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Abstract: The rapid growth of using the short links in steel buildings due to their high shear strength
and rotational capacity attracts the attention of structural engineers to investigate the performance of
short links. However, insignificant attention has been oriented to efficiently developing a compre-
hensive model to forecast the shear strength of short links, which is expected to enhance the steel
structures’ constructability. As machine learning algorithms was successfully used in various fields
of structural engineering, the current study fills the gap in estimating the shear strength of short
links using sophisticated machine learning algorithms. The deriving factors such as web and flange
slenderness ratios, the flange-to-web area ratio, the forces in web and flange, and the link length ratio
were investigated in this study, which is imperative to formulate an integrated prediction model.
Consequently, the aim of this study utilizes advanced machine learning (ML) models (i.e., Extreme
Gradient Boosting (XGBOOST), Light Gradient Boosting Machine (LightGBM), and Artificial Neu-
ral Network (ANN) to produce accurate forecasting for the shear strength. In this study, publicly
available datasets were used for the training, testing, and validation. Different evaluation metrics
were employed to evaluate the prediction’s performance of the used models, such as Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Coefficient of Determination (R2). The prediction result displays that the XGBOOST and LightGBM
provided better, and more reliable results compared to ANN and the AISC code. The XGBOOST
and LightGBM models yielded higher values of R2, lower (RMSE), (MAE), and (MAPE) values and
have shown to perform more accurate. Therefore, the overall outcomes showed that the LightGBM
outperformed the XGBOOST model. Moreover, the overstrength ratio predicted by the LightGBM
showed an excellent performance compared to the Gene Expression and Finite Element-based models.
The developed models are vital for practitioners to predict the shear strength accurately, which pave
the road towards wider application for automation in the steel buildings.

Keywords: shear strength; short link; steel construction industry; machine learning models

1. Introduction

Short links are W − shape steel sections that are either constructed or rolled with link
length ratio, e/(M/V), less than 1.6 (AISC, 2016) [1]; where e represents the link length,
M and V represent the plastic moments, and shear capacity, respectively. Short links are
widely employed in steel bridges, Eccentric Braced Frames (EBFs) and coupled walls.
The short links have several advantages, such as exceptional plastic rotational capacity
and plastic shear capacity [2]. However, several studies observed that the AISC formula
underestimates the predicted short links’ shear strength [3–7]. The AISC, 2016 [2] Equation
(F3–2) estimates the plastic short links’ shear strength using Vp = 0.6× Fy (d − 2t f )× tw;
where Vp represents the plastic shear strength (N), Fy represents the measured steel yield
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strength of the web (MPa), d is the link depth (mm), tf and tw are the flange and web
thicknesses (mm), respectively. Several investigations revealed the major factors that
control the shear link strength, such as flange contribution [3,5], cyclic hardening [3], web
slenderness [4], and link length ratio [4,6,7].

The testing program of McDaniel et al., 2003 [5], which included two full-scale built-
up short links, revealed that in terms of degrading the shear strength of tested links, the
cutting-edge factor is a brittle fracture on the linked web. As a result, the tested short
links exhibited overstrength factors of 1.83 and 1.94. In addition, Dusicka et al., 2010 [8]
investigated the effect of steel yield stress 100, 225, integrated steel strength of 100 and 440,
345, 485 MPa for five plate steel shear links. The obtained results illustrate that the steel
links with a low grade attained a plastic rotation of 0.2 rad while the conventional links
reached 0.12 rad, and the low-grade steel links achieved an overstrength factor considerably
higher than conventional links. Moreover, the average overstrength factor for the tested
12 short links (length ratio ranges from 0.58 to 0.97) was 1.9, Ji et al., 2015 [3]. Furthermore,
the very short links reached a plastic rotation of 0.14 rad greater than the 8% limit of AISC
341-10 [9,10]. In addition, Ji et al., 2016 [11] found that the average shear strength of four
built-up short links reached 2.0.

