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Microorganisms play an important role in natural material and elemental cycles. Many 
common and general biology research techniques rely on microorganisms. Machine 
learning has been gradually integrated with multiple fields of study. Machine learning, 
including deep learning, aims to use mathematical insights to optimize variational functions 
to aid microbiology using various types of available data to help humans organize and 
apply collective knowledge of various research objects in a systematic and scaled manner. 
Classification and prediction have become the main achievements in the development of 
microbial community research in the direction of computational biology. This review 
summarizes the application and development of machine learning and deep learning in 
the field of microbiology and shows and compares the advantages and disadvantages 
of different algorithm tools in four fields: microbiome and taxonomy, microbial ecology, 
pathogen and epidemiology, and drug discovery.
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INTRODUCTION

Microbiology focuses on studying the activity law of microorganisms, exploring the characteristics, 
culture conditions, and detection methods of microflora, taking its essence (discovering, utilizing, 
improving, and protecting beneficial microorganisms), and removing its dross (preventing, 
controlling, or transforming harmful microorganisms). Thus, it is available for science and 
benefits mankind (Dworkin, 2012; Hanage, 2014; Ha and Devkota, 2020).

Recently, the main research hotspots in microbiology include community classification and 
its environmental role (Bulgarelli et  al., 2013; Zhang et  al., 2021), regulation of gut microbiome 
and host interactions (Turnbaugh et  al., 2007; Jones et  al., 2014; Malla et  al., 2018; Ruff et  al., 
2020), development of pathogenic microorganisms and drug vaccines (Shahbaaz et  al., 2016; 
Moos et  al., 2017; Zhu et  al., 2020), and trying to dilute the boundaries between microbiome 
and genome editing, molecular modification, ecology and resource utilization, biocatalysis, and 
synthesis (Stres and Kronegger, 2019; Galloway-Pena and Hanson, 2020). In addition, microbiology 
and multiomics (including genomics, epigenomics, transcriptomics, proteomics, and metabolomics) 
have combined and developed a variety of multiscale emerging fields (Beck et  al., 2021; Liang 
et  al., 2021).

The understanding of microorganisms started from microbial cell morphology and physiological 
and biochemical characteristics to microbial genotype identification at the nucleic acid and 
protein levels, and chemical analysis methods based on cell chemical composition analysis and 
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numerical classification methods relying on the level of 
computational biology have also been established successively. 
The rapid progress in the discipline of microbiology is inseparable 
from the update of observation methods or techniques in the 
same period (Galloway-Pena and Hanson, 2020). With the 
advent of the Big Data era, the pressing questions for researchers 
have gradually evolved into how to quickly and efficiently filter/
condense this exponential growth of information to obtain 
generalized quality data and how to transform the massive 
data of microbiota into easily understood and visualized 
knowledge. Compared to traditional research with insufficient 
data or purely experimental techniques that cause trouble, such 
as cognitive bias, low reproducibility, and long-time span, the 
modern microbiology research process is more likely to 
incorporate new technologies and big data methods to do this 
better and right.

Artificial intelligence (AI), first proposed by John McCarthy 
at the Dartmouth Conference in the summer of 1956, concentrates 
on the simulation of human intelligence extensions and the 
research and development of theoretical methods, techniques, 
and applied systems. The entry of AI drives the progress of 
microbiology and achieves a new paradigm breakthrough 
(Barredo Arrieta et  al., 2020). Combined with the advantages 
of big data, automation, modeling, and AI, microbiology has 
evolved toward a multiscale and multidimensional direction, 
gradually applying to systems biomedicine, systems ecology, etc.

Machine learning (ML), first proposed by Arthur Samuel 
(Bell Labs, IBM, Stanford) in 1959, is a special branch/subfield 
of AI that aims to find features from large-scale heterogeneous 
data. The most basic thing is to use algorithms to parse the 
data, analyze the patterns in the data automatically, and then 
utilize these patterns to make predictions and decisions on 
real-world events (Jordan and Mitchell, 2015). Unlike traditional 
software programs that are hard-coded to solve specific tasks, 
ML takes large amounts of data and trains them using algorithms 
to learn how to accomplish tasks from the data (Domingos, 
2012). With the integration of cross-scale and complex microbial 
communities and multiomics integration, ML can be  used to 
systematically present interactions between microflora or with 
hosts. The workflow of dimensionality reduction and then 
extraction of spatial features from high-dimensional datasets 
generated from large data collections is supportive of exploring 
the functional potential of microorganisms and expanding the 
study of microbial technology applications.

Deep learning (DL) is a breakthrough ML approach that 
models high-level abstractions of data through a deep network 
with multiple layers of processing units, which are parametric 
models trained by gradient descent (Lecun et  al., 2015). ML 
is a way to implement AI, and DL is a technology to implement 
ML (Figure  1). Remarkably, there is no obvious boundary 
separating DL from traditional ML and traditional statistical 
analysis. To handle complex, high-dimensional microbiome 
data, ML algorithms have been applied to the frontiers of 
combining microbiome and computational science, more 
commonly for classification and prediction (Schmidhuber, 2015).

