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Abstract — Due to the intrinsic intermittency and stochastic 

nature of solar power, accurate forecasting of the photovoltaic 

(PV) generation is crucial for the operation and planning of PV-

intensive power systems. Several PV forecasting methods based 

on machine learning algorithms have recently emerged, but a 

complete assessment of their performance on a common 

framework is still missing from the literature. In this paper, a 

comprehensive comparative analysis is performed, evaluating ten 

recent neural networks and intelligent algorithms of the 

literature in short-term PV forecasting. All methods are properly 

fine-tuned and assessed on a one-year dataset of a 406 MWp PV 

plant in the UK. Furthermore, a new hybrid prediction strategy 

is proposed and evaluated, derived as an aggregation of the most 

well-performing forecasting models. Simulation results in 

MATLAB show that the season of the year affects the accuracy of 

all methods, the proposed hybrid one performing most favorably 

overall. 

Keywords—Forecasting, photovoltaic, machine learning, 

neural networks, intelligent algorithms. 

I. INTRODUCTION  

The UK targets for very high photovoltaic (PV) integration 
into the power system necessitates reliable forecasting of the 
stochastic and highly uncertain PV power generation. This is 
important for the power system stability and for keeping the PV 
power curtailments low. Recently, machine learning algorithms 
have emerged as powerful tools in predicting the PV power 
generation, as they avoid modelling of complex atmospheric 
phenomena but focus on the actual operation data. 

Artificial Neural Networks (ANN) are widely used in this 
context; some of the recent forecasting methods are discussed 
in the following. A Back-Propagation Neural Network (BPNN) 
is adopted in [1] for 24 hours ahead solar power forecasting, 
while the study in [2] explores a Non-linear Auto Regressive 
Neural Network with Exogenous Inputs (NARXNN) to predict 
the PV generation power at a standalone micro grid on a remote 
island. The authors of [3] achieve a 72-hour ahead PV power 
forecasting using an Elman Neural Network (ENN) and [4] 
presents a Generalized Regression Neural Network (GRNN) 
combined with Wavelet Transform (WT) for short-term PV 
power forecasting. A Fuzzy Neural Network (FNN) for PV 
power estimation is proposed in [5]. 

Another large class of solar power forecasting methods are 
based on Intelligent Algorithms (IA). Extreme Learning 
Machine (ELM) is used in [6] to predict the PV power output 
in multiple steps ahead, while a Random Forest (RF) model is 
adopted in [7] for day-ahead hourly PV power forecasting. The 
study in [8] estimates the PV power output of a 1 MW plant 
based on Support Vector Regression (SVR) and investigates the 
effect of cloudiness on the forecasting performance. SVR is 
also employed in [9], proposing a selection method of the 
SVR’s parameters for minimum estimation error. A 
comparison of the K-Nearest-Neighbours (KNN) and SVR 
methods on actual measurements and Numerical Weather 
Prediction (NWP) data is given in [10]; a feature extraction is 

attempted, resulting in the ten best features to be used as the 
model’s inputs. 

A literature review reveals that the machine learning 
approaches are generally superior to the conventional statistical 
methods due to their inherent ability to model any non-linear, 
complex and dynamic process. However, training of ANN or 
IA is complicated and there is still no commonly accepted way 
to construct the perfect model; this is why selecting and 
optimizing the model’ parameters is usually a trial and error 
process. Most of the relevant studies in the literature examine 
only a few machine learning methodologies, focusing on short-
term (up to three days ahead) forecasting and not providing 
sufficient details on how the model’s parameters are found; a 
comprehensive comparative analysis to account for all relevant 
methods and longer look-ahead times is still missing from the 
literature. Furthermore, the various studies consider different 
real-world installations with dissimilar plant specifications, 
locations, time periods, weather conditions and datasets, while 
there is no consistent way to select the model training variables 
and error metrics. To this day, these methods have not been 
assessed on a common evaluation framework simultaneously. 

