systems. A different transferability measure
should evaluate the capacity of a functional trained on small
clusters to describe condensed phase systems. We chose to test
this by running Born–Oppenheimer molecular dynamics simu-
lations of liquid water—a challenging system for standard DFT
methods8—using the NeuralXC functional optimized on the MB-
pol dataset9–11.

The machine-learned functional was built as an additive
correction to the PBE XC functional and consisted of a sum of
two models. The first model was trained to jointly reproduce the
total energies of monomers and dimers. The second model was
then built on top of the first to correct three-body energies in
trimers. We coin this new NeuralXC functional NXC-W01.

Table 2 shows the NXC-W01 generalization error compared to
its baseline method on a test set consisting of 200 monomers, 500
dimers, and 250 trimers, obtained in the same way as the training
set. Rather than comparing total energies, we show errors for one-,
two-, and three-body energies as defined in ref. 9 as otherwise large
contributions from one-body energies would always dominate the
comparison. Moreover, it has been shown that the failure of
common density functionals to reproduce the structure of liquid
water can largely be accredited to the incorrect treatment of low-
order many-body energies. Conversely, a functional that reproduces
these energies with high confidence is expected to give an accurate
description of liquid water32. We have further included results for
the functionals SCAN and ωB97M-V. These results were obtained
using PySCF employing the cc-pVQZ basis set. Table 2 shows that
NXC-W01 is superior to the other functionals tested.

In addition, we have tested the functional on the s66 dataset33

to assess its transferability to heterogeneous systems. The results
shown in Supplementary Table 3 and discussed in Supplementary
Note 6 indicate that the functional improves the overall treatment
of hydrogen bonds lowering the average error in bonding distance
from 0.039(6)Å for PBE to 0.021(3)Å for NXC-W01.

Using our ML model as a potential instead of merely adding an
energy correction as proposed in earlier work by the authors18

Table 1 Transferability task on small alkanes.

Training set composition Ethane Propane Butane Isobutane

Method MAE Max. MAE Max. MAE Max. MAE Max.

PBE – 15 70 12 47 9.3 29 9.0 30

SCAN – 12 52 8.7 37 6.5 26 6.8 22

ωB97M-V – 8.5 41 6.3 26 4.8 18 4.5 18

MOB-ML27 100, 100, 50 – – – – 4.0 15 6.3 22

MOB-ML(mod.)26 20, 50, 0 – – – – 2.2 9.5 2.2 9.5

NeuralXC 20, 50, 0 2.0 9 1.8 7.7 1.7 5.8 1.5 4.3

NeuralXC 5, 10, 0 2.4 14 2.3 11 2.2 7.8 2.3 6.8

Mean absolute error (MAE) and maximum absolute error (Max.) per carbon atom. The second column describes how many samples of propane, ethane, and methane were contained in the training set.

Energy errors are given in meV.

Table 2 Generalization errors of NXC-W01.

1-body 2-body 3-body

Method RMSE MAE Max. RMSE MAE Max. RMSE MAE Max.

PBE 61 48 174 35 19 270 11 5.8 75

SCAN 9.2 7.7 22 44 24 297 13 7.7 49

ωB97M-V 7.4 5.0 40 16 11 65 11 6.9 60

NXC-W01 1.8 1.4 9.3 11 7.5 47 8.0 4.6 41

The errors in total energy are split up into their many-body contributions. For monomers the 1-body errors are reported, for dimers the 2-body errors and for trimers the 3-body errors. All values are given

in meV.
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and in related work15 has the advantage that electron densities are
self-consistent with respect to the underlying functional. Self-
consistency makes the Hellmann Feynman theorem34 applicable,
allowing us to obtain accurate, energy-preserving forces that can
be used to study dynamical and statistical properties of a system.

It is commonly accepted that the accurate description of liquid
water necessitates the use of hybrid functionals and the explicit
treatment of dispersion forces and nuclear quantum effects
(NQEs)35. The latter is often achieved through path integral
molecular dynamics36, the cost of which still prohibits its use in
ab initio simulations of realistically sized systems. Testing our
optimized functional on liquid water, we, therefore, bear in mind
that an exact agreement with experimental results could only be
achieved if NQEs were to be explicitly included.

