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ABSTRACT: Aquaculture is a rapidly expanding industry and is now one of the primary sources
of all consumed seafood. Intensive aquaculture production is associated with organic enrichment,
which occurs as organic material settles onto the seafloor, creating anoxic conditions which dis-
rupt ecological processes. Bacteria are sensitive bioindicators of organic enrichment, and super-
vised classifiers using features derived from 16s TRNA gene sequences have shown potential to
become useful in aquaculture environmental monitoring. Current taxonomy-based approaches,
however, are time intensive and built upon emergent features which cannot easily be condensed
into a monitoring pipeline. Here, we used a taxonomy-free approach to examine 16s rRNA gene
sequences derived from flocculent matter underneath and in proximity to hard-bottom salmon
aquaculture sites in Newfoundland, Canada. Tetranucleotide frequencies (k = 4) were tabulated
from sample sequences and included as features in a machine learning pipeline using the random
forest algorithm to predict 4 levels of benthic disturbance; resulting classifications were compared
to those obtained using a published taxonomy-based approach. Our results show that k-mer count
features can effectively be used to create highly accurate predictions of benthic disturbance and
can resolve intermediate changes in seafloor condition. In addition, we present a robust assess-
ment of model performance which accounts for the effect of randomness in model creation. This
work outlines a flexible framework for environmental assessments at aquaculture sites that is
highly reproducible and free of taxonomy-assignment bias.

KEY WORDS: Aquaculture - Machine learning - Environmental monitoring - Organic enrichment -
Bacterial eDNA - Random forest - Supervised classification

1. INTRODUCTION

Aquaculture is a significant global industry pro-
ducing over 80 million t of food fish annually (FAO
2018). Over the last 3 decades, the industry has seen
continued growth in production and now contributes
up to 46 % of the total global fish output, including
capture fisheries and aquaculture fisheries combined
(FAO 2018). However, concerns exist about the sus-
tainability of aquaculture operations, in part due to the
potential for negative environmental modification of
associated ecosystems (Keeley et al. 2014, Salvo et al.

*These authors contributed equally to this work
**Corresponding author: verhoevenjtp@googlemail.com

2017, Verhoeven et al. 2018). Effluent and particulate
matter from aquaculture operations released into the
environment can drive significant benthic community
changes, the detrimental effects of which have been
widely studied, and extended aquaculture activities
typically lead to changes in macrofaunal succession,
decline in species diversity and in some cases, com-
plete elimination of native infauna (Keeley et al. 2014,
Stoeck et al. 2018). Furthermore, studies have shown
that these effects are long-lasting, as they persist years
after aquaculture operations have ceased (Verhoeven
et al. 2018).
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The surveillance of aquaculture environmental
impact has therefore become a priority. Tracking
aquaculture-associated detrimental changes is often
performed through environmental monitoring and
impact assessment programs, and typical approaches
include the characterization of macrofaunal biodiver-
sity, as well as the detection of the presence/absence
of specific indicator species associated with both eco-
system health and disturbance (Keeley et al. 2014,
Salvo et al. 2017, Hamoutene et al. 2018). While
effective, these methods are comparatively labor-
intensive as extensive imaging data or a large num-
ber of environmental samples need to be collected,
and taxonomic expertise and labor are required to
obtain, analyze and interpret results (Maurer 2000,
Cordier et al. 2019).

More recently, the use of high-throughput sequen-
cing to characterize microbial communities has been
explored as a more streamlined and automatable
method for detecting ecosystem change (Cordier
et al. 2019, He et al. 2019). Often, these methods
involve the amplification and sequencing of a marker
gene (for bacteria, typically a portion of the 16S
TRNA gene) and combining closely related se-
quences into operational taxonomic units (OTUs),
which can then subsequently be used for elucidating
the taxonomic composition of a community and
gather information on the relative abundance of
occurring OTUs (Pollock et al. 2018).