In this paper, ten different machine learning algorithms for 
six-day ahead PV power forecasting are implemented and 
compared; these include six ANN and four IA methods. A brief 
discussion is provided on the parameters tuning and 
performance evaluation for each method. Furthermore, a new 
hybrid prediction strategy is proposed, based on some of the 
most well-performing models, and is included in the 
comparison to evaluate its effectiveness. All simulations are 
curried out in MATLAB, using a dataset of one-year hourly 
measurements from a 406 MW PV park in the UK. This is the 
first study in the literature to perform such an assessment and 
performance comparison on a common evaluation framework 
and for medium-term horizons of six days.  

The rest of the paper is organized as follows. The dataset 
used is described in Section II, while the ten forecasting 
methods and the proposed hybrid approach are presented in 
Section III. The overall performance is discussed in Section IV, 
followed by the conclusions in Section V. 

II. CASE STUDY AND DATASET 

A. Plant Specifications 

 The selected PV power plant has an installed capacity of 
406 MWp and is connected to the Norwich Main Substation 
(Norfolk, England, UK). As shown in Fig. 1, this plant has a 
favourable position in terms of solar radiation and can generate 
more electrical power than the majority of other PV stations in 
the UK. The original training dataset is jointly provided by 
Sheffield Solar [11], Copernicus Atmosphere Monitoring 
Service (CAMS) [12] and MERRA-2 [13]. 



Sheffield Solar is a collaborative PV live service between the 
University of Sheffield and UK National Grid. This service 
models nationwide live PV plants and can provide reliable time 
series data of power generation of all solar PV systems 
connected to UK transmission network. Solar irradiation data 
(including global horizontal, beam horizontal, diffuse 
horizontal and beam normal irradiation) is provided by CAMS. 
MERRA-2 can deliver time series data of some weather 
variables such as temperature, humidity, pressure, wind speed, 
wind direction, rainfall, snowfall and snow depth. The time 
period under investigation is from 1 March 2017 to 28 February 
2018 covering all four seasons. To study the seasonal effect on 
the PV power forecasting, the collected dataset is divided into 
four parts, one for each season of the year, as shown in Fig. 2. 
The night data is excluded, as the PV generation during the 
night is zero.  

B. Training and Validation Datasets 

Table I shows the training and validation datasets for each 

of the four seasons. The former set is used only for training 

purposes, while typical season days from the rest of the year are 

randomly selected for the evaluation, making sure that training 

 

 

Fig. 2. One-year data is divided into four parts. 

 

data and corresponding validation data belong to the same 

season. The separation into the four seasons is made to 

investigate the anticipated strong seasonal effect in the PV 

generation forecasting. 

C. Performance Metric 

To evaluate the performance of the forecasting methods, the 
normalized root mean square error (nRMSE) is adopted here, 
as widely done in the literature [8]: ܴ݊ܧܵܯ = 100	ටଵே ∑ ቀ௉෠(௜)ି௉(௜)௉೔೙ೞ ቁଶே௜ୀଵ  (1) 

N is the number of samples; ෠ܲ(݅) and ܲ(݅) are the predicted 
and measured power at the time ݅;  ௜ܲ௡௦ is the installed capacity. 
Furthermore, the models’ performance can be also compared 
by calculating the skill score for a given metric: ݈݈݅݇ݏ	݁ݎ݋ܿݏ = 	 ெ௘௧௥௜௖್ೌೞ೐ିெ௘௧௥௜௖೑೚ೝ೐೎ೌೞ೟ெ௘௧௥௜௖್ೌೞ೐ × 100	 (2) 

 The skill score is obtained by comparing a specific method 
against a base method. Generally, a model with the least 
satisfying performance is chosen as the base model. In this 
paper, nRMSE is used as the metric since it gives more weight 
to large errors and therefore can be treated as a suitable 
indicator of the cost caused by unbalance between supply and 
demand. 

III. METHODOLOGIES 

This paper explores ten machine learning methodologies for 
solar power forecasting. Since these methods are well 
established, the focus of this section is on case-specific 
description rather than general theory representation. The 
training dataset is normalized between 0 and 1 to eliminate 
scale differences. All methods are implemented in MATLAB 
R2018a. 