Similarly, Liu et al., 2017 [4] noticed that the short links’ shear strength was significantly
impacted by the web slenderness and link length ratio, and the overstrength ratio for the
12 built-up short links was between 1.35 to 1.5. The link length was critical in the steel links,
Okazaki, T. 2004 [7]. The experimental program included 16 link-to-column connections
with different link length ratios, where the overstrength ratio varied between 1.05 and 1.47.
Bozkurt and Topkaya 2017 [12] discovered that plastic rotation and the overstrength ratio
are negatively associated with the link length ratio. The test program included seven short
links considering several features (i.e., loading protocol, the link length ratio and stiffeners
spacing). In addition, an overstrength ratio of 1.87 to 2.3 was achieved in Bozkurt et al.,
2019 [13], where six specimens with a link length of 600 to 800 mm were tested.

To explore the link’s ultimate rotational capacity, shear capacity, buckling of flanges,
and web, the analysis of complex finite element of shear links was implemented [3,14–20].
However, finite element simulation is considered time consuming, especially in the mod-
eling process and validation of the performance of the predicting model. Moreover, FEA
requires special experts in the mechanics of materials and computer aided-software en-
gineering. Recently, the huge availability of databases in the wide range of engineering
applications paved the way to extensively and successfully use the machine learning tools
to help engineers save the cost, time, and efforts. A leaping use of machine learning has
been witnessed in the various civil engineering fields over the last decade. While machine
learning has been successfully utilized in the civil engineering applications [21–33], limited
studies used machine learning tools to address the shear strength of short links; where
a few studies have employed actual experimental databases to validate ML algorithms.
Moreover, the dataset applied for forecasting experiments has restricted factors, such as
mechanical properties and geometrical dimensions of steel links. The prediction problem
for the short links’ shear strength was mostly investigated through conventional ML algo-
rithms with limited variables such as FEM and multiple linear regression. To address the
mentioned research gaps, the current study proposed to develop the prediction model of
the short links’ shear strength using innovative systematic and understandable ML algo-
rithms (i.e., XGBOOST, LightGBM, ANN). Moreover, data preprocessing has generated
a more precise forecasting model. Furthermore, statistical performance measurements
such as (RMSE), (MAE), (MAPE), and (R2) were employed for comparative analysis. The
prediction of the short links’ shear strength was formulated in terms of different influence
features such as (b f /t f ), (d/tw), (A f /Aw), (A f fy f lange), (Aw fyweb), and e/(M/V)) to over-
come the knowledge gap of the available models. Additionally, a comprehensive variables
importance analysis has been conducted to investigate the relative impact of these variables
on the proposed model.
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2. Literature Review

In the related literature on forecasting models, the short links’ shear strength was
categorized into analytical and ML-based models.

2.1. Analytical Models

The literature includes three analytical models to assess the shear strength of shear
links (i.e., AISC 2016 [1], Corte et al., 2013 [15], and G. Almasabha 2022 [34]). The following
discussion summarizes the available models.

2.1.1. AISC 2016

The AISC 2016 [1] adopted Equation (1) for the assessment of shear strength of links.
It is worth mentioning that Equation (1) does not take into consideration the role of link
length proportion, the contribution of flanges, and the slenderness ratio of web or flanges.

Vp = 0.6× Fy ×
(

d− 2t f

)
× tw (1)

2.1.2. Corte et al., 2013

A finite element-based algorithm [15] has been proposed to estimate the overstrength
ratio (V0.08/Vy) of wide flange shear links without axial restraint, where Av =

(
d− t f

)
tw

and Vy =
(

Fy/√3
)(

d− t f

)
tw. It is worth mentioning that the authors derived Equation

(2) for the hot rolled steel link. However, the experimental database of the current study
includes both hot rolled and built-up steel links.

