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Abstract

Background: Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic

datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder

(ASD) using ML.

Methods: In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing

(WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further

demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are

mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ “hub” genes).

Results: In summary, after correcting for population structure, we found that SCZ and ASD cases could be

successfully separated based on genetic information, with 86–88% accuracy on the testing dataset. Through

bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same

condition (“hub” genes) belong to specific pathways. Several themes were found to be associated with ASD,

including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid

metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/

cytoskeleton processes were highlighted for SCZ.

Conclusions: Our manuscript introduces a novel comparative approach for studying the genetic architecture of

genetically related diseases with complex inheritance and highlights genetic similarities and differences between

ASD and SCZ.
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Background
Autism spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by significant impairments in social

communication and interaction, as well as by abnormal re-

petitive behaviors, interests, or activities (Diagnostic and

Statistical Manual of Mental Disorders (DSM)-5, 2013). The

heritability of ASD has been estimated to be around 70–

90%, suggesting that genetic factors contribute largely to the

ASD phenotype [1]. Genome-wide sequencing analyses have

revealed that a large number (100 to 1000) of susceptibility

genes are associated with ASD [2–4]. Recent studies showed

that de novo mutations (DNM) have a significant role in

ASD [3, 5–7], and estimated that around 30% of simplex

ASD cases result from DNMs [3].

Schizophrenia (SCZ) is a neuropsychiatric disorder char-

acterized by distorted perception, emotion, and cognition. It

can also be characterized by negative symptoms, such as an-

hedonia, blunting of affect, or poverty of speech and thought

(DSM-5, 2013). Similar to ASD, SCZ has high heritability,

estimated to be around 80–85%, yet, much of it is not fully

understood [8]. Recent studies have highlighted a role for

common single nucleotide polymorphisms (SNPs) in SCZ
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[9–12]. Moreover, like ASD, SCZ cases are enriched in de

novo single nucleotide variants (SNVs) [13, 14].

In summary, both SCZ and ASD clearly have a strong

genetic component in their etiopathology; however, link-

age analysis and genome-wide associations have had lim-

ited success and replicability in identifying significant

genes in these complex disorders [15–19]. The lack of

success is thought to be due to ASD and SCZ having

polygenic and multifactorial inheritance where, unlike

Mendelian disorders, each susceptibility gene increases

one’s predisposition to the disease in combination with

other genes. The involvement of many genes (in differ-

ent combinations for each patient) and environmental

factors makes it difficult to identify the specific genetic

risk factors predisposing a given patient to ASD or SCZ.

Machine learning (ML) or statistical learning (SL) al-

gorithms aim to learn and understand complex high-

dimensional data. These learning algorithms can be di-

vided into two broad categories: supervised learning and

unsupervised learning [20–22]. Our group recently ap-

plied supervised ML to rare, predicted functional vari-

ants from whole-exome sequencing (WES) data of a

SCZ case-control dataset (n = 5090). 70% of the data was

used to train the ML algorithm and 30% (n = 1526) to

evaluate its performance, showing encouraging results

(86% accuracy, AUC: 0.95) [23]. Studies based on super-

vised learning, like the one just mentioned, are focused

on learning from input-to-output labeled data where a

model is trained to learn the best function or map from

input variables of data instances to their labels. In con-

trast, unsupervised learning algorithms seek to discover

useful underlying patterns in a dataset without relying

on labels. For instance, a recent publication using un-

supervised learning illustrated how WES data could be

used to identify patient subtypes of patients with major

depressive disorder (MDD) [24].

Several studies have shown the effectiveness of su-

pervised learning methods in distinguishing between

overlapping medical conditions. For example, they

have been used to distinguish between age-related

cognitive decline and dementias based on neurocogni-

tive tests [25]. Further, they have also been success-

fully used to distinguish and study different cancer

types based on gene expressions [26, 27] and DNA

methylation patterns [28].