Born–Oppenheimer molecular dynamics simulations were run
for 96 water molecules in a periodic box at experimental density and
300 K using stochastic velocity rescaling as implemented by the i-PI
code37. We obtained an initial configuration from a thermalized
molecular dynamics simulation of the same system run with MB-
pol. This configuration was then used together with random initial
velocities as starting point for 20 ps MD runs with time step 0.5 fs,
using both PBE and NXC-W01 as functionals. We discarded the
first 5 ps and used the remaining 15 ps for our analysis.

As MB-Pol has been shown to provide excellent agreement
with experimental results11 in PIMD studies, the quality of our
model can be assessed by comparing to MB-Pol classical
molecular dynamics simulations at 300 K. We further include

results from various other works obtained with functionals that
are considered superior to PBE, namely the meta-GGA functional
SCAN and the range-separated hybrid functional with nonlocal
interactions ωB97M-V. The results for SCAN were taken from
work by Wiktor et al.30 who conduct 15 ps long simulations with
a time step of 0.48 fs, performed in the canonical NVT-ensemble
at 300 K using the CP2K code and a periodic box containing 64
water molecules. For ωB97M-V, results by Yao et al.31 were
included, the computational details being the same as in the case
of SCAN except for a total simulation time of 30 ps and a time
step of 1.5 fs. For radial distribution functions (RDFs) other than
oxygen–oxygen, only results by Wiktor et al.30 were available.

Figure 5 shows excellent agreement between the RDFs
obtained with NXC-W01 and MB-pol. While both SCAN and
ωB97M-V show improvement with respect to PBE, both
functionals lead to an overstructured liquid. This is in accordance
with the insights presented in Table 2, as we would expect NXC-
W01 to outperform the other functionals based on its accuracy
regarding many-body energies. While deviations with respect to
x-ray diffraction experiments28 and joint refinement of neutron
and x-ray data29 can be observed, these can be largely accredited
to the lack of explicit treatment of NQEs. Quantities that are
more robust to these effects such as the shape of the first trough
as well as the radial positions of extrema in all RDFs are well
reproduced.

We have also validated that NXC-W01 is capable of accurately
describing bond breaking situations in water, which it was not
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explicitly trained for. Figure 6 shows the coordinated proton
transfer reaction in a water-hexamer ring. A simultaneous six-
proton transfer path along the H bond direction between the six
molecules in the ring is discretized and the energy at each
configuration is plotted as a function of the proton transfer
coordinate ν. None of our training data involved dissociated
configurations, however NXC-W01 outperforms all other XC
functionals and closely reproduces CCSD(T) results. These type
of dissociative configurations are explored by ring polymer beads
in path integral molecular dynamics simulations of liquid water38,
and cannot be accounted for with nondissociative force fields.

Electronic densities. When trying to evaluate the quality of
electron densities produced by NXC-W01, we are faced with the
problem of comparing densities that were obtained with different
methods and approximations.

In particular, coupled cluster densities were calculated with
PySCF39, an all electron code that utilizes Gaussian basis sets and
nonperiodic boundary conditions. In contrast, NeuralXC is
implemented within SIESTA19, a periodic, pseudopotential DFT
code that uses numerical atomic orbital basis sets. This limits the
meaningfulness of a density comparison based on real-space grids.

We hence choose to compare the moments of the density
distribution. These (dipole and quadrupole moments) have a direct
physical interpretation and have been used before to evaluate the
quality of a given DFT density40; moreover, they are accessible by
experiment. Table 3 shows the dipole and quadrupole moments,
together with the spread of the valence electron density distribution
for a water molecule in the experimental equilibrium geometry.
Results evidence that NXC-W01 improves the moments of the
density distribution. Particularly, the dipole moment error of PBE is
reduced from 2 to 0.2% with NXC-W01.

