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Machine learning analysis 
to automatically measure response 
time of pharyngeal swallowing 
reflex in videofluoroscopic 
swallowing study
Jong taek Lee1,5, Eunhee Park2,3,5, Jong‑Moon Hwang2,3, Tae‑Du Jung2,3* & Donghwi Park4*

To evaluate clinical features and determine rehabilitation strategies of dysphagia, it is crucial 
to measure the exact response time of the pharyngeal swallowing reflex in a videofluoroscopic 
swallowing study (VFSS). However, measuring the response time of the pharyngeal swallowing reflex 
is labor‑intensive and particularly for inexperienced clinicians, it can be difficult to measure the brief 
instance of the pharyngeal swallowing reflex by VFSS. To accurately measure the response time of 
the swallowing reflex, we present a novel framework, able to detect quick events. In this study, we 
evaluated the usefulness of machine learning analysis of a VFSS video for automatic measurement of 
the response time of a swallowing reflex in a pharyngeal phase. In total, 207 pharyngeal swallowing 
event clips, extracted from raw VFSS videos, were annotated at the starting point and end point of 
the pharyngeal swallowing reflex by expert clinicians as ground‑truth. To evaluate the performance 
and generalization ability of our model, fivefold cross‑validation was performed. The average success 
rates of detection of the class “during the swallowing reflex” for the training and validation datasets 
were 98.2% and 97.5%, respectively. The average difference between the predicted detection and 
the ground‑truth at the starting point and end point of the swallowing reflex was 0.210 and 0.056 s, 
respectively. Therefore, the response times during pharyngeal swallowing reflex are automatically 
detected by our novel framework. This framework can be a clinically useful tool for estimating the 
absence or delayed response time of the swallowing reflex in patients with dysphagia and improving 
poor inter‑rater reliability of evaluation of response time of pharyngeal swallowing reflex between 
expert and unskilled clinicians.

�e process of swallowing includes the coordinated contraction and inhibition of the muscles of the tongue, 
pharynx, and esophagus by the central nervous system from the brain cortex to the  brainstem1. �e swallowing 
process is divided into three phases: oral, pharyngeal, and esophageal. �e pharyngeal phase of swallowing is 
initiated when a food bolus (bolus) is moved from the oral cavity to the pharyngeal  cavity2, and is initiated by a 
pharyngeal swallowing re�ex, which is elicited unconsciously by stimulating receptive regions of the orophar-
ynx such as so� palate and uvula (Fig. 1)3. �e pharyngeal swallowing re�ex is modulated by an input from the 
cerebral cortex and respiratory center and mediated in a reticular formation located in the  brainstem4. �is 
re�exive event requires coordination of the oropharynx and occurs to protect the airway during the swallowing 
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 process3. When food is passed from the oral cavity to the pharynx during swallowing, a pharyngeal swallowing 
re�ex occurs, which causes the elevation of the larynx, preventing the aspiration of the food into the trachea. 

In a clinical setting, absent or delayed response of the pharyngeal swallowing re�ex is a critical sign and can 
cause aspiration of bolus before the beginning of the pharyngeal phase of the swallowing process, in patients with 
cerebrovascular and neurodegenerative  diseases5–7. About 75% of stroke patients who presented with aspiration 
during swallowing showed delayed time of the pharyngeal swallowing  re�ex5. In addition, an initially absent or 
delayed swallowing re�ex is an independent prognostic predictor of aspiration pneumonia in 6 months a�er a 
 stroke6. Triggering pharyngeal swallowing re�ex is a crucial phenomenon to protect the airway and prevent aspi-
ration during  swallowing8. In healthy people, the pharyngeal swallowing re�ex occurs in less than 0.5 s9. Owing 
to the pharyngeal swallowing re�ex being rapid, manual measurements of the re�exive time requires extensive 
clinical experience. A study demonstrated the poor inter-rater reliability of the measured time of pharyngeal swal-
lowing re�ex between an inexperienced and expert  clinician10. �us, it could be useful, especially for unskilled 
clinicians, to provide reliable response time estimation for pharyngeal swallowing re�ex from raw VFSS video.