This paper first briefly introduces the ML methods, data 
processing steps, and algorithms commonly used in microbial 

research, summarizes the research on ML-based microbial 
prediction and application, and discusses the advantages and 
limitations of the methods and tools, demonstrating the 
development prospects of computational microbiology from 
the perspective of ML.

MACHINE LEARNING

An AI system is supposed to be  equipped to learn knowledge 
from raw data, which is known as ML. Effective features are 
extracted from raw data by designing targeted pattern recognition 
algorithms and then using these features with ML algorithms, 
i.e., distance functions to represent pairwise relationships between 
objects. The earliest ML algorithms can be  traced back to the 
early 20th century, and a large number of classical methods 
have been developed within these 100 years (Figure  2). This 
section summarizes the classical algorithms that have appeared 
in history in four directions: supervised learning, unsupervised 
learning, DL, and reinforcement learning (RL). Then, we elaborate 
on the criteria for evaluating the merits of the model and 
algorithmic workflows.

Supervised Learning
Supervised learning, including regression analysis and statistical 
classification, refers to a class of methods that use samples 
from known categories as training sets to train models. Before 
the concept of ML was introduced, Fisher (1936) invented a 
supervised data dimensionality reduction algorithm, linear 
discriminant analysis (LDA). In the 1950s, based on the core 
idea of Bayes decision theory, which is to select the decision 
with the highest probability, the Bayes classifier was born and 
divides the sample into the class with the highest posterior 
probability. The naive Bayes (NB) model has a simple algorithm 
with stable classification efficiency, performs well for small-
scale data, can handle multiple classification tasks and is suitable 
for incremental training (Zhang et  al., 2009); however, it is 
required to decide the probability of the posterior by virtue 
of the prior and data before classification determination. Thus, 
there is a certain error rate in the classification decision-making, 

FIGURE 1 | The relationship among artificial intelligence, machine learning, 
and deep learning.
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and it is sensitive to the expression of the input data. Logistic 
regression (LR) directly predicts the probability of a sample 
belonging to a positive sample, with a clear model, strong 
parameter interpretability, and simple and efficient for big data 
scenarios; however, its performance is easily affected by the 
correlation between features and the size of the feature space, 
and it is prone to underfitting problems, resulting in low 
accuracy (Cox, 1958). The k-nearest neighbor (kNN) algorithm 
is considered an algorithm based on the idea of template 
matching that is simple and efficient and can solve both 
classification and regression problems with high accuracy and 
insensitivity to outliers; however, its prediction speed is slower 
than that of LR, especially for dealing with high-dimensional 
data, which is computationally intensive (Cover and Hart, 1967).

The year 1980 serves as a transition point in the history 
of ML algorithms, which gradually developed from fragmented 
and unsystematic enlightenment algorithms into an independent 
and systematic direction. Various machine learning algorithms 
have exploded and developed rapidly. In the 1980s and early 
1990s, three typical implementations of decision trees (DT): 
ID3 (Quinlan, 1986), CART (Yeh, 1991), and C4.5 (Quinlan, 
1996), had fast computation, high accuracy, and high 
interpretability, which make DT still used in some problems 
today, but their characteristic of easy-overfitting leads to easy 
neglect of the relevance of attributes in the dataset. Two classical 
algorithms, support vector machine (SVM) based on statistical 
learning theory (Cortes and Vapnik, 1995) and AdaBoost 
(Freund, 1990), were developed in the 1990s. The former (SVM) 
uses kernel functions that can be mapped to a high-dimensional 
space to solve nonlinear classification problems with 
uncomplicated classification ideas (maximizing the interval 
between samples and decision surfaces) and presents better 
classification performance; however, the method is difficult to 

solve the multiclassification problem, sensitive to missing data, 
and thus challenging to achieve large-scale training samples. 
The latter (AdaBoost) can integrate the use of simple weak 
classifiers, which does not require either a priori knowledge 
of weak classifiers or filtering of features, and can significantly 
improve learning accuracy regardless of whether the data are 
artificial or real; nevertheless, it is susceptible to noise interference 
and has a long training time.

The random forest (RF) and AdaBoost algorithms belong 
to integrated learning, with high accuracy, and can effectively 
run on large datasets and strong resistance to noise (Breiman, 
2001); however, the number of decision trees will lead to a 
very long training time, and overfitting occurs in noisy 
classification or regression problems. Up until the rise of DL 
in 2012, supervised learning was rapidly developed, and various 
ideas and methods emerged one after another, yet no one ML 
algorithm achieved an overwhelming advantage.