Overlapping genetic factors conferring risk to both

SCZ and ASD have been identified suggesting shared

biological pathways [29]. Our hypothesis is that ML

methods can help us advance our understanding of the

genomic architecture of ASD and SCZ by contrasting

exome data from patients with these two conditions.

Analyzing data of individuals affected with two different

conditions with high heritability, complex inheritance,

and evidence for overlapping genetic features using

supervised learning may have some advantages. For ex-

ample, in our above-mentioned SCZ case-control study,

some unaffected individuals may also be genetically at

high risk for SCZ but not have been exposed to adequate

environmental risk factors, complicating the analysis.

When comparing individuals with ASD and SCZ, given

they are all affected, this is not an issue anymore. The

first objective of our study is to explore whether SCZ

and ASD patients can be distinguished based solely on

supervised learning analysis of the genetic information

from their WES data. Our second objective is to analyze

the genetic features prioritized by the supervised learn-

ing algorithm, using unsupervised clustering, to identify

central hub genes in the genetic architecture for SCZ

and ASD.

Materials
Whole-exome data sources and annotation

Schizophrenia WES data (dbGaP trios)

This dataset is available in the dbGaP (study

phs000687.v1.p1). The samples in this dataset were col-

lected from the University Hospital Alexander in Sofia,

Bulgaria. Individuals with intellectual disability were ex-

cluded. Unrelated families with parents who did not

have schizophrenia participated in the original study.

Overall, 598 trios were included in our analysis.

Autism WES data (NDAR trios)

The data for 2392 families with ASD were obtained from

NDAR (doi: https://doi.org/10.15154/1169318; doi:

https://doi.org/10.15154/1169195). The original sequen-

cing data is of families in the Simons Simplex Collection

[30]. The proband had to: 1) be at least 36 months of

age, 2) have a nonverbal IQ or nonverbal mental age of

24 months for children aged between 36 and 83 months,

or 30 months for children aged 84months and above, 3)

not have a known genetic disorder, and 4) not have ex-

tensive birth complications such as prematurity and

cerebral palsy. Moreover, one of the requirements for

participation in the study was that both biological par-

ents had to be willing to participate and that they should

not have ASD.

Summary of variant filtering criteria

Filtering was run through the rows of variants in each

dataset so that only variants that met the following cri-

teria were included in our analysis.

We selected for coding variant types annotated as

“frameshift_deletion”, “frameshift_insertion”, “frameshift_

substitution”, “nonsynonymous_SNV”, “stopgain”, or “sto-

ploss,” and variant functional types annotated as “exonic”,

“exonic_splicing”, or “intronic_splicing.” Furthermore, the

selected variants had a minor allele frequency (MAF)

equal to or less than 0.01. Lastly, on a per-individual basis,
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for variants to be called they needed to have a minimum

number of 4 variant reads, a minimum depth of sequen-

cing of 10 reads, and a minimum genotype quality of 90.

The selected variants were then arranged in a tabular

format, where each row corresponded to a different indi-

vidual. The clinical status (ASD vs SCZ) for each indi-

vidual was denoted in the first column, while the

variants meeting our criteria for each individual were de-

noted as separate columns, with values of 0, 1 or 2 in

the corresponding cells indicating wildtype, heterozy-

gous, and homozygous status for each selected variant

for the respective individual.