To precisely diagnose and quantitatively analyze clinical dysphagia, the video�uoroscopic swallowing study 
(VFSS) is currently considered the gold standard  method11. Clinicians repeatedly examine quantitative and spa-
tiotemporal parameters in a VFSS recorded video based on a frame-by-frame  analysis12. Several so�ware tools 
provide semi-automatic measurements of various parameters in a VFSS  video13,14. However, to use these tools, 
clinicians have to mark the region of interest (ROI) in each frame. Meanwhile, the manual tracking of anatomical 
structures and movements in each frame is costly in terms of time and clinical expertise. With the recent advances 
in research on machine learning in the medical �eld, several methods of machine learning-based VFSS analysis 
have been reported. Using the single shot multi-box detector, one of state-of-the-art deep learning methods for 
object detection, Zhang et al.15 developed a tracking system for the detection of the hyoid bone. However, it is 
challenging to analyze motion or action in the VFSS videos using this method, because this method focuses on 
detection of the spatial region of a single image rather than on the analysis of a sequence of images from a video. 
To overcome this limitation, previous studies used the integrated 3-dimensional (3D) convolutional  network16,17, 
a state-of-the-art video analysis method, for detection of the pharyngeal phase in a VFSS video without manual 
spatial  annotations16,17. �e detection of the pharyngeal phase is useful for shortening the VFSS examination 
time by the clinician by removal of unrelated frames. However, manual analysis of the pharyngeal phase requires 
determination of the status of the patients. �erefore, this study proposes a novel framework to automatically 
measure the response time of the pharyngeal swallowing re�ex, one of the most critical indicators that can be 
directly used for deciding patient treatment.

While most of the state-of-the-art 3D convolutional networks including  C3D18 and  I3D19 take a video clip 
recording of at least 16 frames as input, the average frame length of the pharyngeal swallowing re�ex is less than 
the frame length of a 3D convolutional network’s input clips. Owing to the short response time of the swallow-
ing re�ex that makes it di�cult to train a 3D convolutional network, a novel data augmentation and training 
method is proposed.

�e contribution of this study to clinical settings is threefold. First, our framework provides reliable response 
time estimation for pharyngeal swallowing re�ex from raw VFSS video. Second, it can be helpful for all clinicians 
in determining normal, delayed, or absent swallowing re�ex from a VFSS video. �ird, it can provide clinical 
information for clinicians to decide rehabilitation strategies, such as the thermal-tactile stimulation that may 

Figure 1.  �e anatomy associated with the swallowing process. Blue color indicates anatomical structures of 
pharynx related to swallowing, and green color indicates anatomical structures related to airways. White color 
indicates anatomical structures of oral cavity related to swallowing, and light blue color indicates anatomical 
structures of esophagus related to swallowing.
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lead to a more rapid triggering of pharyngeal swallow, for dysphagic patients with absent or delayed swallowing 
re�exes.

Materials and methods
Data collection. �e VFSS data was collected from 27 participants who reported subjective swallow-
ing di�culties and visited the outpatient clinic of the Department of Rehabilitation Medicine at Kyungpook 
National University Chilgok Hospital from March to May 2017. �e participants were between 22 and 84 years 
old (mean age 64.9 ± 15.7 years) and included 21 males and 6 females. A subset of participants were healthy, 
aged over 65 years (N = 3, 11.1%); and the remaining participants were diagnosed with a central nervous system 
disease (N = 16, 59.2%), or a neuromuscular disease (N = 8, 29.6%). All experimental protocols of this study 
were approved by the Institutional Review Board at the Kyungpook National University Chilgok Hospital (No. 
KNUCH 2018-05-006). All methods were carried out in accordance with relevant guidelines and regulations. 
Informed consent was obtained from all subjects or, if subjects are under 18, from a parent and/or legal guardian.