V0.08

Vy
= 1 + 1.35

(A f

Av

)(
d
e

)
(2)

2.1.3. G. Almasabha 2022

This study used the gene expression model to build a mathematical equation for the
shear link strength (VGEP) [34]. Various parameters were considered in this equation, such
as bf/tf, d/tw, Af/Aw, Af fyflange, Awfyweb, and e/(M/V).

VGEP =

 1.047(
e

M/V

)0.416

× (AwFyweb

)−0.017
×
( A f

Aw

)0.12

×
(

AwFyweb −
(

d
tw

)0.6
+

(
e

M/V

)0.2
+

b f

t f

)
(3)

2.2. ML Models

Although innovative ML algorithms outperform traditional models in most research dis-
ciplines [35,36], ML models are still humbly utilized to forecast the short links’ shear strength
such as [15–18,37–39], also limited variables with humble datasets have been applied in these
studies. On the other hand, these studies’ executed ML models seem somewhat traditional.
Therefore, the need to use sophisticated ML models for shear strength prediction of short links
to reduce prediction error with better accuracy is becoming required. The XGBOOST tech-
nique was recently developed using a tree-based ensemble, a complex gradient boosting with
higher processing abilities, and an excellent tool to deal with over-fitting concerns [40]. The
learning method uses a boosting framework-based decision tree called LightGBM, released by
Microsoft in 2017. It is quicker, uses less memory, and is more accurate than XGBOOST [41].
LightGBM also provided decision rules for category features, which transform factors into
one-time multidimensional functionality, saving time and memory [42].

3. Methodology

The aim of this research is to promote an algorithm for predicting the short links’ shear
strength accurately. In addition, various statistical testing (e.g., data cleaning, normalization,
and standardization) were also employed for the purpose of assessing the model’s validity
and reasonableness. Moreover, data collection and feature definition, data preprocessing,
ML algorithm, and model performance evaluation are the four primary aspects of the
suggested methodology. The methodology flowchart is shown in Figure 1.
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3.1. Data collection and Feature Definition

The experimental data of 110 samples were gathered from 1983 to 2019 [3,5–8,11–13,43–46]
to evaluate the features impacting the short links’ shear strength under natural settings. Several
significant features have been considered in this study, such as (b f /t f ), (d/tw), (A f /Aw),
(A f fy f lange), (Aw fyweb), and e/(M/V)). Table 1 illustrates the model variables along with
their description.

Table 1. Description of model variables.

Feature Definition Data Type(
b f /t f ) Flange slenderness ratio Numeric

(d/tw ) Web slenderness ratio Numeric(
A f /Aw ) Flange to web area ratio Numeric(

A f fy f lange ) Flange force Numeric(
Aw fyweb ) Web force Numeric

e/(M/V) Link length ratio Numeric

3.2. Data Preprocessing

Data preprocessing is a key factor in managing the dataset before employing ML
algorithms. The data preparation procedure also increases the model’s prediction perfor-
mance. Data noise, removing outliers, normalization, and standardization are among the
approaches’ processes. All the related variables had numerical values, as shown in Table 1.
The initial stage in data preparation is to eliminate outliers from the collected data set.
There would be uncertainty and inaccuracy in the data set because of the outlier, which
might reduce the efficacy of the linear regression technique. Interquartile ranges were
performed to analyze extreme and outlier results in this research. Outliers were removed
using graphical techniques such as Boxplots. To characterize and eliminate residuals from
the acquired data, null indicators have been employed. Reliability discomfiture might
happen when some data are lost from the initial database. It could be concluded that the
missing data (values represented by the “Null” or “-” indicators) were taken into account.
Preprocessing, which includes eliminating outliers and normalizing the dataset, is required
once the necessary variables have been identified. Data standardization was implemented
in the current study, where no outliers in the dataset need to be removed.

3.3. ML Algorithm

To forecast the short links’ shear strength, three ML algorithms have been utilized
(i.e., ANN, XGBOOST, and LightGBM). Training and testing sets are extracted from the
database to ensure the proposed ML algorithm’s effectiveness. The data was divided into
training and testing with a proportion of 80% and 20%, respectively. The suggested pre-
diction models were tested for robustness and effectiveness using 10-fold cross-validation.
The model characteristics and implementation procedure are depicted in the next section.