Methods
Population stratification adjustment

A major confounder in the analysis of cross-origin data-

sets like the ones we are using is the population stratifica-

tion due to differences in ancestry. Due to population

structure, the ML algorithm could focus on SNVs unre-

lated to the disease, which are specific to the population

from which the affected individuals originate. Our focus-

ing on rare variants minimizes the impact of differences in

population structure between the two datasets. However,

to formally address this possibility, we implemented a

well-established population stratification correction

method for genome-wide data [Eigenstrat] [31]. Eigenstrat

is based on the adjustment of the original SNVs data

based on any population structure discovered using prin-

cipal components analysis. We applied this approach to

adjust for population differences between the ASD

(NDAR trios) and the SCZ (dbGaP trios) datasets. To re-

move the population structure from our dataset, we used

the top 4 axes of variation from Eigenstrat that were sig-

nificant. This is expected to account for most of the popu-

lation structure. Then we regressed each SNV or feature

of our dataset on the four axes of variation and took its re-

siduals to be the adjusted SNV values of our adjusted

dataset that corrects for population structure. We adjusted

the phenotype values in a similar fashion. Lastly, each ad-

justed genotype and phenotype value was rounded to the

nearest whole number to estimate the nearest adjusted

genotype and phenotype. As a result, the original binary

class of ASD and SCZ was converted to integer values,

which we then capped to a range of − 4 to + 4 as only one

adjusted instance fell outside this range.

This dataset has the adjusted genotype values of each

SNV arranged in columns for each row of patient sam-

ple and will be referred to as the SNV-based data. We

also converted the adjusted SNVs datasets into “gene-

level SNV counts” by summing together all adjusted

SNVs values located in the same gene of any given pa-

tient. This dataset has the sums for each gene arranged

in columns for each row of patient sample and is re-

ferred to as the gene-based data.

Algorithm selection

Many powerful ML algorithms render themselves unin-

terpretable, making it difficult to understand their

decision-making process. Trying to balance interpret-

ability with model performance, we used a more inter-

pretable state of the art ML algorithm: regularized

gradient boosted machine (GBM) (XGBoost implemen-

tation) [32], which we also demonstrated as an effective

algorithm in our previous study [23].

Regularized GBM is state of the art and has been

proved successful in a wide range of tasks. Its highly reg-

ularized methodology of feature selection and ranking of

features based on their relative importance in making

accurate predictions made it a great candidate for our

study. Of note, a regularized algorithm penalizes itself

for complexity, and thus uses only features that are rele-

vant and brings more intelligence to its architecture than

complexity. In our study, this means using only genes

that have high predictive power in combination with

other genes, and discard the less informative ones,

thereby reducing the number of candidate genes.

Training the boosted regression trees models

Since the population structure adjusted datasets follow-

ing the Eigenstrat methodology have continuous pheno-

type labels, we trained the boosted regression trees

variant of GBM to predict the continuous label values of

ASD and SCZ cases based on the SNV-based data and

the gene-based data. Since the focus of this analysis is to

classify patients as either ASD or SCZ, we framed the re-

gression problem as a classification to allow for meas-

urement of the prediction accuracy. We performed the

following mapping of the continuous predicted value to

the binary classes. Since the adjusted phenotype values

for ASD cases all had values of 1 or greater, and the ad-

justed phenotype values for SCZ all had values of − 1 or

lower, any prediction above 0 was mapped to a predic-

tion of ASD class and any prediction below 0 was

mapped to a prediction of SCZ class.

Given our ASD and SCZ datasets contain an unbal-

anced number of individuals, we decided to use a bal-

anced approach by selecting an equal number of ASD

and SCZ cases. This change ensured that accuracy

would be a good measure of model performance. To this

end, the first 598 samples were selected from the ASD

cases to balance the two datasets. We trained and fine-

tuned the boosted regression trees using 70% of the data

(419 ASD vs. 419 SCZ samples) as a training and valid-

ation dataset. We then inspected the best performing

model on the remaining, previously unseen, 30% of the

data (test dataset; 179 ASD vs. 179 SCZ samples). The

SNVs used by the SNV-based model were extracted and

mapped to their corresponding genes to get the list of
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the most important genes. The most important genes

used by the best gene-based model were also extracted.

In addition to the 70:30 split for evaluation, we also

assessed the performance of a five-fold cross-validation

using the whole dataset (598 ASD vs. 598 SCZ samples)

to provide a comprehensive validation of the algorithm.