A. Back Propagation Neural Network (BPNN) 

In this paper, a static feed-forward network with a single 
hidden layer is adopted [1]. The neurons in the input and output 
layers can be automatically determined through dimensions of 
input and output vectors. The values of weights and thresholds 
are randomly initialized. As for the hidden layer neuron 
number, an initial number (4 to 14 in this paper) is determined 
empirically and then 10-fold cross validation (10-CV) is 
employed to choose a specific desired number. We can observe 
the error performance as hidden layer neurons increase and 
select the neuron number associating with the best error 
performance. We decide to change the network structure 
according to the season, thus finding a near-perfect model for 
each season. 

B. BPNN with Genetic Algorithm Optimization 

The weights and thresholds of BPNN are arbitrarily 
initialized, thus exhibiting randomness on the training phase. 
To enhance the model performance, Genetic Algorithm (GA) 
[14] is proposed to optimize the network weights and thresholds 
(GABPNN). The main function of GA is to implement 
selection, crossover and mutation on the number strand and 

Fig.1. Regional PV generation across the UK. The black dots indicate 
PV stations [11]. 

 

TABLE I. TRAINING AND VALIDATION DATASETS

Training data Validation data 

Spring 1-3-2017 to 31-5-2017 1-4-2016 to 6-4-2016 

Summer 1-6-2017 to 31-8-2017 26-7-2016 to 31-7-2016 

Autumn 1-9-2017 to 30-11-2017 15-10-2016 to 20-10-2016 

Winter 1-12-2017 to 28-2-2018 15-1-2017 to 20-1-2017 

Norwich Main 
Substation



generate optimal weights and thresholds which outperforms 
previous generation. Specifically, we extract the weights and 
thresholds from the previous realised model and encode them 
into a real number strand. For example, the structure of Spring 
BPNN is 9-11-1. Therefore, the number of weights is 9 × 11 +11 × 1 = 110 and the number of thresholds is 11 + 1 = 12. 
The total individual length is 110 + 12 = 122.	 During the 
iteration, we consider the sum of absolute error between 
forecasted value and expected value as fitness, thus the smaller 
the fitness, the better the individual. GA is implemented with 
MATLAB. The population size is set to 10, the evolution time 
to 20 generations, the crossover probability to 0.3 and the 
mutation probability to 0.2. We observed that the fitness 
function decreases with the iterations, which indicates better 
forecasting over the standard BPNN. 

C. Elman Neural Network (ENN) 

The ENN is a multi-layered recurrent neural network [3]; it 
is a typical dynamic neural network which can store a hidden 
layer output and feed it back into the input layer through a delay 
operator. Due to the feedback layer, the network ability for 
handling nonlinear and dynamic processes is enhanced. Similar 
to the BPNN, the hidden layer neurons number, the delay steps 
and the training algorithm need to be tuned through a trial and 
error process. In this paper, the ENN model of spring, summer, 
autumn and winter have 8, 7, 7 and 4 hidden layer neurons 
respectively. The delay step is set to 1:2. 

D. Generalized Regression Neural Network (GRNN) 

GRNN was first proposed in [15]. The main difference with 
BPNN is that GRNN has additional layers: the pattern layer and 
summation layer. In the pattern layer, the neurons number is 
equal to the number of total observations of input data so that 
there is no concern about the hidden layer neuro number. Both 
the mathematical summation and weighted summation are 
computed at the summation layer. As a final term, the two sums 
are divided for the forecasting output. MATLAB provides a 
built-in function to implement GRNN. The GRNN 
implementation is superior to the BPNN in terms of 
computation efficiency, since only one parameter, i.e. Spread, 
needs to be tuned during the training phase. Therefore, GRNN 
is generally faster than BPNN. Spread is a significant factor of 
the model performance; a small Spread value may lead to 
overfitting, while a large Spread value may increase the 
forecasting error. Here, 10-CV is adopted to select an optimal 
value of Spread within a predetermined range. The values for 
the spring, summer, autumn and winter are 0.15, 0.11, 0.1 and 
0.24 respectively. 

