
PERSPECTIVE
https://doi.org/10.1038/s42256-021-00373-4

1Department of Computer Science and Engineering, Tandon School of Engineering, New York University, New York, NY, USA. 2Department of Epidemiology, 
School of Global Public Health, New York University, New York, NY, USA. 3Department of Biostatistics, School of Global Public Health, New York University, 
New York, NY, USA. ✉e-mail: rumi.chunara@nyu.edu

D
ecades of work in population and public health has 
informed research and practice that aim to understand 
what makes and keeps people and populations healthy1. 

The major underpinning principle is that of health equity, defined 
as “minimizing avoidable disparities in health and its determi-
nants—including but not limited to health care—between groups of 
people who have different levels of underlying social advantage or 
privilege, that is, different levels of power, wealth, or prestige due to 
their positions in society relative to other groups”2. Inequality at a 
societal level is itself harmful across the population as a whole3. To 
capture the complex interplay between individual, community and 
other structural factors such as racism, which affect and are leverage 
points for health, the social ecological model was developed4. This 
framework outlines how the health of an individual is affected by 
multiple factors operating at different levels in a hierarchy (Fig. 1). 
Indeed, an understanding of and focus on the macro-level proper-
ties (for example, levels beyond the individual in Fig. 1) is critical to 
put individuals in the best context to leverage interventions, without 
increasing disparities5. A focus on determinants, antecedents and 
other factors related to health outside the hospital are imperative to 
not only address specific challenges for high-risk individuals, but 
also determine what policies would benefit communities as a whole.

An understanding of the importance of macro-level properties 
can be useful, for example, in examining the impact of introducing 
healthier food options in a neighbourhood to help people in a com-
munity improve their diet6 or how maternal health policies impact 
child mortality7. These are pressing challenges; in the United States 
social determinants (broadly defined as the conditions in which 
people are born, grow, live, work and age)8 account for 25–60% of 
deaths in any given year according to results from meta-analyses9. 
Moreover, 80% of the growing burden of non-communicable dis-
eases worldwide could be prevented through modifying behaviours 
such as reducing tobacco, alcohol, fat and/or salt consumption, pro-
moting physical activity and improving environmental conditions 
such as air quality and urban planning10.

In the past decade, the development of statistical and machine 
learning approaches with a focus on clinical tasks, such as predicting 
disease prognosis and identifying phenotypes, has greatly matured 
with some demonstrations of benefit to patients11,12. Echoing 
research in population and public health, the recent COVID-19 
pandemic has highlighted how multi-sectoral factors outside of the 
clinic such as community, social networks and environment are also 
critical with respect to health13–19. Accordingly, this Perspective illus-
trates where and how machine learning has been shown to be useful 
in a holistic set of tasks related to health. We summarize existing 
data and methods used in public and population health, and use this 
synthesis to present directions for future work to leverage synergies 
in machine learning and population and public health.

Data in public health
Before elaborating on machine learning efforts in public and popu-
lation health and gaps, an outline of the types of data that are com-
monly used is pertinent. Data commonly used in public health can 
be broadly categorized into (1) surveys conducted by public health 
and governmental organizations that aggregate individual-level 
information and (2) person-generated data that provide informa-
tion at a finer resolution20. These types of data each provide comple-
mentary types of information relevant to public health; each also 
associated with their own challenges. In the following subsections 
we outline each of these data and associated methodological chal-
lenges with respect to their use in models of health.

Data from surveys and government reports. Traditional 
approaches to data collection in public health involve the aggrega-
tion of data via local officials and channels. When health providers 
report notifiable diseases on a case-by-case basis, it is known as pas-
sive surveillance; often useful during disease outbreaks and to gain 
a baseline view of disease burden in a specific location. Conversely, 
active surveillance is when a health department proactively contacts 
health care providers to request information about diseases, which 
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can be catered to specific needs and easier to validate, but more 
labour intensive. This surveillance information is then forwarded 
to national health ministries and international organizations like 
the World Health Organization. Such collection procedures result 
in robust, denominator-based public data that are often made pub-
licly available by public health and governmental organizations. 
Examples include the National Health and Nutrition Examination 
Survey (NHANES) or the Demographic and Health Surveys pro-
gramme (DHS). These types of data system also aim to capture 
different indicators of health, designed via specific constructs. For 
example, housing quality can be measured via rental status, sanita-
tion status, crowding, indoor air quality and so on21. Despite the 
robust nature of the constructs and denominator-based data col-
lection processes22, loss of information at an individual level due 
to aggregation, privacy concerns and temporal delays in the pro-
cess are challenges in the use of data for all situations—such as the 
need for rapid policy-making, which was exemplified during the 
COVID-19 pandemic.