Unsupervised Learning
Unsupervised learning is a method to learn the commonality 
in the input data to determine whether such commonality 
exists in the new data, and the research thinking can be divided 
into two categories: clustering and data dimensionality reduction. 
The hierarchical clustering algorithm emerged early (Ward, 
1963), and some of its implementations are still in use today, 
including SLINK (Sibson, 1973) and CLINK (Defays, 1977). 
The K-means clustering algorithm was then born, and the 
algorithm is simple and easy to implement (Macqueen, 1965), 
whereas there are the following drawbacks: (1) the number 
of class clusters needs to be  specified by the user in advance; 
(2) the clustering results are more sensitive to the selection 
of the initial class cluster centers; (3) it is easy to fall into a 
local optimum; and (4) only spherical class clusters can be found; 

FIGURE 2 | Development history of classical machine learning algorithms since the 1930s.
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since then, it has been continuously improved and grows into 
the clustering algorithm with the most variants and 
improvements. The expectation-maximum (EM) algorithm 
(Dempster et al., 1977) has been used to solve various extreme 
likelihood estimation problems in ML with missing data and 
is commonly used to learn the variational inference of LDA 
topic models, parameters of the Gaussian mixture model (GMM), 
and hidden Markov model (HMM). Other density-based 
clustering algorithms in the 1990s include mean shift (Cheng, 
1995), density-based spatial clustering of applications with noise 
(DBSCAN) algorithm (Ester et  al., 1996), and ordering points 
to identify the clustering structure (OPTICS) algorithm (Ankerst 
et  al., 1999). They are not based on various distances but 
on density.

A new idea of clustering was born in the early 21st century: 
transforming the clustering problem into the graph cutting 
problem, and the representative algorithm covering this new 
idea is spectral clustering. The data dimension reduction 
algorithm originated very early, and the advantages of the 
classic principal component analysis (PCA) algorithm are the 
complete absence of parameter restrictions, the removal of 
data redundancy and noise, the compression and preprocessing 
of the data to make the dataset easier to use, and the results 
easier to understand (Pearson, 1901). PCA can eliminate the 
correlation between variables, but the nonlinear dependence 
between samples may be  lost if linear dimensionality reduction 
is performed via PCA. The heavyweight result innovation, 
kernel PCA (Scholkopf et  al., 1998), was based on the kernel 
technique, combined with PCA and transforming PCA into a 
nonlinear dimensionality reduction algorithm. Since then, a 
wave of nonlinear methods has been set in motion, e.g., locally 
linear embedding (LLE), Laplacian eigenmaps, locality preserving 
projections, and isometric mapping (Roweis and Saul, 2000; 
Tenenbaum et  al., 2000; Belkin and Niyogi, 2003; He and 
Niyogi, 2003). Then, t-distributed stochastic neighbor embedding 
(t-SNE) was developed (Van Der Maaten and Hinton, 2008), 
mainly for visualizing and exploring high-dimensional data, 
which follows nonlinearity and has the best visualization effect 
compared with other dimensionality reduction algorithms. The 
relative similarity of the original data at the time of dimensionality 
reduction is excellent; however, the results of each run will 
change slightly for each run due to its random nature. 
Unsupervised learning, although relatively slow in development 
and with few breakthroughs, has occupied a dominant role 
in human and animal learning and is a necessary path to 
explore strong artificial intelligence.

Deep Learning
Deep learning, compared to traditional ML, is more highly 
dimensional and targeted to capture as many/complete 
relationships as possible in the raw data. DL can be classified 
into supervised, unsupervised and hybrid DL models according 
to whether labeled data are required or not, where hybrid 
models usually refer to the use of unsupervised model results 
as input data or important auxiliary to supervised models. 
The predecessor and technical essence of DL is artificial 
neural networks (ANNs). In 1958, the predecessor of ANN, 

the Perceptron model, was launched (Rosenblatt, 1958), but 
it was not of practical value because it was too simple and 
could only handle linear classification problems, not even 
solving the XOR problem. Therefore, it does not have practical 
value but mainly lays the ideological foundation for the 
later algorithms. Research on neural networks entered a 
bottleneck until the 1980s, for instance, the back propagation 
(BP) algorithm for training multilayer neural networks/
multilayer perceptrons using sigmoid functions for nonlinear 
mapping (Rumelhart et  al., 1986). Based on the forward 
propagation of traditional neural networks, the BP algorithm 
adds a backward propagation process of errors, continuously 
adjusting the weights and thresholds between neurons until 
the output error reaches a reduction to within the allowed 
range or reaches a predetermined number of training times. 
It effectively solves the problem of nonlinear classification 
and learning and is the basis for improving and applying 
neural networks.

However, as the scale of the neural network increases, the 
BP algorithm suffers from the problem of “gradient 
disappearance.” Meanwhile, the limited hardware level of 
computers led to poor computing power, which could not 
help the further development of BP algorithm, plus the effect 
of classification and regression application of shallow ML such 
as SVM in the same period was continuously proved, and DL 
thus entered the second winter period. Even during the winter 
period, algorithms such as convolutional neural networks (CNN) 
and long short-term memory (LSTM) were developed and are 
still adopted today to process vision tasks (Lecun et  al., 1989). 
Among them, LeNet-5 was proposed by Lecun et  al. (1998) 
and has become the prototype of most deep convolutional 
neural networks (DCNNs).