E. Adaptive Network based Fuzzy Inference System (ANFIS) 

ANFIS was firstly proposed in [16]. The essence of ANFIS 
is mathematical logic operation. The typical procedure of 
implementing ANFIS involves fuzzification, i.e. converting 
normal input series into fuzzy series. This is achieved by 
computing the membership degree of each input through a 
membership function. Membership degree is an indicator 
quantifying how well the given input satisfies the linguistic 
condition. Membership degree is generally in the range 
between 0 (low degree) and 1 (significant degree). The 
algorithm of ANFIS is similar to BPNN. Providing the 
computed output, the error between forecasted value and 
expected value is back propagated and parameter set is updated 
based on error gradient descent method. The number of 
membership function is arbitrarily initialized. The model 
training is implemented through trial and error. However, since 

the parameter set of ANFIS is randomly initialized, the network 
convergence is not guarantee: during the training process, the 
output of the ANFIS model may converge to Not-a-Number 
(NaN) if the initial setting is not appropriate. Improvement in 
parameter initialization can potentially increase ANFIS model 
forecasting accuracy. 

F. Nonlinear Autoregressive Neural Network with 

Exogenous Inputs (NARXNN) 

NARXNN is a typical dynamic neural network which 
consists of static neurons and output feedback [2]. The standard 
architecture of NARXNN is parallel, according to which the 
model output is directly fed back into the model input. 
However, since the expected output is available during the 
training, the series-parallel architecture is preferable, and the 
expected output can be directly adopted for model training. The 
series-parallel architecture is able to convert a feedback 
network into a feedforward network, resulting in a static neural 
network. Both input and feedback delays are set to 1: 2 and the 
hidden layer neurons number is set to 10 for all models. The 
spring model used the Levenberg-Marquardt algorithm; the 
summer one used the Bayesian Regulation algorithm; the 
autumn and winter models employed a Gradient descent with 
momentum and adaptive learning rate. Initially, the open-loop 
network is trained on the training dataset; then, the network is 
changed to close-loop for multi-step prediction. 

G. K Nearest Neighbours (KNN) 

The concept of KNN was introduced in [17]. KNN assumes 
that similar weather conditions could possibly result in similar 
PV power generation. Therefore, the historical dataset can be 
regarded as a set of pairs of cause and result. The task of 
forecasting future PV power generation can be converted into 
searching in the past database for K feature vectors that are the 
neatest neighbours to those of the time of interest. Then, the PV 
power generation associated with the selected neighbours are 
combined as a single forecasting in a closeness-weighted 
approach. In this study, the closeness is quantified by Euclidean 
distance. Note that, if more than one sample point has the same 
distance from a query point, the observation with the smallest 
index is selected among all candidates. The search method is 
configured as a k-d tree, which is a built-in function in 
MATLAB. Regarding the neighbours K, a predetermined range 
is set between 0 and 500, and K can be selected in a trial and 
error manner. Here, 230, 230, 27 and 64 are the values for the 
spring, summer, autumn and winter respectively. Compared to 
Neural Network, KNN is more intuitive and deterministic, and 
the forecasting result is reproducible.  

H. Extreme Learning Machine (ELM) 

The motivation behind ELM [18] is to optimize a single 
layer feedforward network (SLFN) that generally suffers from 
slow training speed, local minimum convergence and learning 
rate sensitivity. ELM is superior to the conventional 
Feedforward neural network in terms of learning speed and 
generalization performance. The weights connecting the input 
layer and hidden layer, as well as the hidden neurons 
thresholds, can be randomly initialized. During the training 
phase, these randomly generated weights and thresholds do not 
need to be adjusted; the only free parameter is the number of 
hidden layer neurons. ELM can be described in the following 
steps: (i) the input weights ௜ܹ௡ and thresholds ܾ are randomly 
initialized; (ii) choose a proper number of hidden layer neurons; 
(iii) choose an infinite-differentiable activation function ݃(∗), 
and compute the hidden layer output ܪ = ݔݓ)݃ + ܾ) ; (iv) 