Person-generated data. The rising ubiquity of technologies such 
as smartphones and physical activity trackers, as well as data from 
social media sites such as Twitter and Instagram and Internet sur-
veys, have made it possible to access high-resolution and geo-linked 
data in near-real time. The nature of this data can help evade 
recall or information biases associated with traditional surveys. 
The often-linked geographic information and time stamps further 
enable the capture of hyper-local, daily and sub-daily health-related 
information from behaviours to exposures and other macro-level 
properties, as well as health outcomes23,24. Accordingly, such ubiq-
uitous technologies can provide opportunities to better measure 
the social determinants of health in a targeted way, by person, loca-
tion and/or time21–25. These attributes of person-generated data can 
complement denominator-based survey and report data that are not 

available at such high granularity. However, the opt-in nature of and 
resources required for the tools used to produce person-generated 
data (that is, an individual chooses to use a certain app, and there can 
be cost associated with access) alongside the unstructured nature of 
the data (not in the form of specific measures or constructs from the 
outset) bring new computational challenges to the fore if we intend 
to use the data to make inferences within and across populations. 
These challenges have been outlined in detail previously22 and are 
used to motivate discussion in subsequent sections.

Machine learning in population and public health
Building on the focus of public and population health, here we out-
line a taxonomy to organize and illustrate machine learning efforts 
linked to priorities of these fields. We use this summary and juxta-
position with current research to identify gaps in the application of 
machine learning in public and population health.

•	 Identi�cation of factors and their relation to health outcomes. 
Learning what contributes, at all levels of the socio-ecological 
framework and their interactions, to health outcomes is a sig-
ni�cant part of public and population health research. Machine 
learning has so far played a role in identi�cation in a broad range 
of studies from learning biological mechanisms26 to establishing 
the multivariate empirical relationship between the probabil-
ity of disease outbreak and environmental conditions27. Given 
the complex relationships and possible mediations between 
multi-level factors28, by leveraging new data sources there is 
the opportunity to use and develop machine learning meth-
ods for the interpretable identi�cation and assessment of the 
source and magnitude of a wide variety of multi-level factors in  
health outcomes.

•	 Design of interventions. Besides multi-level factors related to 
disease, a socio-ecological framework also indicates the utility of 
interventions at multiple levels. Besides exacerbating inequities, 
targeting individuals directly can be highly stigmatizing, aggra-
vating health-related behaviours that may be the target of inter-
vention29. �us, while a large body of work in machine learning 
has focused on targeting the individual, for example towards 
depression management30, self-e�cacy for weight loss31, smok-
ing cessation32 and personalized nutrition based on glycaemic 
response33, the possibility of leveraging data and machine learn-
ing in e�orts that consider the multi-level nature of in�uence 
around an individual is an open investigation area. For example, 
group-based intervention programmes are one of the means 
to reduce substance abuse by reinforcing positive behaviour.  
System dynamics modelling approaches or agent-based models 
(which involve simulation of the history, location in space and 
time, and interaction between individual agents) can be use-
ful to design and evaluate the e�ectiveness of interventions at  
multiple levels34,35.

•	 Prediction of outcomes. Predicting mortality risk 36, hospital 
readmission37 and disease prognoses from pathology, imaging 
or other clinical data38 are well-studied tasks using probabilis-
tic machine learning and deep learning methods. Prediction 
has also been leveraged for population-level questions, largely 
in geographic disease risk mapping39. Conversely, mitigating 
health disparities and the prediction of outside-hospital events 
are crucial challenges that have received less attention from 
the machine learning community. Although new data provide 
the potential to incorporate social, environmental and other 
multi-level determinants in (and thus improve) prediction 
models, there is a need to expand on research, which may use 
similar methods to the vast preponderance of research on clini-
cal prediction models to incorporate these new data sources. 
Such data can also better capture factors that are represented by 
proxies such as race at present40,41. Besides the addition of data to  
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Fig. 1 | the socio-ecological model of health. This model (adapted from 