Figure 7 shows the valence charge density changes with respect
to the fixed baseline model for a water molecule in its
experimental geometry. Additional density comparisons for other
molecules and functionals are provided in Supplementary Fig. 6.

The plotted density cuts show that there is qualitative
agreement between the two method mostly along the OH
bond where both methods localize more charge than PBE. Closer
to the oxygen core, the change in density induced by NXC-W01
exhibits a nodal shape that is missing in the exact counterpart.

To understand the source of these deviations, it is instructive to
revisit Eq. (7): In DFT, the ground state density is uniquely
determined by the potential V. In the case of NeuralXC, VML is
closely related to the derivatives of the atomic neural networks
with respect to their input features. In regions of feature space
where data is abundant, fitting the model to reference energies
will give a valid treatment of these derivatives (assuming that the
neural network is sufficiently smooth, which can be achieved with
regularization techniques). However in data-sparse regions, these
derivatives will become less reliable.

Returning to the example of water and Fig. 7, it becomes clear why
NXC-W01 achieves a satisfying treatment of the OH bonds, as
density variations within that area are well represented in the training
data. As the density close to the oxygen core is less susceptible to
molecular deformations, especially when using pseudopotentials,
NXC-W01 has less data to draw upon in this region.
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Fig. 6 Coordinated proton transfer in a water-hexamer ring. The reaction coordinate is defined as ν ¼ dðO� HÞ � dðO0 � HÞ, where O;O0 are the two

oxygen atoms involved in the H bond and H is the transferred proton. Energy values shown in inset correspond to barrier heights.

Table 3 Moments of the electronic density of water.

Exp. PBE NXC-W01 CCSD(T)

Dipole (D) 1.855 1.814 1.851 1.856

Quadrupole QT

(D ×Å)

2.565 2.488 2.494 2.505

〈r2〉 (D ×Å) – −26.83 −26.45 −26.51

Calculations were done for a molecule in its experimental equilibrium geometry. Coupled-cluster

results were calculated in an aug-cc-pVTZ basis, a doubly polarized quadruple zeta basis was

used for PBE and NXC-W01. The quadrupole moment QT is defined as half the difference

between the largest and smallest eigenvalue of the traceless quadrupole tensor

QT ¼ 1=2ðqmax � qminÞ. It is invariant to rotations and uniquely defines the entire quadrupole

tensor for a water molecule in its equilibrium geometry41. The spread of the valence electron

density is defined as 〈r2〉 = ∫rr2ρval.
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The question remains whether a machine-learned XC func-
tional of the form of NeuralXC can be brought closer to an exact
functional. One way to improve in this regard is to incorporate
information about the exact potential during the training process.
This potential can in principle be calculated starting from the
exact density obtained from a fully correlated many-body wave
function. While we aim to explore this in more detail in future
work, we provide a proof of concept example in Supplementary
Note 7, showing how the density error of PBE can be decreased
by up to two orders of magnitude for a set of H2 molecules .

Discussion
We have developed a supervised ML method termed NeuralXC
that lifts the accuracy of KS density functional calculations at a
GGA level towards that of coupled-cluster theory calculations.
We have shown that using NeuralXC, it is possible to create
specialized functionals that are highly accurate when used in
systems sufficiently similar to their training data, while not
degrading the overall accuracy of their baseline method (and in
some cases improving it) when used far outside their training
domain.

Throughout this work we have tried to illustrate several key
aspects that, we believe, contribute to the success of an ML method.

Given the limited availability of highly accurate reference data,
it is crucial that the proposed method is data-efficient. We have
shown that desired accuracies for a variety of systems can be
reached with small to moderately sized training sets.

Another cornerstone of a successful ML model is its transfer-
ability, facilitating model creation itself. As NeuralXC functionals
generalize across chemical environments, the need to create a new
reference dataset and retrain a new model for each system of
interest decreases. We have shown this in the case of alkanes,
where a model trained on ethane and propane was still valid for
n-butane and isobutane structures showing an MAE in total
energy prediction of 6.6 and 6.1 meV, respectively. While show-
ing promising results, these experiments also laid bare the
shortcomings of our method, as the functional only proved lim-
ited capability of treating carbon hybridizations other than the
one it was trained on.