3.3.1. Artificial Neural Network

ANN is a neural network based on an organism’s nervous system model. The work
principle of a neural network is to create neurons that save, handle data, and connect them
with artificial synapses [47]. A plethora of layers of nodes are composed together and
communicate with one another to build up a neural network, where the ANN consists
of, mainly, an input layer, a hidden layer, and output layers. There is a direct relation
between the number of nodes in the input layer and the number of variables that illustrate
the assessed qualities; on the other hand, the number of neurons in the output layer
corresponds to the number of classes. The process is in sequence where the output of the
first layer is taken as input to the next layer. The output layer’s nodes may provide the
desired result when this technique is repeated. The nature of the task and the size of the
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data assign the number of neurons and hidden layers. In the hidden and output layers,
each neuron is connected to all nodes in the previous layer via a numerical weight. The
ANN model has produced the best results, with a max depth of four and learning rate of
0.08. The Neural structure is built up of seven layers: the initial layer is called the input
layer and contains the inputs parameters of an ANN with six neurons, the final layer is
termed the output layer and contains a single neuron, while the five hidden layers contain
eight neurons each. The input, hidden, and output layers of the ANN are shown in Figure 2.
The ANN mathematical formulation is provided in the equations below [48].

nh
k =

X

∑
j=1

wh
kj

tj + bh
k , k = 1 to z (4)

where X represents the number of associated features, z denotes the number of hidden
neurons, t denotes each input feature, b denotes the hidden layer’s bias, and w denotes the
weight. The activation function takes the weight of each computed component as an input.
The total of the weighted values determines the output.
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3.3.2. Extreme Gradient Boosting

XGBOOST is a newly introduced ML algorithm that has widespread use in several
disciplines. This technique is set to be unique in gradient boosting machine and chiefly for
regression and classification trees [49]. The XGBOOST is created based on the “boosting”
concept, which combines the forecast of weak learners with additive training methodologies
to build a strong learner. It aids in the avoidance of over-fitting and enhances computing
ability. Figure 3 illustrates the XGBOOST schematic, which simplifies the goal functions,
allowing the prediction and regularization terms to be combined while maintaining the
fastest feasible processing performance. With a number of trees of 1200, a learning rate
of 0.05, and a maximum depth of 15 in XGBOOST, the best results were obtained. The
following equations at step p used to determine the common function of the forecast [40].

f (p)
i =

p

∑
k=1

fk(xi) = f (p−1)
i + fp(xi) (5)

where fp(xi) represents the learner at step p, f (p)
i represents the prediction at p, f (p−1)

i
represents the prediction at p− 1, and xi represents the input features.
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To overcome the issue of over-fitting concerns on the cost of the model’s computing
speed, the XGBOOST produces analytical formula shown below to assess the “goodness”
of the model from the authentic function.

Objective(p) =
n

∑
k=1

l(yi, yi) +
p

∑
k=1

σ( fi) (6)

where l represents the loss function, n represents the number of data utilized, and σ is the
regularization term, which is described in equation below:

σ( f ) = γT + 0.5λ‖ω‖2 (7)

where ω denotes vector scores in leaves, γ denotes the minimal loss necessary to divide the
leaf node further, and λ denotes the regularization parameters.