Bronfenbrenner et al.4) can be used to understand and identify leverage 

points for the multifaceted and interactive effects of the multi-level 

individual and environmental factors that determine health. Macro-level 

properties (those above the individual level) are also key to understanding 

inequities and interventions that can reduce inequity.
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prediction models, a critical focus on the types of prediction task 
and how they are used in practice is also essential. For exam-
ple, although the incorporation of patient socio-economics can 
improve risk assessment, and epidemiological evidence shows 
the relation of these to several important outcomes42, concerns 
regarding their use being utilized to justify lower standards 
of care for poor patients43 have been voiced. Such important 
risks illustrate the importance of the development and use of 
prediction models that are closely linked to clinical and public 
health practices and priorities. In the United States, for exam-
ple, accountable health initiatives and tax codes have encour-
aged the activation of risk mitigation actions beyond primary 
care that could leverage risk information from social factors, 
such as through improving health care teams’ ability to under-
stand the ‘upstream’ factors impacting their patients’ health and 
the ability to act on care recommendations, informing clinical  
care decisions44.

•	 Allocation of resources. �e use of machine learning and 
arti�cial intelligence for resource allocation has been pro-
moted in several types of health care and public health tasks, 
typically with a focus on allowing for estimation under uncer-
tainty, computing treatment e�ects or alternate scenarios to aid 
in decision-making, augmenting decision rule approaches by 
incorporating more information and handling missing data. In 
health care, this has been applied at the person level (for exam-
ple, for learning personalized management and treatment plans 
by modelling the temporal evolution of patient data45). Machine 
learning approaches have also been incorporated in resource 
allocation for measurement; for example deciding what labo-
ratory measurements or psychosocial measures from mobile 
phones should be measured, when and on whom, trading o� 
the value of information against the cost of acquisition46,47. 
With a public and population health lens, the propagation and 
enhancement of disparities in resource allocation should also 
be considered via a multi-level perspective. Examples of such 
e�orts to account for and address inequity could be the develop-
ment of methods that include relevant information beyond the 
individual level, such as the patient’s geographic location, in the 
optimization procedure48.

Current challenges
From the elemental look at the fields of population and public health 
and current data and machine learning efforts, we now shift our 
attention to future enterprise. What are the significant challenges 
that must be surmounted and for which there is room for machine 
learning innovation? We consider challenges across data, problem 
selection and formulation.

Privacy and health data. In light of a multi-level perspective, it 
should first be clarified that privacy can be viewed at collective and 
individual levels. This is important because collective rights are 
not necessarily a large-scale representation of individual rights and 
related issues49. At a collective level, for example, people may wish 
to avoid being stigmatized via certain assessments. At an individual 
level, people can also be concerned about their own privacy. The 
COVID-19 pandemic brightly illuminated and surfaced these issues 
and several trade-offs specific to person-generated data and public 
health based on the rapid use of data to inform policy efforts and 
models during the crisis. While focused literature has comprehen-
sively summarized challenges, proposed recommendations and dis-
cussed these in detail50,51, we summarize main concepts here.

To make the use of person-generated data feasible, and more 
broadly any digital data in public health research and practice 
efforts at scale, regulatory frameworks for appropriate guidance 
for the health sector and other end-users have been emphasized. 

Regulation has an important role; indeed, current procedural mech-
anisms are lacking in their uniformity, which is needed to promote 
predictability and trust in the public at individual and collective 
levels. Regulatory guidance, drawn from human rights legisla-
tion, must be supported by broad audit and enforcement powers52. 
Beyond this, institutions that use data should foster robust data 
stewardship and standardize their practices to international best 
practices (such as ensuring the team developing the framework is 
appropriately diverse, in technical specialization as well as in terms 
of demographics and connections with appropriate communi-
ties). The latest recommendations on data privacy foster a dynamic 
approach, open to iteration. Approaches must also go beyond ano-
nymization, which in itself may decrease utility and remains vul-
nerable to de-anonymization via aggregation of disparate pieces of 
information53,54.