Clinicians performed the VFSS procedure according to the standard manual  guidelines2. During the VFSS 
procedure, the participant was seated upright in front of a �uoroscope, which was set to 30 frames per second. 
Each participant swallowed 8 substances mixed with diluted radiopaque barium (35% w/v): 3, 6, and 9 mL 
of curd-type yogurt (thick liquid); 3, 6, and 9 mL of water (thin liquid); semi-blended rice (semi-solid); and 
steamed rice (solid). �e lateral view of the head and neck areas in the VFSS image were recorded by a camcorder 
(HDR-CX405X, SONY, Japan). From the 27 participants, 7 participants completed 8 pharyngeal swallowing 
events ingesting 8 substances during the VFSS. Nine participants completed more than 8 pharyngeal swallowing 
events owing to multiple swallows during engul�ng of one substance. Eleven participants completed less than 
8 pharyngeal swallowing events, as they did not completely swallow all substances owing to severe aspiration 
during the VFSS procedures (Fig. 2).

Video clips of pharyngeal swallowing events of each substance were obtained at 15 frames per second (FPS). 
�e 207 video segments of pharyngeal swallowing events were extracted from the raw recorded videos of the 
VFSSs using the 3D convolutional network-based automatic detection of the pharyngeal phase which was 
reported in our previous  study17. Two expert physiatrists, who had analyzed the biomechanical parameters of 
the VFSS, independently evaluated and labeled the starting point and end point of the pharyngeal swallowing 
re�ex in the video as the ground-truth. �e starting point of a pharyngeal swallowing re�ex is de�ned as the �rst 
video frame in which the head of the bolus reaches the lower edge of the mandibular ramus. �e end point of the 
swallowing re�ex is de�ned as the last video frame in which the head of the bolus reaches the vallecular sinus, 
until the �rst time of hyoid bone elevation is triggered by a pharyngeal swallow (Fig. 3)2. In case of a disagree-
ment between the two experts, a consensus was reached through discussion. Consequently, we gathered 207 
ground-truth data samples labeled with the response time of the pharyngeal swallowing re�ex as shown in Fig. 3.

Network architecture. For our model, we considered the In�ated 3D Convolutional Network (I3D)19 as 
our front-end network architecture, because the I3D is one of the most successful action recognition methods 
in large-scale action recognition  benchmarks20. Furthermore, it has been proven very e�ective in VFSS analy-
sis, such as in pharyngeal phase  detection17. While Lee et al.17 proposed a new network architecture design to 
improve the detection rate, the Inception-V1 achieved higher accuracy if its pre-trained weights were provided. 
In this study, we used a pre-trained Inception-V1 architecture as a base network to accelerate the training pro-
cess. �e Inception-V1 architecture contains four max-pooling layers, one average pooling layer, two convolu-
tional layers, and nine inception modules. �e inception module, which was designed to improve computational 
expense and over�tting, is a concatenation of four 3D convolutions with two di�erent sizes of �lters (Fig. 4). �e 
I3D network of the Inception-V1 we used, was pre-trained by the Kinetics human video  dataset21, which con-
tains 400 human action classes and at least 400 video samples for each class. �e time duration of input video for 
the pre-trained network was 2.56 s, which is similar to the video time duration of pharyngeal phase videos but 
much longer than videos of swallowing re�ex events.

Figure 2.  �e distribution of pharyngeal swallowing events in a video�uoroscopic swallowing study. (a) �e 
distribution of the number of participants according to the number of pharyngeal swallowing event clips, and 
(b) the distribution of the number of pharyngeal swallowing re�exes in 207 ground-truth datasets according to 
each participant.
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Data augmentation for short interval event detection. �e duration of the pharyngeal swallow-
ing re�ex in ground-truth, which varies from 0.067 to 0.867 s with a mean of 0.292 s, is much shorter than the 
interval of the entire pharyngeal phase. Hence, there would not be a su�cient number of frames containing the 
swallowing re�ex to directly train the 3D convolutional network, which requires a large number of frames in 
each video to integrate temporal features from a longer temporal receptive �eld. For example,  C3D18 and  I3D19 
are two of the most popular 3D convolutional networks, and they take a video clip of length 16 frames and 64 
frames, respectively. Simply reducing the number of input frames can cause classi�cation accuracy degradation. 
Zhang et al.22 showed that gesture classi�cation accuracy decreased from 0.864 to 0.817 as the number of input 
frames decreased from 16 to 8.