3.3.3. Light Gradient Boosting Machine (LightGBM)

Microsoft Research introduced LightGBM, a decision tree with gradient-boosting
based on a decision-tree method [50,51]. LightGBM is a powerful technique for resolving
regression and classification issues. It utilizes low computational memory with a higher
accuracy of prediction in comparable to XGBOOST. According to the histogram method
and tree leaf-wise growth approach, LightGBM enhances the training process and mini-
mizes memory consumption. Figure 4 depicts the histogram decision tree-based algorithm.
Figure 4 also depicts the level-wise and leaf-wise development techniques. According to
the level-wise growth approach, the leaves on the same layer are divided simultaneously.
To control the complexity of the model, it is desirable to optimize using several threads.
Furthermore, leaves on the same layer are handled uniformly, despite absorbing different
amounts of information. LightGBM. produced the best results with a tree count of 1100, a
learning rate of 0.06, a needed leaf count of 18, and a maximum depth of 13. The informa-
tion gain (IG) depicts the predicted reduction in entropy caused by dividing nodes into
qualities that can be computed in the equations below [40].

IG(C, V) = Fn(C)− ∑
VεValues(v)

|Cv|
C

Fn(Cv)Fn(C) =
B

∑
b=1
−pblog2 pb (8)

where Fn(C) represents the input entropy of the group C, pb represents the proportion
of C associated with part b, B represents the number of parts, v represents the features
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value V, and Cv represents the C’s subset for the features having value v. The process
might be affected by several factors, resulting in it being an insignificant process, such as
specific leaves with reasonably minimal information gain are discarded, gaining additional
memory storage capacity.
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Figure 4. Illustration of LightGBM algorithm.

The leaf-wise technique has a better chance of succeeding since it splits the leaf with
the largest information gain on a similar layer, as shown in Figure 4. Furthermore, trees
with a high depth can be generated using this approach, resulting in an introduction to the
maximum depth restriction through tree growth [52].

3.4. Stratified K-Fold Cross-Validation

The K-fold cross-validation approach can enhance the model’s accuracy by evaluating
how the ML algorithm performs on a new data set. After the datasets have been divided
into training and testing subsets, the modeling process is employed for the ML prediction
algorithm. The training dataset is divided into several ‘k’ smaller portions throughout
this process. As a result, the moniker ‘k’-fold was coined. K-fold is used for testing, and
k-1 is used for training based on a random data set. The efficiency of the ML model is
examined using a stratified 10-fold cross-validation approach. The data set is divided into
ten folds at random using this method. As a result, each of the folds is used just once as a
validation set. Finally, the error or accuracy measure for each fold may be compared, and if
they are similar, the diversity of the model is high. The 10-fold cross-validation technique
is depicted in Figure 5.
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3.5. Prediction Accuracy Measurement

The evaluation measures have been employed to assess the proposed model’s suit-
ability. After testing the major model assumptions, it is critical to assess the suggested
model’s effectiveness and predictive potential. Four statistical indices (i.e., RMSE, MAE,
MAPE, and R2) were utilized to examine the effectiveness of the suggested algorithm
quantitatively, as shown in the equations below:

MSE =

√
1
m

m

∑
i=1

(
Yi −Yi

)2 (9)

MAPE =
1
m

m

∑
i=1

∣∣∣∣Yi−Yi
Yi

∣∣∣∣× 100 (10)

R2 = 1− ∑m
i=1
(
Yi −Yi

)2

∑m
i=1
(
Yi −Y

)2 (11)

where Yi represents the actual (measured) values of the overstrength ratio of short links, Yi
represents the forecasted outcome, Y represents the mean of the Yi, and m represents the
number of the datasets utilized. The model accuracy and performance will be enhanced if
R2 value approaches one as well as RMSE, MAE, and MAPE measures approach zero.

4. Result and Discussion
4.1. Descriptive Statistics

Table 2 summarizes the surveyed experimental results of tested 110 short links. In
addition, Table 3 and Figure 6 show the statistical information of collected databases.
Table 3 includes several features such as bf/tf from 10 to 20.71 with an average of 13.51,
d/tw from 11.33 to 57.5 with an average of 36.66, e/(M/V), from 0.33 to 1.69, Af/Aw from 0.41
to 2.27 with an average of 1.86, Af fyflange from 260 to 9882 kN with an average of 879 kN,
Awfyweb from 219.7 to 8524.3 kN with an average of 891.67 kN.
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Table 2. Database description of short links.