A comprehensive approach to privacy is also imperative in lieu 
of relying only on regulation, which can be slow to change, or be a 
source of structural discrimination55. Research has also shown that 
within current regulatory frameworks it is common that individuals 
who share data publicly may not be cognizant that their data may 
be used by external parties for public health monitoring or research 
purposes56. Thus a discussion on data privacy is inextricable from 
efforts to empower the public to make their decisions and weigh 
in on what risks are appropriate for them. Best practices in health 
communication can be leveraged for this purpose. Data sharing can 
be a form of public health intervention and can increase the likeli-
hood of using the data further and translating results into action. 
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(societal bias)
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World as it is
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Fig. 2 | illustration of sources of bias at different stages of data and 

algorithm use. The figure, adapted from Mitchell et al.100, shows where 

disparities can manifest in the process of generating and using data. 

Where machine learning is applied (what questions are asked) can impact 

disparities and equity, and is added to the pipeline. Algorithmic fairness 

comes into play at the end of this pipeline (via questions asked/outcomes 

optimized).
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Reporting exposure data back to study participants is increasingly 
critical and can increase self-efficacy, particularly when working 
with underserved communities57. Personal actions as well as atti-
tudes and trust of the use of data are essential in response to public 
health crises58. Accordingly, there is room for the development of 
such approaches in effective communication of data, which could 
entail summarizing and communicating one’s own data in a man-
ner that is interpretable, and also aggregating or contrasting it with 
data from others in a privacy-preserving manner. Machine learning 
is starting to be used to automate patient education and informa-
tion communication efforts59. Such approaches can be informed by 
the health communication literature, which shows that instead of 
treating health literacy as a patient problem that needs to be fixed or 
circumvented, health literacy interventions can integrate the prin-
ciples of socio-ecology to develop interventions that build capacity 
and empower individuals and communities via factors significant 
to them60,61.

Assessing external validity. External validity, the validity of 
applying the conclusions of a scientific study outside the context 
of that study is an important consideration in all statistical and 
machine learning in health endeavours. Given the comprehensive 
consideration of multi-level attributes in population and public 
health, spanning populations and their context, external validity 
brings new considerations for data and algorithms. Whereas large 
denominator-based survey and government reports typically used 
in public health efforts aim to provide the information to mitigate 
these challenges (that is, by including a representative population, 
or at least information about which group is represented), the local-
ized information offered through person-generated data comes 
with several external validity challenges. First, the data often do 
not come with linked information regarding attributes of the per-
sons sharing the data (for example gender, age and so on), making 
it difficult to understand who has contributed the data22. Second, 
as the data from such sources are not organized into specific con-
structs (that is, the free-form text or images have to be processed to 
form features), variables from one dataset or environment may not 
be comparable to another. Finally, given the opt-in nature of (and 
resources required for) the tools used to produce person-generated 
data, measurement of an outcome may be affected by selection bias. 
Accordingly, it is important to understand the factors that lead to 
the data being contributed; developing algorithms on data in a new 
context can result in biased results if the mechanisms by which the 
algorithm worked in the original population are not well under-
stood. For example, in one location people may tend to share more 
information due to different social norms23.

There are several machine learning avenues for increasing stan-
dardization across environments (where an environment is a data 
source, hospital, location and so on) or for analysing data from mul-
tiple environments. Data augmentation is an approach to fill gaps in 
non-representative samples62. Domain adaptation methods can be 
developed to address distribution shifts that may occur across dif-
ferent environment, both based on different populations and data 
generation mechanisms.25,63,64 In particular, thinking about data dis-
tribution shifts and differences from a causal perspective has been 
utilized to inform the empirical learning processes 23,65.

Measuring and integrating social determinants of health. New 
data provide a needed way to capture data from daily life outside 
of the hospital, yet still critical for a comprehensive understanding 
of health. However, social determinants encompass a broader set of 
information than just that at the individual level. There is a need for 
better measures of upstream factors that are important social deter-
minants. This spans environmental, policy and other social fac-
tors such as racism55. Some work leveraging new data and machine 
learning methods has focused on using natural language processing, 