In comparison to other models presented in this work, which
were used as case studies to highlight certain strengths and
weaknesses of our method, NXC-W01 stands out as a versatile

functional with promising future applications. Beyond repro-
ducing pair-correlation functions close to experimental results,
it is capable of treating bond breaking, opening the path to
studying proton transfer processes in liquid water at a highly
accurate level. Further, we have shown that beyond water, the
model is capable of correcting the hydrogen bond length for a
variety of systems contained in the s66 dataset. For systems
where NXC-W01 does not provide an improvement it was
shown that it does not significantly degrade the accuracy of its
baseline functional, PBE. This suggests that NXC-W01 can be
used in scenarios where the correct treatment of water–water
interactions is crucial and PBE is known to have sufficient
accuracy for the remaining interactions. For example, it is a
suitable model to treat hybrid systems like aqueous interfaces,
or solutions, where the water description is highly sensitive to
the quality of the functional.

All these insights will guide further development of our
method, the ultimate goal being the design of a universal func-
tional that is equally valid and highly accurate for a wide variety
of systems both from the realm of molecules and solids. The
success of this endeavor will depend crucially on the availability
of diverse and accurate training data.

Furthermore, while this has not always been done in the past42,
density functionals should be judged by their ability to reproduce
both energetic benchmarks as well as reference electron densities.
This work has put an emphasis on energetic properties, but we
have shown that by correcting the total baseline energy NeuralXC
also induces density changes that bring the density closer to the
exact density. However, as these changes are relatively small,
future research will need to address how reference potentials can
be directly incorporated in the training procedure to enable a
more guided approach towards functionals that are accurate
regarding both energy and density.

NeuralXC opens up a new path to developing exchange–
correlation functionals for KS–DFT calculations. As our method
only introduces a linearly scaling overhead to the underlying
baseline functional (see Supplementary Note 4), it is especially
attractive for simulations of large systems for which explicitly
correlated wave function methods are still too expensive. Beyond
creating accurate functionals for KS–DFT calculations, we see
possible applications in orbital-free DFT, where NeuralXC could
be used to develop kinetic energy functionals.

ρCCSD(T) — ρPBE ρNXC-W01 — ρPBE
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Fig. 7 Electron density of water. Comparison of the difference in electron density between CCSD(T) and PBE and NXC-W01 and PBE for a water molecule

in its experimental equilibrium geometry. Two dimensional cuts either correspond to high-symmetry planes or planes containing a significant number of

atoms and are indicated by blue surfaces in the molecule depictions adjacent to the density plots. Black dots inside the density plots indicate the positions

of in-plane atoms. Atoms are color-coded with red corresponding to oxygen and white to hydrogen. Color scale is in units of e × Bohr−3.
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Finally, the trade-off between accuracy and cost that our method
entails needs to be carefully assessed. This trade-off depends both
on the baseline functional and the basis sets used (as well as other
variables). While being somewhat ad hoc and less physically
motivated, we have previously shown18 that ML density functionals
can also be used to correct for basis set errors. Building a NeuralXC
functional on top of a cheap baseline such as the local density
approximation43, together with a minimal basis set, could make our
method a competitive alternative to tight-binding DFT.

Methods
Training. The models were trained on self-consistent densities produced with the
baseline functional (PBE21). Given a dataset containing triplets of the baseline total

energies E
ðiÞ
base , reference total energies E

ðiÞ
ref , and baseline densities ρ(i), the loss

function is defined as

L ¼
X

N

i

E
ðiÞ
ref � ENXC ½ρ

ðiÞ�
� �2

; ð11Þ

¼
X

N

i

ðE
ðiÞ
ref � E

ðiÞ
baseÞ � EML½ρ

ðiÞ�
� �2

; ð12Þ

where the parameters inside the machine-learned functional EML are to be opti-
mized to minimize L.