Until Hinton and Salakhutdinov (2006) proposed the concept 
of DL, the problem of “gradient disappearance” was solved, 
i.e., the algorithm was trained layer by layer by unsupervised 
learning and then tuned using a supervised back-propagation 
algorithm. Hinton and his student Alex Krizhevsky used 
AlexNet to win the ImageNet competition (Smirnov et  al., 
2013), which became the pioneer of the current wave of deep 
learning. Its top  5 accuracy rate of 84.6% has an error rate 
of only 15.3%, and the network is characterized by (1) the 
use of the ReLU method to speed up training; (2) the use 
of dropout to prevent overfitting; and (3) GPU parallel 
computing technology to solve the problem of long optimization 
time for deep networks with many parameters. Moreover, 
some neural network architectures, such as variational 
autoencoders (VAEs) and generative adversarial networks 
(GANs), have recently attracted much attention in the DL 
community. The bidirectional encoder representation from 
transformers (BERT) model proposed by Devlin et  al. (2019) 
has built a transformer network structure with a self-attention 
mechanism as the core. Excellent performance is presented 
in many tasks in natural language processing (NLP) due to 
its versatility. Essentially, DL is a statistical technique with 
advantages and limitations that are maturing in the areas of 
computer vision, natural language processing, and speech  
recognition.
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Reinforcement Learning
Reinforcement learning is a special class of ML algorithms, 
the most important feature of which is learning from interaction 
(Keerthi and Ravindran, 1994; Kaelbling et  al., 1996). On the 
basis of interaction, we  constantly judge whether the action 
is related to the goal, corresponding to the generation of rewards 
or penalties, and repeatedly execute it to finally maximize the 
expected benefits, an “automatic scoring and escalation” process. 
Deep reinforcement learning (DRL), a new research hotspot, 
combines the perceptual capability of deep learning with the 
decision-making capability of reinforcement learning to achieve 
direct control from raw input to output through end-to-end 
learning for applications in robot control, computer vision, 
natural language processing, and medical care (Erev and Roth, 
1998; Frank et  al., 2004; Kober et  al., 2013; Mnih et  al., 2015).

Evaluation Criteria and Algorithmic 
Workflows
Different algorithms have their own advantages and disadvantages, 
and there is no superiority or inferiority. What needs to be done 
is to fully interpret the input data based on different demand 
scenarios and then build suitable models to continuously adjust 
to achieve the best performance. Moreover, the belief that “as 
long as the most advanced and complex model is used, the 
scientific problem will be  solved” is not objective. In essence, 
computer technology only assists people in making decisions 
or automates the human decision-making process and improves 
efficiency. Therefore, the choice of model should be  the most 
suitable one, rather than pursuing the most complex one. There 
are four criteria used to judge the merits of machine learning 
algorithms (Greener et  al., 2022). (1) Correctness, the most 
important criterion for judging the merits of an algorithm. 
(2) Robustness, i.e., fault tolerance, representing the algorithm’s 
ability to respond to and address illegal data input. (3) Readability, 
easy-to-understand algorithms means a less time-consuming 
process of debugging, modification, and expansion. (4) 
Temporality, i.e., time complexity and space complexity, represent 
the computational effort and memory space required to execute 
the algorithm, respectively.

The use of ML as a technical tool to solve scientific problems 
can generally comply with the following five steps in Figure  3 
(Greener et  al., 2022). (1) Define the problem, prepare and 
process the data, and determine the assessment method. The 
data were split into three groups: training set, validation set, 
and test set. The training set is given to build the model, the 
validation set and the test set both refer to the data samples 
retained when training the model, and the ability of the model 
to use the training data should be  evaluated successively. The 
data also undergo targeted preprocessing before use, such as 
vectorization, value normalization, and feature engineering 
needed for non-DL. Then, we  select the most representative 
evaluation metrics and validate the evaluation method for the 
problem. Commonly used performance metrics are confusion 
matrix, precision, recall, specificity, F1 score, precision-recall 
curve, ROC, AUC, etc. Common evaluation methods include 
simple leave-out validation, k-fold cross-validation, repeated 

k-fold validation with disrupted data, and bootstrapping. (2) 
Build the model. Develop models that are more optimized 
than the benchmark, with the ultimate goal of balancing the 
dichotomy between optimization and generalization: find the 
line between underfitting and overfitting and maximize 
generalization capabilities. (3) Validating the model. Models 
with statistical efficacy tend to require scaling up the model 
first, and a threshold of overfitting for monitoring training 
losses and validation losses will be  required. (4) Testing the 
model. The goal is to evaluate the predictive capability of the 
model in completely new data, as opposed to validating the 
data. It is essential to evaluate all aspects of the model, for 
instance, to check whether the output of the program meets 
the expected correct values and whether the model results 
meet the expected evaluation requirements (accuracy or error). 
(5) Tuning the model. Boosting the performance of the algorithm 
with more data, different features, or tuned parameters. The 
previous steps are repeated continuously, with model 
regularization and tuning of hyperparameters (parameters to 
control the behavior of the algorithm when building the model) 
depending on the performance of the model on the validation 
set until the desired performance is achieved.