Reference No. of Tests bf/tf d/tw e/(M/V) fyflange, MPa fyweb, MPa Vtest (kN)

Ji et al., 2015 [3] 12 12.9 40 0.58–0.97 319 228; 273 869–1130
Ji et al., 2016 [11] 2 10.6; 14.2 35 0.7–0.76 378; 396 228 838–926
McDaniel et al.,

2003 [5] 2 10.6–13.3 33.9 0.59; 0.82 366 354 9363–9919

Volynkin et al.,
2018 [46] 5 12–12.8 21.7–44.2 0.76–1.02 364; 455 364; 374 783–1034

Dusicka et al.,
2010 [8] 5 11.8; 13.6 22–33.9 0.8; 0.82 223–503 242–503 1845–4348

Liu et al., 2017 [4] 11 10–13 21–35 1.12–1.6 366 354–362 373–668
Okazaki et al.,

2005 [6] 11 11.5–18.3 22.1–56.8 1.04–1.49 319–362 382–404 585–1280

Okazaki, T.
2004 [7] 6 12.2 57.5 1.11 351.6 393 1007–1140

Bokurt and
Topaya 2017 [12] 8 18–20.7 22.4–22.8 1.04–1.59 268–281 275–299 275–591

Bokurt and et al.,
2019 [13] 6 18–20 22.2–29 1.26–1.59 272–357 276–343 288–573

Tong et al.,
2018 [53] 4 12 17.9 1.25 461.2 463.4 720–1013

Mahmoudi et al.,
2018 [54] 1 10 34 0.78 301 301 478

Hjelmstad et al.,
1983 [45] 8 11.5; 15.6 43.4; 57 1.27–1.57 241.3; 285.4 711–914 600–1067

Dubina et al.,
2008 [44] 24 12.25 38.7 0.65–1.3 221–315 221–315 270–420

Price, B. 2015 [43] 5 11.5; 16.5 23.8; 56.8 1.11; 1.23 353.7; 398.5 360; 403 433–1298
Total 110

Table 3. Statistical description analysis of features.

Stander Statistics
Features

(bf/tf) (d/tw) (Af/Aw) (Affyflange) (Awfyweb) e/(M/V)

Mean 13.51 36.66 1.01 879.08 891.67 1.09
Standard Error 0.24 1.16 0.04 115.7 107.91 0.03

Median 12.24 38.71 0.86 608.74 664.32 1.1
Mode 12.24 38.71 0.86 803.88 550.24 0.87

Standard Deviation 2.53 12.18 0.43 1213.48 1131.79 0.28
Sample Variance 6.42 148.37 0.18 1,472,537 1,280,955 0.08

Kurtosis 0.56 −0.76 0.33 36.84 37.1 −0.65
Skewness 1.33 0.31 1.08 5.65 5.74 −0.15

Range 10.71 46.15 1.86 9622.04 8304.59 1.36
Minimum 10 11.33 0.41 259.96 219.73 0.33
Maximum 20.71 57.48 2.27 9882 8524.32 1.69

Sum 1486.02 4032.6 110.61 96698.71 98083.4 119.9
Count 110 110 110 110 110 110
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4.2. Correlation Matrix Analysis

Pearson’s correlation among and in between selected features and the short links’
shear strength was applied for the evaluation of the impact of these features, as shown
in Figure 7. The relation’s sign determines the trend of correlation between terms to
investigate the effect of each item against every other item. The correlation factor ranges
from +1 (strong positive relation) to -1 (strong negative relation); the correlation near zero
indicates a weak relation. Figure 7 shows the correlation between flange force, web force,
and link length ratio with the shear link strengths are 0.943, 0.965, and −0.904, respectively.
The results indicate that a strong relationship exists between these variables with the shear
link strength. On the other hand, the correlation factors for web slenderness ratio, flange
slenderness ratio, and flange to web area ratio are close to zero, which implies a minor
effect of these parameters on the shear link strength.
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4.3. Performance of ML Algorithms

The goal of this research is to assess the efficiency of current ML methods
(i.e., ANN, XGBOOST, and LightGBM) to predict the overstrength ratio of short links.
Table 4 shows the five-evaluation comparison. The short links’ shear strength predictions
for various algorithms are displayed in Figure 8.
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Table 4. Performance comparison for prediction of the ML models and AISC code.