�erefore, instead of classifying whether a very short video clip is of the swallowing re�ex, three classes 
related to the swallowing re�ex were de�ned: classes 0, 1, and 2 indicate before, during, and a�er the swallowing 
re�ex, respectively. As shown in Fig. 5, the total number of frames of a video clip for all classes is constant, L, and 
the beginning and ending frame index of the swallow re�ex are de�ned as ts and te, respectively. For collecting 
training data of before swallowing re�ex (Class 0), the interval [ts—L, ts] is determined, ending right before the 
beginning of the swallowing re�ex. �en, 9 intervals of [ts—L—i, ts—i] are collected for i from 0 to 8. For collect-
ing training data of a�er swallowing re�ex (Class 2), the interval, [te, te + L] is determined, starting immediately 
a�er the ending of the swallowing re�ex. Subsequently, 9 intervals of [te + i, te + L + i] are collected for i from 0 to 
8. For collecting during swallowing re�ex (Class 1), the interval whose center is closest to the center of the swal-
lowing re�ex was �rst determined. �en, 9 intervals that were closest to the interval �rst found were collected, 
such as [(ts + te—L) / 2 + i, (ts + te + L) / 2 + i] for i from -4 to 4. �erefore, we collected 27 samples (9 for each 
class) for training of the 3D convolutional network from a single annotated video clip of the swallowing re�ex.

Training and testing. �e �vefold cross-validation was performed to demonstrate the generalization abil-
ity of our model. While leave-one-out cross-validation is approximately unbiased and takes almost an entire 
dataset as a training set, it is computationally expensive, as it requires �tting the model for each sample of the 
 dataset23. In our study, the average time for training of the I3D model with our data is about 10 h on a machine 
equipped with a single Titan X graphic processing unit. �us, it is time consuming to apply leave-one-out cross-
validation. About 80% of the entire labeled swallowing re�ex videos were used as the training set, and the rest 

Figure 3.  An example of ground-truth. �e blue boundary boxes represent the ground-truth of the pharyngeal 
swallowing re�ex. �e starting point of the swallowing re�ex is de�ned as the �rst video frame of the head of 
bolus reaching the lower edge of the mandibular ramus. �e end point of the swallowing re�ex is de�ned as the 
last video frame in which the head of the bolus reaches the vallecular sinus until the �rst time of hyoid bone 
elevation is triggered by pharyngeal swallowing.

Figure 4.  Inception module used in the Inception-V1 architecture (3D convolutional network) to reduce 
computational cost and avoid over�tting.
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were used as the testing set. For the testing dataset to consist of patients not included in the training dataset, we 
chose 5 to 6 patients out of the 27 participants and separated all of their swallowing re�ex videos from the testing 
data. Consequently, 5 groups of testing data were generated, and the number of swallowing re�ex events of the 
testing data varied from 40 to 42. �e remaining videos of patients’ swallowing re�ex were used as training data. 
A�er data augmentation, the number of samples for training the I3D model was about 4,500. �e input video 
data contained 20 frames (L = 20) with 15 FPS, and each frame was resized to 224 × 224 pixels. Only an RGB 
stream was used as input stream because the performance gain from using both RGB and optical �ow streams is 
small, and optical �ow calculation is computationally expensive.

Evaluation metrics. To evaluate the performance of detecting the response time of a pharyngeal swallow-
ing re�ex, the detection F-1 score and time error of the starting point and end point in the swallowing re�ex were 
measured. �e intersection over union (IOU) has been widely used as an evaluation metric for various tasks of 
detection. For detection of a pharyngeal swallowing re�ex in pharyngeal phase clips, the IOU can be de�ned as 
the ratio of the frame length of intersection out of the frame length of union between predicted and ground truth 
time-predicates of the swallowing  re�ex24. A predicted detection is considered a True-Positive (TP) only if there 
is a ground-truth detection satisfying the condition that the IOU of the predicted detection and the ground-
truth detection is larger than a threshold. A false-positive (FP) is a predicted detection if there is no ground-truth 
detection with an IOU larger than threshold. A false-negative (FN) is a true detection that was not predicted. 
Precision is the proportion of TPs out of all predicted detections (TP + FP). Recall is the proportion of TPs out 
of all ground-truth detections (TP + FN). �e F-1 score is the harmonic mean of the precision and recall. Finally, 
the detection time error is calculated from the di�erence of the frame indexes of the starting point and end point 
of the swallowing re�ex in between the TP and the ground-truth24.