Machine learning methods tend to require a combination 
of mathematical knowledge concerning statistical probability 
theory, linear algebra, and algorithmic complexity theory, 
combined with the diversity of microbial data, which makes 
it intractable for researchers in the field of microbiology to 
construct and utilize complex ML models independently. In 
response to the nature and volume of experimental data specific 
to various research directions, experts in big data science 
propose ideas and technical support on approaches to leveraging 
existing data for effective ML, facilitating the emergence of 
new cross-cutting areas. With the widespread adoption of ML 
and DL algorithms, humans have been presented with a whole 
new world of microorganisms, especially in the fields of 
classification and prediction.

CLASSIFICATION AND PREDICTION

Next, we will characterize the impact of ML on the microbiology 
field and specific application cases. The application of ML in 
microbial species and community classification and prediction 
mainly includes microbiome and taxonomy, microbial ecology, 
pathogen and epidemiology, and drug discovery (with a particular 
focus on antibiotics/antimicrobial peptides).

Microbiome and Taxonomy
The microbiome refers to an ecological community of 
microorganisms with different characteristics and functions that 
coexist in a given environment, including the genomes and 
environmental/habitat conditions of the members (Lederberg 
and McCray, 2001; Berg et  al., 2020). The application usually 
combines one or more of the multiomics techniques, which 
to some extent is more accurate and precise in classification 
than single-omics data studies and facilitates the exploration 
of the influential factors in microbiomics network mechanisms. 
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The strategy of microbial taxonomy is to distribute target 
sequences to microbial communities at different taxonomic 
levels utilizing various tools (Marchesi and Ravel, 2015). ML, 
especially classification and clustering algorithms, allows 
classification based on data representing the characteristics/
functionality of the target community, reflecting similar 
relationships. With upgrades in sequencing technology, hundreds 
of millions of short sequencing reads have been generated 
from merely a single sample, which consequently generates 
high-dimensional microbiome data (Luz Calle, 2019). Therefore, 
linear or nonlinear dimensionality reduction algorithms are 
advantageous in handling complex and multivariate sparse 
microbiome data to achieve dimensionality reduction (Kostic 
et al., 2015) and visualization (Song et al., 2019) of the data space.

Common supervised classification algorithms are particularly 
valuable in identifying highly complex datasets, as in the case 
of human microbiota surveys (Knights et  al., 2011). ML and 
statistical techniques are in place to build predictive models 
of taxonomic units (Knights et  al., 2011) or functions (White 
et  al., 2009) to distinguish between distinct sample groups. 
The selection of classification techniques requires considering 
the characteristics of different microbial communities and 
extracting the data with different features, encoding the extracted 
data with labels, and rendering them available for model training 
(Knights et  al., 2011). A study as early as 2012 demonstrated 
that random forests enable effective and accurate classification 
of human microbial community samples and allow the 
identification of key components (OTUs or species) that 
differentiate between groups (Knights et  al., 2011; Yatsunenko 
et  al., 2012). A series of base classifiers are trained separately 
and independently, and the results of each base classifier training 
are integrated by adopting a certain rule. This is the idea of 
ensemble learning, which will obtain better classification results 

than a single classifier (Wang et  al., 2007; Wu and Zhang, 
2008). Subsequent studies have targeted the oral microbiota 
in saliva and classified them with the algorithm of SVM, ANN, 
and DT (Nakano et  al., 2014). Xu et  al. (2020) constructed 
classifiers and classified new samples using LR, SVM and DT 
based on the dimensionality reduction space generated by 
t-SNE with Aitchison distance, compared the classification 
performance of the same classifiers in the original dimension 
and the dimensionality reduction space, and demonstrated that 
compared with the t-SNE dimensionality reduction technique 
using Euclidean distance, Aitchison distance increases the 
classification accuracy (ACC) of the classifier in general.

Unsupervised learning relies on the strategy of sequencing 
depth information or OTU clustering of sample data instead 
of known information (Sangwan et al., 2016). MetaBAT quantifies 
the similarity of sequences using sequence similarity and 
information about the sequencing depth of the sample data, 
using the calculation of the distance between overlapping 
clusters, and then clustering (Kang et  al., 2015). COmposition, 
read CoverAge, CO-alignment, and paired-end read LinkAge 
(COCACOLA) calculates the distance with L distance instead 
of the traditional Euclidean distance (Lu et al., 2017). Strategies 
for OTU-based clustering inevitably take into account the 
setting of thresholds, feature extraction, and the choice of 
specific clustering methods. Cai and Sun (2011) proposed a 
hierarchical clustering method, i.e., first filtering a large number 
of unnecessary sequence comparisons with k-mers and then 
launching the hcluster algorithm in the clustering process to 
achieve similar accuracy as the standard hierarchical 
clustering algorithm.

The design of sequence classification methods based on deep 
learning is not rare. A study proposed a sequence classification 
technique based on k-mer and two DL architectures—CNN 

FIGURE 3 | Machine learning workflow.
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to discriminate and deep belief network (DBN) to generate—for 
the bacterial taxonomy of macrogenomic data (Fiannaca et  al., 
2018). The ANN classifier can optimize the classification 
effectiveness and confidence of the target community after 
feature analysis. A study developed a pipeline (cell type 
recognition and CellCognize) based on multidimensional flow 
cytometry (FCM) data via ANN to enable quantification of 
cell type diversity and subsequent differentiation and classification 
of microbiota of known composition (Duygan et  al., 2020). 
Composed of a feed-forward back-propagation algorithm, an 
input layer, a hidden layer, and an output layer, ANNs have 
been trained to classify either five or 32 standard multiparameter 
FCM datasets and forecast cell type attribution of FCM data 
from poorly trained microbial samples of known or 
unknown composition.