Since microbial communities are sensitive to envi-
ronmental stimuli (Logue et al. 2015), previous work
has highlighted the potential of using shifts in their
taxonomic and OTU composition, as well as detect-
ing the presence of specific biomarker taxa in micro-
bial communities, to infer aquaculture environmental
impact and organic enrichment at fish farms (Verho-
even et al. 2016, 2018, Stoeck et al. 2018). Neverthe-
less, several limitations can make the use of
sequence- and taxonomic-based approaches subop-
timal. Taxonomic classification is inherently limited
to classifying sequences for microorganisms that are
identical or highly similar to those present within the
reference databases used, which can lead to a large
proportion of sequences unclassified or classified at a
less informative taxonomic level (Youssef et al. 2015),
and thus unusable for biomarker studies. In addition,
typical amplicon sequencing experiments produce
high dimensional and sparse OTU datasets repre-
senting the complete genotypic diversity present in
each investigated sample, from which extracting
specific or co-occurring features significantly related
to an ecosystem status can be challenging and com-
putationally expensive (Gloor et al. 2017).

Such challenges can in part be addressed by com-
bining marker-gene analysis with supervised machine
learning (SML). SML algorithms generate predictive
models based on user-supplied training datasets, from
which specific features (or combination of features)
correlating to the known classification are auto-
nomously detected. Once established, this model can
subsequently be used to predict a classification for fu-
ture, unknown, samples.

Within the context of biomonitoring, the integra-
tion of SML has enabled new approaches in analyz-
ing amplicon data, including the possibility of
employing a taxonomy- and reference database-free
approach, using OTU sequences directly as inherent
features of investigated environments. Recent work
has shown that not only are OTU SML-based
approaches capable of accurately predicting envi-
ronmental biotic index values, but they also outper-
form the traditional, taxonomy-based assessment of
these indices (Cordier et al. 2018). However, group-
ing sequences into OTUs has several undesirable
properties, including sensitivity to the used bioinfor-
matic pipeline and associated settings causing varia-
tions in OTU composition, biases due to the possibil-
ity of combining closely related sequences into
phylogenetically incoherent OTUs and the inherent
inability to compare OTUs from different datasets, as
the boundaries and membership of OTUs are de-
pendent on, and invalid outside, the dataset in which
they are defined (Callahan et al. 2017).

As an alternative, the distribution of oligonucleo-
tides of specific length (k-mers), calculated from bio-
logical sequences, can be used as input features for
performing machine learning (Asgari et al. 2018).
Oligonucleotide distributions are a well-defined rep-
resentation of 16S rRNA amplicon sequence data, in
which sequence similarities are naturally incorpo-
rated, and are robust to bioinformatic pipeline and
parameter variations, making them a particularly
well-suited feature set for downstream machine
learning (Asgari et al. 2018). Indeed, recent studies
have shown that k-mer representations of 16S rRNA
gene sequencing experiments contain sufficient
information for SML to accurately predict the pheno-
typical and environmental characteristics of biologi-
cal samples in a variety of applications (Asgari et al.
2018). As such, the usage of oligonucleotide distribu-
tions, coupled with SML, can potentially be a valu-
able tool in assessing changes to specific environ-
mental niches in response to external stimuli, such as
anthropogenic impacts.

During previous studies, we used 16S rRNA gene
sequencing to demonstrate that salmon aquaculture
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operations can create long-lasting significant benthic
disturbances that in turn drive large-scale specific
shifts in benthic bacterial populations (Verhoeven
et al. 2016, 2018). Here, we reanalyzed 16S rRNA
gene sequencing data from our previous study and
investigated the potential and benefits of utilizing
oligonucleotide distribution representations, specifi-
cally tetranucleotide frequencies (TNFs, k = 4), over
conventional OTU counts in an SML setting, as a pos-
sible automated method for predicting benthic dis-
turbance levels.

2. MATERIALS AND METHODS
2.1. Sample and data description

This study examined a previously investigated
microbiome dataset (NCBI BioProject PRINA503189)
containing Illumina-based sequencing data of the
V6-V8 16S rRNA gene region performed on 108 floc-
culent matter samples collected below and near
salmon aquaculture operations in Newfoundland,
Canada (Verhoeven et al. 2018). An Eckman grab
was used to collect samples, comprised of either
naturally occurring sedimentation or aquaculture-
associated flocculent matter. In order to better cap-
ture the existing bacterial diversity, up to 3 sub-sam-
ples were collected from each successful grab
(Verhoeven et al. 2018). Samples were previously
assigned an environmental impact interpretation
based on sample metadata, percentage of total
organic carbon (%TOC) measurements, as well as
bacterial taxonomic composition and diversity, and
subsequently categorized as low impact (N = 34,
similar to sites with no aquaculture, low %TOC),
recently disturbed (N = 13, deviating from the low-
impact group, elevated %TOC), intermediate impact
(N = 19, drop in biodiversity, significantly increased
%TOC) or high impact (N = 42, lowest biodiversity,
highest levels of %TOC) (Verhoeven et al. 2018).