Identification of genes central to ASD and SCZ

To find which genes are important to SCZ or ASD, and

which of these genes appear to be mutated concurrently

in affected individuals, a novel unsupervised clustering

analysis was performed. The genes identified by the 1)

SNV-based algorithm and 2) gene-based algorithm were

compared, and the ones identified by both algorithms

(the overlapping ML list of genes) were used for the sub-

sequent analyses.

To identify the (networks of) genes important to SCZ,

hierarchical clustering was performed for the overlapping

ML list of genes, using only the SCZ cases and the gene-

based dataset. The Jaccard coefficient was used as the simi-

larity measure for clustering the genes. The Jaccard coeffi-

cient between any two genes was calculated as the number

of shared SCZ cases having an SNV count value greater

than 0 in both genes divided by the number of SCZ cases

having an SNV count value greater than 0 in either gene.

Gene distances were derived as one minus the Jaccard coef-

ficient. Hierarchical clustering is performed based on the

distances using Ward’s linkage method [33], which recur-

sively joins elements and/or clusters to form new clusters

while minimizing the increase in the variance of the new

cluster. Lastly, a dendrogram showing clusters of similar

genes based on the distance metric and linkage method

was created. To determine the most important cluster of

genes for SCZ, we applied the following approach.

For each gene cluster identified, the number of genes

was counted (a). Similarly, the number of unique SCZ

cases carrying a genetic change in at least one of these

genes was determined (b). This number (b) represents

the number of SCZ cases having a genetic variation in at

least one of the genes in a given cluster. Then, by divid-

ing (b) over (a) a ratio, specific for each cluster, was cal-

culated. The cluster with the highest ratio was selected

as the one containing genes central to SCZ, as it in-

volved genes highly mutated, in different combinations,

among the highest proportion of SCZ patients in our

dataset.

The same analysis above was then repeated separately

based on ASD cases to obtain the genes central to ASD.

Analysis software

The “xgboost” (version 0.90.0.1) package [34] for R was

used as the implementation of the XGBoost algorithm.

The “scipy” (version 1.0.1) package [35] for Python was

used for the hierarchical clustering analyses.

Results
For our boosted regression trees models, we obtained an

accuracy of 86% for the SNV-based model and 88% for

the gene-based model. Detailed metrics of model per-

formance are listed in Table 1. A five-fold cross valid-

ation was also performed to provide additional

validation. Overall, the average validation accuracy over

all five folds was 88% for both the SNV-based model and

gene-based model (Table 2). The performance over

cross-validation is consistent with the results from the

single-fold training-validating with independent testing

approach mentioned above.

The ten most important genes from the gene-based

model and the SNV-based approach (including the ac-

tual SNV in parenthesis) are shown in Table 3. The

SNV-based model utilized 322 SNVs, located in 313

unique genes. The gene-based model utilized 1845 genes.

Combining the top 10 genes from both approaches

yielded a total list of 16 genes (Supplemental Table 1),

with an overlap of 4 genes including the top 2: SARM1

and QRICH2, and PCLO and PRPF31. Overall, out of all

the genes used by both models, 151 genes were overlap-

ping (Supplemental Table 2).

Clustering of these 151 overlapping genes based on

SCZ cases revealed three clusters of genes. Out of the

three clusters, cluster 2 showed the highest ratio (7.55)

of SCZ cases per cluster gene. Overall, 84.62% (506/598)

of SCZ cases in our dataset had a genetic change in at

least one of the genes in SCZ cluster 2, which is

Table 1 Performance of different approaches (algorithms) on

test data

Method Accuracy Precision Recall NIR P-value (Acc >
NIR)

95% CI

SNV-
based

0.86 0.73 0.98 0.63 < 4.97e-22 (0.82,
0.89)

Gene-
based

0.88 0.80 0.96 0.58 < 3.09e-36 (0.85,
0.92)