Given the characteristics of high dimensionality, multinoise, 
data sparsity, and heterogeneity of histological data, as well 
as the problem of unbalanced datasets in experiments, the 
integration of complex and large-scale histological data imposes 
high demands on the analysis capability of algorithmic models 
and computing platforms. Currently, the main methods are 
dimensionality reduction and noise reduction through PCA 
or autoencoder and transformation of sparse and heterogeneous 
data through regression methods. However, all of these methods 
have their drawbacks, and a substantial amount of research 
on these issues will be  necessary in the future.

Microbial Ecology
Microbial ecology, with its origins in environmental microbiome 
studies, takes as its starting point the study of target microbiota, 
with the long-term goal of capturing the diversity of multiple 
species interactions (competition, predation, facilitation, and 
symbiosis), as well as uncovering their distribution patterns/
networks and maintenance mechanisms. Mechanisms of 
microbiota–microbiota and host–microbiota interactions are 
critical to our understanding of microbial network structure 
and function of homeostasis in a given habitat (Broberg et  al., 
2018; Hassani et al., 2018; Van De Guchte et al., 2018). Advances 
and applications of new experimental and computational methods 
will drive the integration of microbial ecology research with 
leading technologies in integrated multiomics, computational 
biology, and other fields.

The purpose of constructing ecological networks is to 
model all interactions between species and their environment. 
Faisal et  al. (2010) used four widely used statistical/ML 
methods, graphical Gaussian models (GGMs), L1-regularized 
regression with the least absolute shrinkage and selection 
operator (LASSO), sparse Bayesian regression (SBR), and 
Bayesian networks (BNs), to validate their usefulness in 
identifying community interactions in microecological networks. 
These methods enable simulated restoration of food web 
structure and contribute to modeling and predicting the effects 
of bioclimatic variables. However, since the complete ecological 
knowledge of the true interaction network between species 
is hardly visible, assessing the success of the modeling solely 
relies on known or possible relationships. Although pairwise 
interactions are the basis for the study of complex ecological 

networks, higher-order interactions involving three or more 
taxonomic units increase the variability and stochasticity in 
the study of community composition, on which the prediction 
of microbiota-associated biological phenotypes is based (De'ath 
and Fabricius, 2000).

It is necessary to simplify scientific problems by switching 
predictive strategies based on species characteristics when 
predicting relationships (natural diversity, life cycles, interactions, 
and coevolution) across species or with their environment. 
Leite et al. (2018) explored several machine learning techniques 
(kNN, RF, SVM, and ANN) to predict/identify the presence 
of a given phage–bacterial pair interaction after 10-fold cross-
validation based on accuracy, F-score, specificity, and sensitivity 
criteria to filter the most predictive algorithms and their 
parameter values. The theoretical basis of its prediction lays 
in the interaction between a given phage–bacterial pair of 
encoded proteins, allowing the work to be  converted into 
protein–protein interaction (PPI) prediction (Cusick et  al., 
2009). Accordingly, two features, the domain–domain interaction 
score and protein-level structural information, were selected 
in the feature extraction phase.

The intersection of genetics and ecology is established on 
the basis of the population concept. Stupp et al. (2021) proposed 
supervised ML-based phylogenetic profiling (MLPP) to predict 
functional interactions between human genes and the interaction 
environment in which they occur (i.e., biological functions) 
and established a web server containing functional interaction 
predictions for all human genes. They predicted the probability 
of all possible gene pairs in each tag using the lightGBM 
model, which is related to RF after comparing it with the DT, 
LR, and NB algorithms. Based on simulations and real data, 
Pichler et al. (2020) compared generalized linear models (GLM) 
with ML models (RF, boosted regression trees, deep neural 
networks, CNN, SVM, NB, and kNN) to measure their capability 
to predict species interactions based on traits and to extrapolate 
trait combinations that are causally relevant to species interactions. 
In a global crop–pollination database, they found that RF had 
the best predictive performance, predicting species interactions 
in plant-pollinator networks remarkably well.

However, the reality that most microbial species within 
communities are not culturable makes the prediction of 
interspecies interactions in natural microbial communities 
challenging. This comes from the fact that the accuracy of 
deep learning (especially deep neural networks) depends on 
the reliability of the training database. Moreover, there is still 
space for investigators to design joint experimental and modeling 
studies to uncover interaction mechanisms that have not yet 
been fully investigated (Lee et  al., 2020).

Pathogen and Epidemiology
Epidemics have the characteristics of being contagious, epidemic, 
and recurrent. Infestations of previously unknown pathogenic 
microorganisms pose a continuous threat to food security and 
human health. To address the medical challenges of epidemiology, 
the identification, and characterization of pathogens, and the 
screening and prediction of diseases have emerged as major 
concerns for professional biomedical scientists. ML, as well as 
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DL, which dominates in batch image classification, has led to 
a significant reduction in the time and computational cost 
spent on dataset analysis due to its extremely efficient, cost-
effective, accurate and high-throughput advantages (Ghosh 
et  al., 2022).