2.2. TNF and OTU calculation

TNFs were calculated per sample by using a sliding
window (k = 4) across all sequences for each sample,
summing the occurrences of tetranucleotides in a ma-
trix. TNF occurrence count data were then subse-
quently normalized using the centered log ratio (clr)
transform available in the ‘codaSeq’ R package (Gloor
& Reid 2016). Similarly, sample-stratified OTU count
data (generated as in Verhoeven et al. 2018) were im-

ported, tabulated and clr-transformed. Both of these
sets were used independently as input for the SML
analyses to compare the efficiency and accuracy of
the developed methods on different dataset types.

2.3. SML workflow

Model creation and statistical analysis (code avail-
able upon request) were performed in R (v3.5.2)
using the RStudio v1.1.463 IDE (R Core Team 2015).
The ‘caret’ package (v6.0-81) was used for data par-
titioning, cross validation, hyperparameter optimiza-
tion and model fitting (Kuhn, 2008). Stratified ran-
dom sampling was performed with ‘caret::createData
Partition’ to maintain class ratios between training
and test sets. We included 75 % of observations (N =
83) for model training, with 25 % (N = 25) withheld to
evaluate model performance on unseen data. Predic-
tive models were trained with ‘ranger’ (v0.11.1), a
multithreaded implementation of the random forest
algorithm (Wright & Ziegler 2017). All visualizations
were created with ‘ggplot2' (Wickham 2009).

The ‘caret::trainControl’ function was used to spec-
ify resampling and hyperparameter search methods.
We used repeated, stratified 10-fold cross valida-
tion (CV) to search the hyperparameter space for set-
tings minimizing classification error. Ten folds were
selected to reduce variance and to ensure that at least
1 of each class was present in each partition. We per-
formed 100 repetitions to account for covariate drift
during division of training examples into folds and to
ensure that performance estimates had stabilized
(Moreno-Torres et al. 2012). Hyperparameter tuning
was done via grid search over CV folds with the best
performing hyperparameter tuple fit to the entirety of
training data. Tuned hyperparameters included: (1)
‘mtry’: number of features randomly selected as can-
didates for each split, (2) ‘splitrule’: the split quality
evaluation function and (3) ‘'num.trees:' the number of
trees in a forest. The number of trees was set to 2001,
with an odd number specified to ensure no ties could
occur during generation of class predictions. The
number of trees was set to a large, computationally
feasible number which balances reductions in model
variance with diminishing returns as tree count in-
creases (Oshiro et. al. 2012, Probst & Boulesteix 2018).
All 256 TNF combinations were included as features
with values corresponding to their frequencies after
clr transformation. ‘Caret::confusionMatrix.train' and
‘caret::confusionMatrix’ were used to create confusion
matrices and summary statistics for results from CV
and test set predictions.
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seed iteration. While computations
based on the full OTU-based data-
set did not finish due to excessive
memory usage, TNF-based predic-
tions generated on resampling
folds resulted in an average accu-
racy of 0.9704, with the lowest per-
formance reported at 0.9506 (Fig. 1).
Performance was comparable be-
tween the gini and extratrees
‘splitrule’ hyperparameter, with the
most frequent hyperparameters
being gini with an ‘mtry’ of 160
features (Fig. 1).

Low-impact samples were most
consistently predicted, with 0.991 of
cases accurately reported (Table 1).
Conversely, the intermediate distur-
bance level was the least accurate
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Fig. 1. Cross-validation performance of predictive models with varying hyper-
parameters. Shown are the accuracy of aggregated validation scores created
through repeated 10-fold cross validation on the vertical axis, with the number
of randomly selected features as split candidates (‘mtry’) indicated on the
horizontal axis. The density of models reporting similar performance and
hyperparameters is indicated by warmer colors. The left and right plots corre-
spond to gini and extratrees (‘splitrule’), respectively, which determine how

the algorithm creates decision tree splits

To account for the effect of randomness on model
performance, a for-loop generating 100 random seeds
was created, with each iteration resulting in unique
train/test splits, hyperparameter optimizations, pre-
dictions and patterns of tree growth. The results of
these 100 models were aggregated into a single con-
fusion matrix to demonstrate overall model perform-
ance and stability despite randomness inherent in the
model-building process.