compute the output weights ௢ܹ௨௧ via ௢ܹ௨௧ = ^ܪ + 	ܻ, where ܪ^	 is the Moore-Penrose inverse of ܪ. A predetermined range 
of hidden layer neurons number is between 4 and 20. We also 
used 10-CV to optimize the network structure. The neurons 
number is 20 for the spring and summer models, and 18 for the 
autumn and winter ones. It is worth noting that ELM takes 3.05s 
to complete the model test (hidden layer neurons number 
between 4 and 20), whereas BPNN needs 56.852s for the same 
neurons number; this is an improvement of the execution time 
by around 19 times. 

I. Random Forest (RF) 

RF is an ensemble model that integrates the classification 
or regression outputs from several uncorrelated subsystems 
denoted as decision trees [7]. Decision tree is a statistical tool 
which employs a tree-like architecture to depict potential 
outputs for a given input.  The procedure of implementing an 
RF is briefly described as follows: (i) Randomly generate T 
training sets ଵܵ, ܵଶ, …, ்ܵ from the original training dataset ܵே 
based on the Bootstrap method; an observation may appear 
more than once in a training set. (ii) For every single training 
set, there is a corresponding decision tree ܥ with added node 
split mechanism, which randomly selects ݉ features from the 
total ܯ features as decision tree inputs at each node. The RF 
algorithm keeps the split proceeding in the best possible way. 
During the growth process, the value of ݉ remains unchanged. 
(iii) Feed the validation dataset ܺ into each grown decision tree 
and produce multiple outputs ܥଵ(ܺ), ܥଶ(ܺ), …, ்ܥ(ܺ). (iv) 
The aggregation result is obtained by averaging all the outputs 

from these trees. In this paper, the split number is set to √ܯ. 
As for the number of decision trees, the RF model is repeatedly 
tested from 50 to 1000 trees and the number associated with a 
minimum forecasting error is chosen as the final number: 850 
for spring, 400 for summer, 600 for autumn and 150 for winter. 
MATLAB does not have a built-in function for RF, therefore 
the RF Toolbox developed by Abhishek Jaiantilal from 
University of Colorado Boulder was employed in this research 
[19].  

J. Support Vector Regression (SVM) 

 In SVR, a so-called Kernel function is adopted to map input 
patterns ௜ܺ into a higher dimension space where output patterns 
become linearly separable, permitting pattern extraction via 
linear fitting. The objective is to find the best fit, which can be 
converted into an optimization problem [8]. Among many 
existing SVR Toolboxes, LIBSVM software library and 
Epsilon-SVR [20] were applied in this paper since it provides 
many default values and has built-in function of cross 
validation. The penalty parameter ܥ  and Kernel function 
parameter ߛ are the most important parameters; these are tuned 
by the K-CV method. The grid search algorithm is used to 
select the most appropriate values of (ܥ, (ߛ  in a predefined 
range: first discretize ܥ  and ߛ , then search for the desired 
parameter set (ܥ,  by walking along a path which is set as (ߛ
exponentially growing sequences of ܥ	and	ߛ(for example, ܥ =2ି଼, 2ି଺, … , 2଼ and ߛ = 2ି଼, 2ି଺, … , 2଼ ). The grid path is set 
as exponent minimum forecasting error, then select the set in 
which ܥ  has the smallest value because large could possibly 
lead to overfitting. Based on this tuning, the Spring model 
adopts ܥ = 0.44 and ߛ = 0.09; the summer model ܥ = 0.02 
and ߛ = 0.5 ; the autumn model ܥ = 0.5  and ߛ = 0.5 ; the 
winter model ܥ = 0.09 and ߛ = 0.09. It is worth noting that a 
large grid usually requires long search times; GA and Particle 

Swarm Optimization (PSO) may be used instead for shorter 
computation times. 