The performance between the two algorithms trained to distinguish ASD cases

from SCZ cases is measured on a previously unseen test dataset. The accuracy

is a measure of the number of correctly predicted samples divided by the

total number of samples

Acc Accuracy, NIR No information rate, CI Confidence interval

Table 2 Performance of SNV and Gene-based approaches using

five-fold cross validation

Method Accuracy Precision Recall NIR P-value (Acc >
NIR)

95% CI

SNV-
based

0.88 0.78 0.97 0.59 < 2.2e-16 (0.86,
0.90)

Gene-
based

0.88 0.81 0.95 0.57 < 2.2e-16 (0.86,
0.90)

The performance between the two algorithms trained to distinguish ASD cases

from SCZ cases is measured using five-fold cross validation. All performance

metrics are the average of the five cross validation folds

Acc Accuracy, NIR No information rate, CI Confidence interval
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composed of 67 genes (Fig. 1, Supplemental Table 3).

Similarly, clustering of the 151 overlapping genes, from

Supplemental Table 2, based on ASD cases, revealed two

clusters of genes. The highest ratio of cases per gene was

15.5 from ASD cluster 2. Overall, 98.49% (589/598) of

ASD cases in our dataset had a genetic change in at least

one of the genes in ASD cluster 2, which is composed of

38, out of the 151 overlapping genes being targeted

(Fig. 2, Supplemental Table 4).

Discussion
We have explored the genetic architecture of SCZ and

ASD families through boosted regression trees

(XGBoost) and clustering. Our focusing on rare variants

minimizes the impact of differences in population struc-

ture between the two datasets. However, before perform-

ing any analyses, we also used the well-known Eigenstrat

method to correct for any differences between datasets

due to population structure. Overall, through boosted

regression trees, we were able to find SNVs (and genes)

which can distinguish between SCZ and ASD case status

with accuracies of 88% for cross-validation and 85–90%

on testing data (specifically, 86% for SNV-based method

and 88% for gene-based method). To further study the

important genes identified from the boosted regression

trees, we hierarchically clustered the 151 genes identified

from both algorithms (Supplemental Table 2) using only

SCZ cases (and repeated the process for ASD). Our hy-

pothesis was that some of the genes identified as part of

the boosted regression trees approach might be import-

ant, central “hubs” for SCZ (and/or ASD). Through clus-

tering of the 151 overlapping genes, based on the shared

proportion of cases between genes, we were able to find

groups of genes that were often mutated together in

SCZ cases (and ASD cases, respectively).

Overall, we have demonstrated a novel approach for

studying (comparing) the genetic architecture and

pathophysiology of two diseases. Instead of using all

SNVs from WES data, we first utilized a regularized ma-

chine learning approach optimized for large feature sets

to identify the most important genes for separating the

two groups (ASD and SCZ in this case). This step can

potentially reduce the number of features by a magni-

tude or more to eliminate noise from additional features

(SNVs and genes with no or little impact, in our case).

We have demonstrated that boosted regression trees can

separate SCZ and ASD patients based solely on their

WES data. This highlights the role of ML in deciphering

the genomic architecture of different diseases with

shared genetics.

Next, we identified (networks of) genes that are im-

portant for each disease, through hierarchical clustering

of genes based on the proportion of cases they shared.

Although each of the 151 genes may contribute to SCZ

or ASD to some extent, our focus was to find the central

group of genes that plays an important role in the ma-

jority of our cases. Our clustering method highlighted

these genes for SCZ (Fig. 1, Supplemental Table 3) and

ASD (Fig. 2, Supplemental Table 4). The dendrograms

created based on this approach denote genes mutated

concurrently in affected individuals and thus provide in-

formation about the networks of genes that appear to be

important for each of the diseases targeted. This ap-

proach can potentially help address the clinical hetero-

geneity of each disease. For example, after identifying

the central genes for SCZ, these genes can be used to

cluster SCZ patients and look for subgroups that could

then be characterized based on genetics, clinical features,

medication response, or disease progression.