3. RESULTS
3.1. Average accuracy of resampling folds

Hyperparameters resulting in the lowest classifi-
cation error were fit to the entirety of training data
by evaluating differing hyperparameter settings on
folds in our repeated CV procedure. Predictions
made during CV were aggregated to provide
initial estimates of model performance and stability.
CV and hyperparameter tuning were performed

category (0.904), with incorrect clas-
sifications being labeled as low and
recently impacted for 6.8 and 2.7 %
of cases, respectively (Table 1). Simi-
larly, 2.3% of high-impact predic-
tions were misclassified as interme-
diate impact (Table 1). Overall, only
1.5 % of observations were misclassi-
fied by >1 level of impact (Table 1).

3.2. Model evaluation on withheld test data

Predicted labels on withheld TNF-based test data
showed a high level of agreement with known cases
for all disturbance levels (Table 2, Fig. 2). All model
predictions significantly outperformed (median p =

Table 1. Confusion matrix of aggregated counts from 100
rounds of 10-fold, 100 repetition cross validation created
during a hyperparameter search (N = 83) with randomly
sampled seed states. Column and row values correspond to
known and predicted cases of seafloor disturbance, respec-
tively, with 4 levels of seafloor disturbance ranging from low
to high. Numbers represent the result of 100 seed iterations
of independent train/test splits

Predicted Actual impact

impact Low Recent Intermediate High
Low 257765 55 10274 0
Recent 0 99653 4044 63
Intermediate 2226 133 135638 7565
High 9 159 44 312372




Armstrong & Verhoeven: Assessing aquaculture impact with oligonucleotides 135

Table 2. Confusion matrix demonstrating model perform-
ance on withheld test data (N = 25) when predicting levels of
seafloor disturbance ranging from low to high. Column and
row values correspond to known and predicted cases of
seafloor disturbance, respectively, with 4 levels of seafloor
disturbance ranging from low to high. Numbers represent
the result of 100 seed iterations of independent train/test

splits
Predicted Actual impact
impact Low Recent Intermediate High
Low 782 0 40 0
Recent 0 300 16 0
Intermediate 16 0 334 20
High 2 0 10 980

4.335 x 107, see Table S1 in the Supplement at www.
int-res.com/articles/suppl/q012p131_supp.pdf) the 'no
information rate’, which represents a naive predic-
tion of all observations belonging to the majority
class. In addition, random seed iteration testing indi-
cates that the random seed state did not significantly
impact accuracy scores (Table S1), with mean and

median model accuracies of 0.9584 and 0.96 being
detected, respectively. In addition, models fell within
the 95% CI created with ‘caret::confusionMatrix,’
which performs an exact binomial test to determine
the probability of success in a Bernoulli experiment.
OTU-based prediction did not successfully complete
due to memory constraints.

4. DISCUSSION

The classification of benthic disturbances near
aquaculture sites has received increased attention,
but its practical application and the potential for real-
time assessment have yet to be introduced. Here, we
examined the use of k-mer count features (k =4)in a
model tasked with classifying levels of benthic dis-
turbance at aquaculture sites and demonstrate that
highly accurate predictions of seafloor condition can
be generated using a defined feature set.

Traditionally, biotic indices which examine macro-
invertebrate richness and diversity have been used to
assess ecological quality and disturbance level (Borja

& Dauer 2008, Rygg & Norling 2013).
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eDNA metabarcoding has shown
promise by associating specific bacte-
rial community compositions with en-
vironmental disturbances, demon-
strating the potential of bacteria as
highly responsive bioindicators (Lej-
zerowicz et al. 2015, Stoeck et al.
2018). However, sequence-analysis
pipelines are not standardized, and
most of them rely on sequence taxon-
omy assignment, a process that is
heavily affected by the available
knowledge of sequenced microbial
taxa and may fail to provide accurate
data when in the presence of a high
amount of highly divergent taxa. Ma-
chine learning, in conjunction with
features derived from 16s rRNA se-
quencing (such as OTUs) as model
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Fig. 2. Test set performance of predictive models with randomized seed states.
Shown are the prediction accuracies of trained models on test set data, with the
number of randomly selected features as split candidates (‘mtry’) indicated on
the horizontal axis. The density of models reporting similar performance and
hyperparameters is indicated by warmer colors. The left and right plots corre-
spond to gini and extratrees (‘splitrule’), respectively, which determine how the

algorithm creates decision tree splits

inputs, can effectively predict biotic
indices (Cordier et al. 2017), out-
performing taxonomy-based assess-
ments and providing faster evaluation
of seafloor conditions (Cordier et al.
2018). In this context, k-mer count
features (such as TNFs) have been
used to accurately classify distinct
ecological environments (Asgari et al.
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2018), but their ability to resolve within-environmental
change has not been previously addressed.