Before passing the symmetrized descriptors dnl through the neural network,
three additional preprocessing steps were employed. First, a variance filter was
used, disregarding all features whose variance across the training set was below a
threshold value equal to 10−10, effectively de-noising the dataset. Second, all
features are scaled so that their values are normally distributed across the training
set with zero mean and variance one, a step common in ML to ensure fast
convergence of the optimization algorithm used to train the neural network. As a
final step, the features were projected onto their principal components44, only
keeping enough components so that an explained (normalized) variance of γ was
achieved, with values of γ ranging from 0.95 to 1. If γ is smaller than one, this step
has a regularizing effect decreasing the risk of overfitting.

All models were implemented in Tensorflow45 and trained using the Adam46

optimizer with training rate α= 0.001 and decay rates β1= 0.9 and β2= 0.999 and
the sigmoid function was chosen as activation. Hyperparameters such as γ, the
learning rate, l2-regularization were determined through k-fold cross-validation.
This involves splitting the training data into k random folds, i.e. equally sized parts,
and picking the hyperparameters that produce the smallest average generalization
error on a single fold if trained on the remaining ones. Once these hyperparameters
are determined, the model is trained one final time on the entire training set. We
used k= 5 for training sets with less than 100 data points and k= 3 for all others.
Supplementary Note 3 discusses how a model architecture could in principle be
optimized for maximum transferability.

The number of nodes per hidden layer was also treated as a hyperparameter and
optimized through cross-validation. The final depth (i.e., the number of hidden
layers) for each network was not explicitly chosen as it was determined by the
convergence of the iterative training procedure described below. A summary of the
resulting network architectures is given in Supplementary Table 1.

By altering the XC functional, the self-consistent electron densities change as
well. This fact causes the actual accuracy of the ML functional, defined as the
accuracy of the energies and forces obtained by self-consistent calculations with the
modified functional, to be lower than the accuracy obtained during the fitting
procedure. To remedy this, we employed what we call iterative training: The
electron densities and corrected energies obtained with the first iteration of the ML

functional E
ð1Þ
ML are used to train a new iteration which is then in turn used to

calculate new densities. This procedure is continued until the accuracy of the
obtained functional remains unchanged across two subsequent iterations. The
neural network used in iteration n+ 1 is obtained by freezing the hidden layers of
iteration n and adding a new hidden layer to the network that is then optimized on
the nth iteration of the training densities. Typical numbers of iterations (and final
number of hidden layers) ranged from two to five. This technique is reminiscent of
a procedure commonly known as greedy layer-wise training in the deep learning
community47, although with a different goal set. A more detailed discussion of the
training algorithm can be found in the Supplementary Methods.

DFT calculations. The baseline calculations for all of the datasets above were
conducted with SIESTA19 using the PBE21 exchange–correlation functional with
norm-conserving pseudopotentials, a real-space grid cutoff of 400 Ry and a cubic
unit cell with lattice constant 30Å unless otherwise indicated. A doubly polarized
quadruple zeta basis set was used for the water clusters and the s66x8 dataset
calculations. All other structures were computed with a polarized double zeta basis.
Molecular dynamics simulations were conducted using an optimized polarized
double zeta basis48 and a real-space grid cutoff of 450 Ry.

ML basis sets. The ML basis sets were hand-picked using a combination of
physical intuition (to set reasonable lower and upper bounds for the parameters)
and cross-validation. The basis set used for MOB-ML was optimized for trans-
ferability. This was achieved by training models on methane and ethane and
determining which basis parameters produce the best extrapolation (lowest RMSE)
to propane. The basis sets used are listed in Supplementary Table 1.

Data availability
Data in the form of molecule geometries along with their associated reference energies, as

well as input files and scripts needed to reproduce the results presented in this

manuscript, are bundled with our initial release of NeuralXC and available in zenodo

under the indentifier https://doi.org/10.5281/zenodo.376161349. Additional data related

to this paper may be requested from the authors.

Code availability
The implementation of NeuralXC as well as examples on how to train and deploy

NeuralXC functionals are available in zenodo with the identifier https://doi.org/10.5281/

zenodo.376161349.
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