Disease epidemiology studies examine the patterns of 
temporal and spatial dynamics of diseases at the population 
level under different environmental conditions. Research on 
issues such as diseases caused by plant and animal viruses 
provides a large dataset on gene expression, chromosome 
conformation, genetic variation, traits, and diseases. The 
relevance of the viral genome allows for screening with the 
help of macrogenomics. The application of ML enables the 
integration of multiomics data and significantly improves 
macrogenomic data analysis. ML assists in classifying these 
viral sequences and thus deepens our understanding of virus 
evolution. VirFinder is a k-mer-based platform to identify 
prokaryotic virus sequences from mixed macrogenomic data, 
accelerating the screening of pathogens at the genetic level 
in plant and animal virome studies (Ren et  al., 2017). The 
synergistic application of ML and hyperspectral imaging (HSI) 
provides a new methodological idea for image detection of 
viral diseases. While the high-dimensional data generated by 
HSI contain redundant information, ML reduces the 
dimensionality of HSI data by determining the effective specific 
wavelength range through data preprocessing. For instance, 
multilayer perceptrons (MLPs), ANNs, and CNNs enable the 
detection and classification of color images by hidden image 
features with high accuracy of >96.00% (Lowe et  al., 2017). 
Compared to traditional ML, which requires feature extraction 
techniques tailored to the nature of the data and model, DL 
supports automatic feature extraction, reducing computational 
time, and the burden of reliance on professional expertise. 
Training a model (classifier) with live images is a case in 
point (Ferentinos, 2018). This implies that determining the 
reliability of the classification relies to some extent on the 
abundance of available images based on the scene. For example, 
VGGNet, obtained by Chen et al. (2020), achieved an average 
accuracy of 92.00% for predicting rice plant image categories 
based on ImageNet and Inception module pre-training.

Phages are the most abundant organisms on Earth and 
have been considered as natural enemies of bacteria. Several 
ML algorithm models aiming to improve the automatic 
recovery and prediction of phages already exist. For instance, 
VirSorter searches the database of expected proteins up front 
using probabilistic similarity and reference homology to 
identify viral signals, but the disadvantage is that it does 
not fully distinguish between virus and nonvirus Pfam 
annotations (Roux et al., 2015). Kaelin et al. (2022) employed 
VirSorter v.1.0.5 to identify circular contigs of candidate 
viruses. Another tool, Meta-genomic Analysis and Retrieval 
of Viral Elements (MARVEL), which aggregates annotation 
and sequence signature information of previously identified 
phages, was developed to identify and predict double-stranded 
DNA phage sequences in macrogenomic boxes. Given the 
excellent recall, Braga et al. (2020) used MARVEL to identify 
phage bins for prediction. According to the authors’ statement, 

comparing the performance of MARVEL, VirFinder, and 
VirSorter, all three performed comparably in terms of 
specificity, with MARVEL outperforming in terms of sensitivity 
(Amgarten et  al., 2018). VIBRANT, the first computational 
tool to utilize neural networks and protein similarity methods, 
had a particularly strong performance score (94%) in the 
automatic recovery of microbial viruses, which was stronger 
than the first three (Kieft et  al., 2020). Luo et  al. (2022) 
filtered ≥ 1 kb contigs to identify viral contigs and related 
reads via VIBRANT. We  summarize the available data and 
materials, which are shown in Table  1.

To date, most of the results generated from the intersection 
of pathogen research and machine learning in epidemiology 
have been prospective and feasible. Comparing different stages 
of classifier innovation, we  found that feature extraction and 
ranking that include multiple layers of information enhance 
the prediction accuracy of the model. The embedding of DL 
refreshes our knowledge of pathogen features.

Drug Discovery (With a Particular Focus 
on Antibiotics/Antimicrobial Peptides)
The abuse of antibiotics has led to a worsening problem of 
drug resistance in pathogenic bacteria, which has been an 
enormous threat to human health. Screening for secondary 
metabolites in soil microorganisms that inhibit the growth of 
pathogenic bacteria is regarded as the traditional primary means 
of antibiotic discovery (Wright, 2017). The current dilemma 
of decreasing the rate of discovery of new antibiotics urgently 
needs to be  addressed. In addition, the administrative costs 
of screening approaches based on large synthetic chemical 
libraries and the high rate of antibiotic design attrition have 
increased the necessity for new antibiotic discovery methods 
to improve the rate of new antibiotic discovery. Modern drug 
discovery has entered the era of big data. AI modeling of the 
dynamic, heterogeneous, and large-scale nature of drug datasets 
continues to drive paradigm innovation in drug discovery 
(Zhu, 2020).

Techniques to identify and predict new antibiotic structural 
classes with the help of ML are largely mature and widely 
adopted (Camacho et al., 2018). DL accelerates the screening 
process of compounds with antibiotic properties from existing 
chemical libraries (Dimasi et al., 2016). Antimicrobial peptides 

TABLE 1 | The available data and materials for prediction of pathogens and 
epidemiology.