In this study, we demonstrate that TNFs can effec-
tively distinguish levels of benthic disturbance with
performance maintained across 100 randomized iter-
ations of cross-validation (Table 1) and holdout test
data (Table 2). While longer k-mer count features
have been found to improve classification perform-
ance (Alsop & Raymond 2013, Vervier et al. 2016, As-
gari et al. 2018), the discriminatory power of tetranu-
cleotides is well documented (Teeling et al. 2004,
Yoon et al. 2017), and their use in the current context
balances performance with computation time by lim-
iting the number of features, which increase quarti-
cally with k-mer length. Furthermore, the use of TNF
features in a supervised classifier circumvents taxo-
nomic assumptions associated with seafloor condition
and simplifies data processing by restricting the fea-
ture set to 256 tetranucleotide combinations (Asgari et
al. 2018). This is a desirable quality in developing
monitoring pipelines as it standardizes predictive
model inputs. TNF-based classifications do not require
sequence alignments and reference databases to
identify bacterial groups nor the construction of
OTUs, which can vary depending on settings used in
diverse bioinformatics pipelines and may not reflect
genuine taxonomic relationships, introducing multiple
levels of biases. Furthermore, OTU construction and
taxonomy-based approaches have emergent and lo-
cation-dependent features which are difficult, if not
impossible, to standardize, and comparisons between
sample sites are not possible with OTUs constructed
from different datasets. The taxonomy-independent
nature of the TNF-based method presented here
makes it intrinsically less sensitive to these variables
and more suitable for comparisons across locations
and datasets (Callahan et al. 2017). Additionally, we
were unable to successfully use SML approaches in
combination with the full dataset of OTU-based count
data due to the high-dimensional size that led to un-
sustainable computational requirements. While filter-
ing OTUs to reduce the dimensionality of the feature
space could have been performed to reduce computa-
tional demands, valuable information on potentially
important rare taxa would have been lost (Wang et al.
2017), a problem which is not observed within the
TNF-based method, as all available data are com-
pressed into the respective TNFs.

While the utility of machine learning approaches,
like those used in this paper, is indisputable, concerns
regarding reproducibility of machine learning algo-
rithms and the reporting of model performance have
been raised (Drummond 2009, Henderson et al. 2017,

Colas et al. 2018). Setting seed states allows random
events, such as partitioning data into training and test
sets to be replicated and compared, but replication
may not be sufficient to arrive at genuine performance
estimates (Drummond, 2009). In several cases, the
best or average of n-best performing seeds is selected
for publication (Henderson et al. 2017, Colas et al.
2018). This behavior of seed optimization is problem-
atic as it allows investigators to report seeds resulting
in good performance without disclosing trials with
poorer outcomes or those which do not improve upon
currently existing benchmarks. By including results
from numerous seed states we demonstrated that our
model is stable over random iterations accounting for
differences in train/test splits and patterns of tree
growth. Model stability over 100 train/test splits ac-
counts for variance associated with the small (but
representative) sample retained for model evaluation
(N = 25). When computationally feasible, we recom-
mend that these statistics be reported.

In conclusion, k-mer features such as TNF are a
valuable addition to the benthic assessment toolkit,
reducing computation costs associated with se-
quence alignment and reference database compari-
son while outperforming OTU and taxonomic fea-
tures when predicting environment types (Asgari et
al. 2018). Future studies should examine larger col-
lections over wider geographic areas as to better
characterize the robustness of seafloor condition
boundaries and assess the generalizability of predic-
tions over larger spatial scales. Additionally, the esta-
blishment of an open-source database of sequenced
samples near aquaculture sites and the inclusion of
different 16s rRNA hypervariable regions could pro-
vide increased flexibility to seafloor condition classi-
fications and allow investigators to detect changes at
high resolution with a variety of eDNA-sequencing
pipelines.
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