Results
Reliability of measuring the time of pharyngeal swallowing reflex. To determine the inter-rater 
and intra-rater reliability, a VFSS video of 10 patients with dysphagia was used, and intra-class correlation coe�-
cients (ICC) with corresponding 95% con�dence interval (CI) were calculated. To evaluate intra-rater reliability, 
one examiner re-analyzed the measurement of the time of the swallowing re�ex. �erefore, the time of the phar-
yngeal swallowing re�ex in VFSS video was analyzed twice at di�erent time points by an examiner blinded to 
clinical information. We achieved intra-rater reliability of ICC = 0.982 (CI: 0.972–0.989). In addition, to evaluate 
the inter-rater reliability, two examiners, blinded to clinical information and the results of the measurement by 
the other examiner, analyzed the measurement of the time of the pharyngeal swallowing re�ex at di�erent time 
points. We achieved inter-rater reliability of ICC = 0.968 (CI: 0.939–0.983).

The results of machine learning process. For the training set, the overall mean and standard deviation 
of the success rate of detection of during pharyngeal swallowing re�ex (Class 1) of the 5 groups for cross-valida-
tion were 98.2% and 0.3%, respectively, and the average IOU was 0.537 (± 0.224). For unseen testing swallowing 
events, the overall mean and standard deviation of the success rate of detecting Class 1 in the 5 groups were 
97.5% and 0.2%, respectively, and the average IOU was 0.573 (± 0.228). �ere were two cases of TP predicted 

Figure 5.  Generation of the three classes and classi�cation of short interval events for training. Class 0, 1, and 2 
represent before, during, and a�er swallowing re�ex, respectively.
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detection in the response time of a swallowing re�ex using this system, as shown in Fig. 6. A case of missed 
detection is shown in Fig. 7.

Figure 8 shows the free response operating characteristic (FROC) curve of the detection F-1 score of Class 1 
from group 1 (from the 5 groups) according to the IOU threshold in training and validation sets. With the IOU 
threshold at 0.2, the detection F-1 scores were 94.7% and 87.5% in the training and validation sets, respectively. 
With the IOU threshold at 0.4, the detection F-1 scores were 74.7% and 67.5% in the training and validation 
sets, respectively.

In the training set, the average di�erence between the TP and the ground-truth detection at the starting point 
and end point of the swallowing re�ex was 0.149 and 0.081 s, respectively. In the validation set, the average dif-
ference between the TP and the ground-truth detection at the starting point and end point of the swallowing 
re�ex was 0.210 and 0.056 s, respectively, as shown in Table 1.

Discussion
In this study, we proposed a novel framework of automatically detecting the response time for the pharyngeal 
swallowing re�ex from VFSS video. �e average success rates of detection of the class during the swallowing re�ex 
for training and validation datasets were 98.2% and 97.5%, respectively. Kim et al.10 reported that, in a clinical 
setting, inter-rater reliability of the response time of the pharyngeal swallowing re�ex between an inexperienced 
resident and expert physiatrist was low (ICC = 0.300; CI 0.250–0.351)10. However, our novel framework provided 
accurate and reliable results of time measurement of the swallowing re�ex when compared with ground-truth 
labeled by two experts. �erefore, our framework can be used to provide considerable clinical information 
about dysphagic patients. Moreover, it may be utilized to measure various other spatiotemporal parameters in 
a VFSS, such as the laryngeal elevation and oral/pharyngeal transit time, even though they represent short time 
intervals in video clips.