Our bioinformatic analysis and literature review of the

identified genes revealed multiple pathways and net-

works important to SCZ and/or ASD. Focusing on the

top 10 genes identified by the two boosted regression

trees approaches (Supplemental Table 1), we found that

some of them already have evidence in the literature

linking them to SCZ and/or ASD.

For example, KIF13A is a member of the kinesin

superfamily proteins (KIFs), which are important for cel-

lular transport and signal transduction [36]. KIF13A is

located in a SCZ susceptibility region of chromosome

6p23. A recent study on mice lacking KIF13A reported

elevated anxiety-related traits through a reduction in the

serotonin 5HT(1A)R receptor transport and reduced ex-

pression of the receptor in neuroblastoma cells and hip-

pocampal neurons [37]. Another study investigating the

mechanism of endosomal recycling revealed that KIF13A

interacts with the protein complex BLOC-1 and

Table 3 Top 10 important genes from SNV-based and gene-

based models

SNV-based approach (SNV rsID) Gene-based approach

SARM1 (rs71373646) SARM1

QRICH2 (rs6501878) QRICH2

AKAP1 (rs34535433) PRPF31

PCLO (rs77721383) SEC24D

TSPO2 (rs147405274) SCN4A

ABCC3 (rs11568605) CACNA1S

KIF13A (rs41267712) CDSN

FAN1 (rs150393409) HERC2

CCDC155 (rs201671744) MUC16

PRPF31 (rs199870856) PCLO

Boosted regression trees models were trained to separate SCZ and ASD

probands based on the population-structure-adjusted SNV-based and gene-

based datasets. The 10 most important genes from the gene-based model, but

also from the SNV-based approach (including the actual SNV in parenthesis),

are shown in this table. The table is ordered from most to least importance
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Fig. 1 Hierarchical clustering of overlapping genes using SCZ cases
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Fig. 2 Hierarchical clustering of overlapping genes using ASD cases
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Annexin A2, and that dysfunction of these interactions

may underly the pathophysiology of neurological defects

associated with SCZ [38]. Of note, a rare disruption of

another member of the KIFs, KIF17, could also lead to

SCZ [39]. No evidence was found supporting the in-

volvement of this gene in ASD.

Fanconi-associated nuclease 1 (FAN1), a DNA repair

enzyme, is located in the chromosome 15q13.3 locus. A

microdeletion in the locus, affecting FAN1 and six other

genes, is associated with increased risk of both ASD and

SCZ. Deletion of this region using mice models resulted

in increased seizure susceptibility and ASD symptoms

among other defects [40]. A study systematically search-

ing for SCZ risk variants identified variants in FAN1,

which were associated with both SCZ and ASD [41].

Literature review of the genes revealed evidence for

both SCZ and ASD, which is consistent with the gene

networks hypothesis of common underlying genetic

drivers. At the same time, it is interesting to note that

some of the genes we identified do not have a (clear)

previous link to SCZ or ASD, suggesting that the ap-

proaches described in this manuscript can potentially

yield new insights for the genetics of the conditions

targeted.

Additionally, we conducted a bioinformatics analysis

and literature review of the SCZ and ASD “hub” genes.

Pathway enrichment analysis was performed using the

ShinyGO tool v0.61 [42] based on the ASD “hub” genes

(Supplemental Table 3) and SCZ “hub” genes (Supple-

mental Table 4) identified. Based on the pathway net-

work plot generated with Gene Ontology (GO)

biological processes meeting a false-discovery rate (FDR)

less than 0.2 (Supplemental Figures 1 and 2), we identi-

fied several themes. For ASD, we identified the following

themes: 1) calcium ion transmembrane transport, 2) im-

mune system and inflammation, 3) cell projection,

neuron maturation and synapse organization, 4) retinoid

metabolic process, 5) actin-related processes, and 6) blood

and platelet coagulation processes.