K. Proposed Hybrid Method 

 The objective of the proposed strategy is to implement 
some of the most well-performing uncorrelated techniques and 
combine their results to a weighted average as a single forecast. 
First, all ten forecasting models are implemented and evaluated 
separately based on a common databank. Then, a selector 
chooses the best three methodologies according to a skill score 
associated with each method. Finally, the prediction results of 
the chosen methods are combined to a weighted average using 
the respective weight coefficients as computed by the Skill 
Score (SS). A calculation flowchart of this hybrid model is 
presented in Fig. 3. We used the nRMSE to compute the Skill 
Score and then normalised the coefficients to have a unit sum.  

The concept of the Hybrid model is based on the 
observation that none of the ten individual methods was 
superior in all four seasons: some methods perform better in 
spring, while others produce the most accurate prediction in 
autumn. The proposed approach essentially takes into account 
several different opinions before making the final decision. 
Instead of improving the data quality (sometimes we do not 
even have complete datasets) or dedicating to building a perfect 
model, combination of results from several uncorrelated 
outstanding techniques is more robust and exhibits better 
transferability from one case to another.  

While there are other method-combinations in the literature, 
this is the first study to integrate several forecasting models 
based on their skill score. Skill-score-computed coefficients are 
more computationally efficient as compared to MoorePenrose 
pseudoinverse or GA adopted elsewhere. In this paper, the 
coefficients computation is intuitive, as more importance is 
given to the most accurate methods. The theory of the hybrid 
method is simple, but the forecasting performance is expected 
to generally outperform the aforementioned techniques. In the 
next section, the findings verify that a simple combination of 
several good methods normally generates more reliable 
predictions than any single method on its own. This may be a 
useful technique, especially when the collected data is not 
complete and building a single perfect model is nearly 
impossible.  

 

 

 

 

Fig. 3. Flow chart of the hybrid method. 

BPNN GA ENN KNN ELM RF SVR 

NWP Historical data 
Databank 

Selector: compute skill score for each method and select 

best three methods 

ܲ = ଵߙ ∙ ଵܲ + ଶߙ ∙ ଶܲ + ଷߙ ∙ ଷܲ	, ௜ߙ = 	 ܵ ௜ܵ∑ ܵ ௜ܵ௜ୀଷ௜ୀଵ  



IV. NUMERICAL PERFORMANCE 

Fig. 4 presents the measured and estimated PV power by 
all methods under consideration for six days: all techniques 
exhibit generally satisfying performance in the four seasons. 
The typical “bell shape” pattern is apparent, according to 
which the PV plant provides the maximum power at mid-
day and near-zero output before the sunrise and after the 
sunset. It is worth noting that most models successfully 
detect fast irradiance fluctuations (e.g. last day of the spring 
- Fig. 4(a)).  

Several interesting aspects could be observed from Fig. 
4. First, the forecasting performance in the winter is the 
worst among four seasons. As shown in Fig. 4(d), negative 
values are produced and most methods do not have a good 
agreement with the expected power generation. This is 
expected, as the short sunshine duration in the UK’s winter 
results in insufficient data for model training. Furthermore, 
another conclusion from the same figure is that SLFN 
(typically ELM and BPNN) is more likely to be affected by 
insufficient dataset compared to other methods, as both of 
them produce non-realistic negative estimations even after 
parameter tuning. 

On the other hand, there is a very good match between 
measurements and predictions in the remaining seasons, as 
Fig. 4(a)-(c) illustrate. Some fluctuations at mid-day that are 
not detected properly are mainly due to sudden change of 
weather condition. The UK has significant wind resource 
that leads to stochastic cloud motion and uncertainty to the 
power forecasting. 

More elaborate numerical results are shown in Tab. II. 
An expected conclusion is that the forecasting performance 
is significantly affected by the specific season of the year. 
Summer and autumn are found to generally perform better 
than spring and winter. For example, in terms of ܴ݊ܧܵܯ, 
average errors of all models are 	7.21%  in summer and 6.92% in autumn while these numbers increase to 8.62% 
in spring and 9.37% in winter. Spring and winter in the UK 
are two seasons in which there is insufficient irradiation, 
strong wind and frequent snow; these factors hinder the 
successful forecasting. Autumn, rather than summer, is 
surprisingly found to be the most easily forecasted season. 
This seems reasonable when the typical UK summer is 
considered, which is a rainy season with unstable weather. 
Conversely, autumn combines strong radiation and a more 
stable weather. 