computer vision or other approaches to identify and generate rel-
evant features for a specific task, which can be leveraged to gener-
ate features of the built and social environments from unstructured 
data in scalable ways (that is, for more environments and communi-
ties)66–69. Second, although social determinants have been studied 
extensively in the epidemiology literature, the findings from these 
studies have underscored the need for methods that can better cap-
ture flexible and complex relationships between social determinants 
and health outcomes70,71. This need also indicates an opportunity 
for machine learning; the flexibility of modern machine learning 
methods may help us model these relationships72,73. Third, the use of 
social variables in causal models is often restricted, under the prem-
ise that they are non-manipulable or not intervenable74. A causal 
perspective (for example, by the use of directed acyclic graphs) is 
important to systematically assess the role of different variables to 
model them in a manner that will also enable identification of where 
interventions can and should occur. At the same time, causal meth-
ods often assume stable unit treatment value, which implies that 
there is no interference and only one version of treatment; this is 
often non-tractable with the complex nature of social determinants 
and other methods must be investigated. In general, a full specifica-
tion of social determinants and the pathways by which they oper-
ate is important. This requires identification of the variables and 
mediator or moderator effects75. An understanding of distal and 
proximal determinants and their relations is also relevant to be able 
to examine and consider the effect of different forms of interven-
tions and to identify and work towards structural changes at the 
root cause of disparities55.

Health disparities. The description and explanation of racial and 
ethnic health disparities, which are differences in health status or 
in the distribution of health resources between different population 
groups, arising from the social conditions in which people are born, 
grow, live, work and age are major focuses of public and population 
health research. These disparities often manifest in specific gender, 
income level and race/ethnicity groups experiencing greater health 
risks2. Algorithmic fairness has recently emerged as a field of machine 
learning, with the goal of mitigating differences in machine learn-
ing outcomes across social groups. Broadly, algorithmic fairness 
approaches have consisted of statistical notions that ensure some 
form of parity for members of different protected groups (for exam-
ple by race, gender and so on) and individual notions that aim to 
ensure that people who are ‘similar’ with respect to the classification  
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Fig. 3 | abstract illustration of challenge in algorithmic fairness due 

to unexplained variance or proxy variables. Consider a given P that is 

composed of several factors E, I and N. H is to be predicted using C and P 

while ensuring that the model prediction is fair with respect to P. However, 

E, I and N (shaded blue) are typically not accounted for, though doing so 

would better represent variance in P.
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task receive similar outcomes. We refer the reader to detailed sum-
maries of algorithmic fairness elsewhere76.

Although it is becoming clear that algorithms are an important 
place to search for bias, as algorithms become embedded in many 
societal efforts, algorithms can incorporate and augment existing 
biases through many means, not only the outcomes they optimize 
for, which are a main focus of algorithmic fairness efforts (Fig. 2). 
Indeed, one risk is that clinicians and others may trust that issues 
of bias are sufficiently managed via algorithmic fairness efforts77. 
Accordingly, here we place algorithmic fairness in relation to the 
broader literature in health disparities within public and population 
health to identify challenges and opportunities in algorithmic fair-
ness work with respect to advancing health.

Health disparities are reflective of social oppression and its influ-
ence on the health of individuals that identify with such marginal-
ized communities. It is essential to identify what leads to disparate 
health outcomes to design interventions to mitigate disparities and 
improve the health of high-risk populations. This involves multiple 
types of task, such as measuring health outcomes78,79 and disparities 
across social groups80–82, as well as designing policies to mitigate the 
disparities82. Figure 2 provides a framework for analysing how soci-
etal bias can result in biased predictions and where algorithmic fair-
ness contributes (bottom two boxes in Fig. 2). Essentially, data are 
always sourced via some perspective83; an important consideration 
in any use of data to understand disparities. Issues of data repre-
sentation in training data have also been well documented in terms 
of their importance in biased algorithm outcomes84. Linked to this, 
how algorithms make inference from underrepresented features85,86 
can also contribute to biased outcomes and disparate performance. 
In the following subsections, current gaps in machine learning and 
algorithmic fairness work with respect to health disparities are 
made explicit, and recommendations are provided for ensuring that 
health equity remains an inherent goal in the design of machine 
learning algorithms in health settings.

Algorithmic design. Obermeyer and Mullainathan79 recently pre-
sented a commonly used clinical risk score that considered finan-
cial cost expenditure as a proxy for health care needs. Owing to 
unequal access to care, less money is spent on care for Black patients 

compared with white patients, and thus although health care cost 
appeared to be an effective proxy for health by some measures of 
predictive accuracy, large racial biases resulted. As such cost-based 
proxy objectives are not uncommon, an essential step is to be aware 
of task goals and outcomes and interrogate them with respect to 
health equity. It should be noted that several of the constructs con-
sidered in today’s algorithmic fairness measures are socially deter-
mined (for example race, gender) and thus consideration of them 
without broader attention to the systemic processes involved in 
their determination shifts focus away from the root causes of ineq-
uity55. Historically, algorithmic fairness has not accounted for the 
complex causal relationships between the biological, environmen-
tal and social factors that give rise to differences in medical condi-
tions across protected identities. These missing factors can result in  
misalignment in equity and algorithmic fairness notions as 
described above77. Moreover, the deployment of algorithms could 
also perpetuate or augment disparities even with ‘algorithmically 
fair’ efforts87. In the following sections, challenges related to the use 
of such variables (as well as those related to algorithmic fairness that 
are exterior to the algorithm) are elaborated.