Tools Availability of data and materials References

VirSorter https://github.com/simroux/VirSorter Roux et al., 2015
VirSorter2 https://bitbucket.org/MAVERICLab/

VirSorter2
Guo et al., 2021

VirFinder https://github.com/jessieren/VirFinder Ren et al., 2017
DeepVirFinder https://github.com/jessieren/

DeepVirFinder
Ren et al., 2020

MARVEL https://github.com/
LaboratorioBioinformatica/MARVEL

Amgarten et al., 
2018

VIBRANT https://github.com/AnantharamanLab/
VIBRANT/

Kieft et al., 2020
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(AMPs) are candidates for coping with antibiotic resistance. 
Researchers have successively established several antimicrobial 
peptide databases containing data on various types of AMPs 
from various sources, such as APD, CAMP, and AVPDB, 
which greatly facilitate mining and forecasting of AMPs. 
Fu et  al. (2020) designed a DL model for high-throughput 
antibacterial peptide recognition (ACEP), which is innovative 
in that it introduces an amino acid embedding tensor to 
capture the similarity between amino acids, constructed a 
“convolution and concatenation” (CVCA) layer using the 
attention mechanism of natural language processing (NLP) 
to fuse various heterogeneous information or features, and 
quantified the contribution of different components of the 
model to the final prediction using the attention scores of 
different parts of the peptide sequence. Capecchi et al. (2021) 
trained recurrent neural networks (RNNs) using sequence 
information from DBAASP v.2 (Database of Antimicrobial 
Activity and Structure of Peptides, now updated to DBAASP 
v.3; Pirtskhalava et al., 2021), including AMP and non-AMP 
datasets, and hemolytic and non-hemolytic data, mixing the 
use of supervised and unsupervised learning for the first 
time, maximizing the utilization of highly selected posterior 
data. The study also synthesized and tested 28 sequences 
generated and selected, yielding 12 new active AMPs, eight 
of which were also non-hemolytic. Das et al. (2021) designed 
a fully automated computational framework for molecular 
targeting and screening, in which conditional latent (attribute) 
space sampling (CLaSS) was designed for target generation, 
which is more efficient and easily reusable than other ML 
methods. The framework generates a potential space of 
molecular information via deep generative autoencoder 
modeling, utilizes a classifier for training guidance, and 
filters the generated molecules through deep learning classifiers 
based on the physicochemical features obtained in high-
throughput molecular dynamics simulations. This study 
reported 20 CLaSS-generated AMP sequences and 11 non-AMP 
sequences obtained via the above screening method, which 
was shown to be  less prone to false negatives. Wang (2022) 
combined various NLP neural network models (NNMs), 
built a pipeline containing LSTM, attention, and BERT, and 
established a DL method that adapts to learn AMP sequence 
features to mine and identify novel AMPs. Among a total 
of 2,349 sequences identified as candidate AMPs, 216 were 
chemically synthesized, including 181 indicative of 
antibacterial activity (>83% positivity). The code availability 
is shown in Table  2.

Overall, the time is ripe for modern ML/DL applications 
for antibiotic discovery (Cardoso et  al., 2020). Their effective 
contribution to the bulk filtering and prediction of antimicrobial 
peptides is alleviating concerns about the high risks and low 
returns associated with antibiotic development. Notably, the 
high success rate of deep neural network model-guided antibiotic 
development is heavily dependent on the combination of model 
prediction and appropriate experimental design, and this wet-dry 
combination strategy is a scientific idea that has started to 
be popularized after the discovery of complementary information 
and experimental practices.

CONCLUSION

Research in machine learning and deep learning is evolving 
rapidly, with architectures, algorithm combinations, and 
computational strategies changing rapidly. The ultimate goal 
is not only to predict the accuracy of the task but also 
to uncover the underlying biological processes in the 
scientific problem. The perception that “deep learning may 
eventually eliminate all other machine learning algorithms” 
is limited and one-sided. Deep learning modeling requires 
a large amount of training data to demonstrate fantastic 
performance, but realistic colony research frequently 
encounters problems with small sample datasets. At this 
point, deep learning methods fail to attack them, but 
traditional machine learning methods are capable of handling 
them. The development of effective analytical tools, including 
software for data mining and machine learning, ensures 
data validity, proper annotation, and open sharing, allowing 
most studies arising from the intersection of microbiology 
and machine learning to show promising findings. After 
bioinformatics and multiomics integration, ML and DL will 
lead the next wave of technologies to uncover biological  
regularity.
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TABLE 2 | The code availability for prediction of antimicrobial peptide (AMP) 
discovery.

Tools Code availability References

ACEP https://github.com/Fuhaoyi/
ACEP

Fu et al., 2020

RNN https://github.com/reymond-
group/MLpeptide

Capecchi et al., 2021

CLaSS https://github.com/IBM/
controlled-peptide-generation

Das et al., 2021

AMP prediction 
pipeline with NNMs

https://github.com/
mayuefine/c_AMPs-prediction

Wang, 2022
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