Performance
Comparison

Prediction Models

LightGBM XGBOOST ANN AISC Code

MAE 92.0 196.5 378.0 397.9
RMSE 132.5 284.0 507.9 804.2
MAPE 11.7 24.1 35.8 39.2

R2 0.99 0.96 0.90 0.75
Training Tim 7 s 9 s 14 s
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The comparison outcomes present that LightGBM and XGBOOST have higher mea-
sures of R2 value and lower MAE, RMSE, MAPE values than the traditional models
(i.e., ANN, AISC code) in the short links’ shear strength prediction. According to these
metrics, the LightGBM and XGBOOST models surpassed other models. On the other
hand, the results also indicate that LightGBM had outstanding prediction ability com-
pared to XGBOOST. As a result, it generates a precise forecast in comparison to other
proposed methodologies. The LightGBM was graded superior to the XGBOOST, as its
assessment measures for MAE and RMSE were 104.5 and 151.5 points lower than the
XGBOOST, respectively. Consequently, the LightGBM has been the most accurate model,
as it had the minimum MAE and RMSE assessment scores. The MAPE was implemented
to ensure that the LightGBM achieves the best overall accuracy when compared to other
approaches. For MAPE measurement, LightGBM, XGBOOST, ANN, and AISC code
achieved precisions of 11.7, 24.1, 35.8, and 39.2, respectively, as shown in Table 4. This
means that the XGBOOST, ANN, and AISC code value of this measurement is much
higher than LightGBM.

The result of R2 is considered another realistic evidence that LightGBM is superior to
all other approaches for determining the short links’ shear strength, where, R2 of LightGBM
is greater than R2 of XGBOOST, ANN and AISC subspecialty 3, 9, 24%. In comparison
to other approaches, the LightGBM exhibits excellent forecasting accuracy. Moreover, the
LightGBM model ran 2 s quicker than the XGBOOST model and 5 s quicker than the
ANN model.
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The forecasted results of the proposed illustrate that the LightGBM prediction values
are very close to the experimental strength measures. Therefore, the better fit and slight
deviation to the experimental values is the LightGBM model. The plots compare the
predicted performance of the proposed models. As a result, the LightGBM is the most
efficient and proficient model in the short links’ shear strength prediction.

4.4. Features Importance Analysis

A better view of the model’s features helps structural engineers effectively judge
trends. Therefore, feature importance assessment has been performed using LightGBM,
XGBOOST, and ANN models to figure out how important each variable is in predicting
the overstrength ratio of short links. Thus, the feature score plot has been conducted to
provide a relative score for each variable. Accordingly, the features’ significance was in
descending order: Web force, Link length ratio, Flange force, Web slenderness ratio, Flange
slenderness ratio, and Flange to web area ratio, as shown in Figure 9.
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The features’ importance results are compatible with the literature where Liu et al.,
2017 [4] noticed a significant impact of web slenderness and link length ratio on the short
links’ shear strength. The link length was critical in the steel links, Okazaki, T. 2004 [7].
Bozkurt and Topkaya 2017 [12] discovered that the overstrength ratio negatively relates
to the link length ratio. Seven short links were tested, with numerous aspects such as link
length ratio, stiffener spacing, and loading technique taken into account.