Furthermore, our method demonstrated clinically meaningful results in measuring the response time of 
pharyngeal swallowing re�exes. �e di�erence between the predicted response time of the swallowing re�ex 
and the ground-truth was approximately 1–2.5 frames (0.067–0.167 s). A study reported that, in the VFSS, 
the normal value of the response time of the swallowing re�ex was 0.21 ± 0.26 s in healthy young subjects and 
0.53 ± 0.64 s in elderly subjects (≥ 65 year old)25. Our di�erences between predicted detection and ground-truth 
were within the standard deviation of swallowing re�ex time in healthy subjects. �erefore, our framework is 
useful for diagnosing absent or delayed pharyngeal swallowing re�ex in dysphagic patients. Moreover, it can 

Figure 6.  Two cases of true-positive predictive detection of swallowing re�ex in patients with (a) motor neuron 
disease, and (b) Parkinson disease. �e red boundary boxes represent true-positive predicted detection of 
swallowing re�ex.

Figure 7.  A case of missed detection. �e red and blue boundary boxes represent predicted detections and 
ground-truth, respectively.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14735  | https://doi.org/10.1038/s41598-020-71713-4

www.nature.com/scientificreports/

be useful for clinicians deciding rehabilitation strategies that may trigger pharyngeal swallowing re�ex, such as 
thermal-tactile stimulation.

To the best of our knowledge, there have been no previous studies on the use of machine learning analysis to 
measure the response time of the pharyngeal swallowing re�ex despite its importance. As mentioned above, the 
detection of abnormality of pharyngeal swallowing re�ex through measurement of swallowing re�ection time is 
crucial for diagnosing dysphagia and evaluating its cause. However, there is considerable di�culty in measuring 
the response time of swallowing re�ex by unskilled  clinicians10. �erefore, measuring the pharyngeal swallowing 
re�ex time using machine learning analysis can be helpful in identifying the cause of the swallowing disorder. 
Moreover, despite the advantage of the VFSS in being able to objectively observe the entire process of the swal-
lowing process, the interpretation of the VFSS is complex and requires consideration of many other factors. 
To date, most VFSS analysis so�ware programs have focused on tracking anatomical structures such as hyoid 

Figure 8.  Free response operating characteristic curve of detection F-1 score and intersection over union (IOU) 
threshold.

Table 1.  �e performance of detecting response time of pharyngeal swallowing re�ex. Each cell represents 
mean ± standard deviation. IOU intersection over union.

Training set Validation set

Miss rate (%) 1.76 2.50

IOU (%) 53.7 ± 22.4 57.3 ± 22.8

Time error (s)

Starting point of swallowing re�ex 0.149 ± 0.113 0.210 ± 0.185

End point of swallowing re�ex 0.081 ± 0.080 0.056 ± 0.060
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bones. However, in clinical settings, the interpretation of a VFSS is judged by considering not only hyoid bone 
motion but also other parameters such as the pharyngeal swallowing re�ex, laryngeal elevation, the presence of 
penetration or aspiration, and the amount of residue in the vallecular and pyriformis sinuses. �erefore, unlike 
previous studies, this research may be meaningful in that a machine learning program has been developed that 
performs similarly compared to physicians in a clinical settings.

�is study had several limitations. First, a relatively small sample of VFSSs was used. However, the study 
showed that the very short time of pharyngeal swallowing re�exes can be measured using machine learning 
analysis. �is is considered to be of su�cient value for a preliminary study. In the future, a more accurate frame-
work using machine learning analysis can be developed through testing with di�erent sample sizes. Second, only 
the response time of pharyngeal swallowing re�ex was analyzed, excluding other spatiotemporal parameters in 
the oral, pharyngeal, and esophageal phases of the swallowing process. Although interpreting the VFSS is com-
plicated, it is expected that the integration of this framework with similar interpretation methods of the VFSS 
in clinical situations can be developed in the future.

conclusion
�is study proposed new automatic measurement of the response time of a pharyngeal swallowing re�ex in the 
VFSS. It can be a clinically useful tool to overcome manually labor-intensive analysis for evaluating the absence 
or delayed response time of the pharyngeal swallowing re�ex in patients with dysphagia. Moreover, it can be 
useful for clinicians in deciding rehabilitation strategies that may trigger the pharyngeal swallowing re�ex, such 
as the thermal-tactile stimulation.
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