There is evidence that changes in calcium signaling may

be associated with ASD [43–45]. Similarly, multiple stud-

ies support a link of immune dysfunction and inflamma-

tion to ASD [46–48], while strong evidence exists for a

link with synaptic structures [49–52]. Upregulation of im-

mune genes and downregulation of synaptic genes was

observed in the postmortem brains of idiopathic ASD pa-

tients [53, 54]. Recent analyses in larger ASD cohorts of

postmortem brain collections showed upregulation of

immune-microglia and mitochondrial modules, and

downregulation of neuronal and synaptic modules [55].

Furthermore, actin and microtubule processes are linked

to ASD [56]. Also, alterations in actin dynamics by actin-

binding proteins and calcium signaling messengers is asso-

ciated with ASD [57]. In contrast to SCZ, ASD is

associated with an increase in dendritic spine density in

several areas of the brain [50], which is thought to be

mainly regulated via postsynaptic actin filaments [57].

Some evidence also exists for a link of ASD to retinoid

and retinoic acid metabolic processes [58, 59], as well as

abnormalities in platelet and coagulation pathways [60–

62].

As illustrated above, several of the themes identified

have evidence for a joint role in ASD. In support to this,

in Fragile X, a well-known syndrome associated with

ASD, evidence has been published for all pathways men-

tioned above: from dysregulation of calcium signaling,

synaptic structures, actin to inflammation, and changes

in the retinoid and coagulation pathways [63–69].

For SCZ, our pathway enrichment analysis identified

the following themes: 1) ion transmembrane transport/

neurotransmitter transport, 2) microtubule/cytoskeleton,

3) response to carbohydrates/glucose/hexose stimulus,

and 4) kidney/renal system development. There is robust

evidence in the literature for the role of neurotransmit-

ters in SCZ [70, 71]. Moreover, recurrent evidence exists

linking microtubules/cytoskeleton and SCZ [72–78].

There is not much evidence for kidney development and

SCZ, but there have been studies showing that SCZ is

associated with chronic kidney disease, even after con-

trolling for demographic, behavioral, and medical risk

factors [79, 80]. Furthermore, a study found a polygenic

signature differentiating SCZ from controls, which could

also significantly differentiate type 2 diabetes patients

from controls by predicting a glycemic control indicator,

supporting a molecular commonality between SCZ and

type 2 diabetes [81]. Of note, Glucose metabolism has

been shown to be impaired in patients with first-episode

SCZ [82] and in antipsychotic-naïve patients with psych-

osis [83].

Conclusion
We first showed that supervised learning can distin-

guish SCZ and ASD patients with high accuracy based

solely on their rare SNVs in 151 genes. Through clus-

tering analysis of these genes, we highlighted the im-

portant “hub” genes contributing to SCZ or ASD.

Bioinformatic analysis revealed several biological

themes associated with the “hub” genes of each dis-

order, including calcium ion transmembrane transport,

immune system/inflammation, synapse organization,

and retinoid metabolic process for ASD versus ion

transmembrane transport, neurotransmitter transport,

and microtubule/cytoskeleton processes for SCZ. Our

findings demonstrate the usefulness of ML analysis of

exome data in the study of the genetic architecture of

distinct, yet genetically overlapping, diseases with com-

plex inheritance.
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Future directions
In addition to rare SNV, common variants [84] and copy

number variations (CNVs) also have support in the litera-

ture for a role in ASD [85, 86]. Similarly, de novo CNVs

[13, 14] and common variants have also been associated

with SCZ [87, 88]. The presence of CNVs contributing to

these conditions suggests that it would be beneficial for

future studies to focus on whole-genome sequencing

(WGS) data, thus capturing both SNVs and CNVs, for

ML analyses. Moreover, the presence of common variants

as contributing factors to SCZ and ASD suggests that we

should not only focus on rare variants but also factor in

common variants in future ML analyses.
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