The overstrength ratio of experimental-to-LightGBM projected shear strength (Vu/VLightGBM)
and the experimental-to-AISC projected shear strength (Vu/VP) are illustrated in Figures 10 and 11.
Likewise, the AISC based overstrength ratio, the LightGBM demonstrated an excellent perfor-
mance in the prediction of the shear link strength, where it is cruel to bf/tf, d/tw, Af/Aw, Af fyflange,
Awfyweb, and e/(M/V). The LightGBM predictions are flat and close to 1.0, which indicates that
the LightGBM model is a comprehensive and competent algorithm for predicting the short
links’ shear strength.
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Moreover, a comparison between the predicted overstrength ratio using LightGBM
(Vu/VLightGBM), AISC 2016 (Vu/Vp), Gene expression model (Vu/VGEP), and FEM-based
model (V0.08/Vy) are presented in Figure 12. The average of the predicted overstrength ratio
is 0.97, 1.11, 1.73, and 1.74 for the Vu/VLightGBM, Vu/VGEP, V0.08/Vy, and Vu/Vp, respectively.
The results revealed that the LightGBM is an excellent model in order to evaluate the short
links’ shear strength, while the AISC code equation is deficient to accurately estimate the
shear link strength due to the fact the AISC code equation only considers the strength of web.
This study revealed the significant effect of other variables such as the properties of flange
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and the link length ratio. The machine learning algorithm (LightGBM) has successfully
traced the contribution of elements other than the web on the short link shear strength.
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Technology is increasingly being used by policymakers to modify and construct
policies. The existing research creates a strong ML framework for forecasting short links’
shear strength that can be used as a universal model to mimic all relevant properties.
This lays a solid platform for examining how various feature interconnections can help
predict short links’ shear strength. Furthermore, as modern ML methods improve, more
advanced forecast models become available, allowing for the development of more effective
and precise models for short-link shear strength prediction, which many construction
industry stakeholders can employ. The researchers are optimistic in the suggested models’
capabilities to supply decision-makers with more accurate projections to match available
datasets as a beneficial prior acquaintance to power ML-based models, which is coherent
with what is presently arising in the building business and construction projects.

In addition, as compared to other available models, created models were discovered
to be convincing decision support aids in numerous sectors of the construction industry.
The proposal could be a comprehensive, general, useful, and reliable prediction tool.
Thus, the proposed methodology will play an important role in decreasing conflict among
stakeholders in the steel construction sector, especially when decision-makers countenance
massive problems and barriers indicating satisfactory short link shear strength that all
contracting stakeholders agree on.

5. Conclusions

Although the machine learning algorithms were successfully implemented in the
civil engineering applications, limited studies in the literature exploited the powerful
capabilities of machine learning in estimating the shear link strength. The current study
seeks to fill this gap with the help of the abundant short links experimental database
in the literature to train, validate, and test sophisticated machine learning algorithms.
Particularly, this research work examined the applications of the ANN, XGBoost, and
LightGBM algorithms to enhance the prediction accuracy for the shear strength of short
links using related features such as (b f /t f ), (d/tw), (A f /Aw), (A f fyflange), (Aw fyweb), and
e/(M/V). The adopted forecasting process was based on 80% training datasets and
20% testing datasets to confirm the precision of the developed ML models. Performance
metrics of the MAE, RMSE, MAPE, and R2 under the 10-fold cross-validation process have
been implemented to enhance the robustness and effectiveness of such models. These
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measures reveal that the performance of the ML models set side by side to AISC code
was arranged as follows: LightGBM > XGBOOST > ANN > AISC code. According to
the importance of the features extracted from ML algorithms, Web force and Link length
ratio were the most prominent variables in the prediction results of the overstrength ratio
of short links. In addition, the predicted overstrength ratio using the LightGBM was
compared to the available models in the literature, where the proficiency of developed
models was reasonable. The analysis disclosed that the LightGBM has the least average
predicted overstrength ratio compared to the GEP, FEM, or AISC-based models. For future
research, a larger database can be adopted to demonstrate the adequacy of these models to
predict the overstrength ratio of short links. The impact of other variables on the prediction
accuracy needs to be adopted. Moreover, modern algorithms are required to improve
results accuracy.
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