Among the six neural networks, NARXNN exhibits 
noteworthy superiority, producing the best overall 
prediction at a yearly error of only 7.09%. This is mainly 
due to its dynamic feedback mechanism which allows for 
the network to memorize past-time data. ENN, which also 
has the feedback function, performs better than most other 
approaches as well, as it ranks within the top three 
(excluding the hybrid model) in terms of yearly error shown 
in Tab. II. As a rule, we have found that a neural network 
with a feedback mechanism or adopting delayed data as 
model input improves the forecasting accuracy. BPNN 
performance is the overall least-satisfying, but it can be 
enhanced with GA optimization: the negative values are not 
apparent in GABPNN in Fig. 4(d). ANFIS usually provides 
more accurate forecasts than GRNN. 

 

 

 

 

Fig. 4. Aggregated comparison among all methods. (a) Spring; (b) 
Summer; (c) Autumn; (d) Winter. 

(a) 

(c) 

(b) 

(d) 



TABLE II. NUMERICAL PERFORMANCE OF ALL METHODS (NRMSE)

Model BPNN GABPNN ENN GRNN ANFIS NARXNN KNN ELM RF SVR Hybrid Season Avg

Spring 8.76 8.52 8.39 9.84 8.32 8.00 9.75 8.39 8.49 8.79 7.55 8.62

Summer 8.02 7.80 7.46 6.79 7.84 7.34 6.47 7.63 6.29 7.33 6.31 7.21

Autumn 7.85 7.52 6.86 7.20 6.64 6.88 6.91 6.43 6.91 6.86 6.61 6.92

Winter 11.57 10.52 9.45 9.73 9.43 6.14 9.56 9.98 10.12 9.57 6.98 9.37

Year 9.05 8.59 8.04 8.39 8.06 7.09 8.17 8.11 7.95 8.14 6.74 

In a conclusion, neural networks manage to extract the 
nonlinear dynamic relation quite well (better with a 
feedback mechanism), but the training process exhibits 
great randomness. At every simulation run, different results 
may be obtained; it is not certain whether the next 
simulation would be better or not. On the contrary, 
intelligent algorithms are more robust. RF, as the best 
candidate of IAs, is a combination of several decision trees 
and exhibits immunity to irrelevant data.  

Another observation is that in the winter, the numbers of 
hidden layer neurons or decision trees are the lowest, as 
discussed in Section III. This is because the effective 
irradiation is insufficient in the winter, resulting in 
incomplete historical databank for the model training. It 
seems that it is better to resort to a simple well-trained 
model, rather than a more complex albeit poorly-trained 
model. For accurate forecasting in a season like UK winter, 
it is suggested to collect more key influencing factors.  

KNN, ELM and SVR exhibit similar in this paper. Table 
II shows that the proposed Hybrid model achieves the best 
overall performance among all methods, as it obtains a 
yearly nRMSE of as low as 6.74%.   An overall comparison 
based on the average skill score is shown in Fig. 5; the 
Hybrid method exhibits the highest score.  

V. CONCLUSION 

In this paper, a comprehensive performance assessment 
among some of the most popular PV power forecasting 
methods is performed on a common dataset. NARXNN is 
found to be superior over other neural networks due to its 
dynamic feedback mechanism. RF performs the best among 
the intelligence algorithms, since it is a combination of 
uncorrelated decision trees that exhibits bad data tolerance.  

There is a seasonal effect on the forecasting problem; 
summer and autumn are easier to forecast than spring and 
winter. The training process of a neural network exhibits 
great randomness, while intelligent algorithms are generally 

more robust. The proposed Hybrid method performs most 
favourably among all methods, correcting erroneous 
fluctuations and negative forecasting. In fact, a major 
conclusion from this investigation is that simple 
combination of several good models can generate a more 
reliable prediction than any single method on its own. This 
may be found useful especially when there is no complete 
data for model training. 
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