Pitfalls with ‘proxies’ in modelling social variables. Although account-
ing for factors such as ‘race’ may be important in specific analyses, 
it is often unknown what the comprising factors of such social con-
structs are, how they interact and how to model them88. Indeed, 
poor representation of variations within and between groups, along 
with the difficulty in attaining the appropriate factors, have led to 
the use of social constructs such as race as proxies for unknown 
and/or unmeasured biological and social factors (including racism). 
A recent study highlighted several clinical risk estimation tools 
across cardiology, nephrology, obstetrics and many other specialties 
that all use race, and how this use of a simple race variable severely 
compromises the health of marginalized individuals41. Accordingly, 
how relevant biologic variation is to be assessed and reported with-
out stratifying populations based on factors such as race and ethnic-
ity is still a challenge to be addressed89. Overall, the use of variables 
such as race, even when considering them as markers to be fair with 
respect to, such as in algorithmic fairness efforts, obscures variation 
within and between individuals, impeding equity goals.

Multiple axes of disparities and intersectionality. Health disparities 
are often measured by considering averages across individuals who 
identify with a certain attribute, such as a race category. However, 
measuring health disparities as averages by category does not fully 
represent or describe the multifaceted and interwoven effects of 
the forces shaping disparities. Moreover, gradients within specific 
categories are also neglected. For example, disparities have contin-
ued across income groups of childbearing women even after the 
introduction of policies to improve the health of pregnant women 
in California2. Indeed, lived experiences are frequently the product 
of intersecting patterns of social forces such as racism and sexism90, 
and modelling them as simple additive or multiplicative effects 
will not capture the full complexity. Research in public health has 
aimed to address this challenge of modelling the non-additive and 
dynamic nature of multiple social factors beyond simple interac-
tion terms91. Recently, a statistical multi-level method for capturing 
social factors and their intersections, known as multi-level analysis 
of individual heterogeneity and discrimination accuracy has been 
described92. This method involves decomposing total variance into 
(1) between-strata variance, which allows the identification and 
assessment of disadvantaged groups, and (2) within-strata variance, 
which allows the identification of individuals within a social group 
that are at added disadvantage compared with other members of the 
group. The approach presents several advantages over fixed-effect 
models that include interaction terms for multiple sensitive attri-
butes, including restricting parameter growth to linear (as opposed 
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Fig. 4 | abstract illustration of challenge in algorithmic fairness owing 

to who the data represents. A given P and C, which is used to determine 

the treatment T, are ultimately used to assess H. If high-risk populations 

such as the uninsured are not included (shaded blue), because I affects T, 

inferred relationships and treatment effects would not be relevant to those 

most vulnerable. Furthermore, if such populations continue to be excluded 

from algorithmic efforts, overall disparities can increase.
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to geometric) forms and adjusting for the sample sizes of the inter-
sectionalities. Overall, the dynamic nature of intersectionality 
highlights the need for the development of new machine learning 
approaches that can handle multiple protected attributes and their 
intersections, including at higher dimensions.

Algorithmic fairness in deployment and health disparity dissonances. 
Going beyond the data used and methods employed, there can be 
further equity impediments based on the types of questions that are 
the focus of machine learning efforts. Indeed, as work interrogating 
the limits of algorithmic fairness has discussed, the possible veneer 
of technical neutrality may break down once the full systems the 
technology is embedded in are considered93. In particular, although 
algorithms themselves may be deemed ‘fair’, they can result in 
unfairness when considered in the context of the systems they are 
deployed in. We illustrate such dissonances via two scenarios.

First, we highlight unfairness that can result from the use of pro-
tected attributes that are proxies. Consider the scenario represented 
in Fig. 3; predicting a health outcome H (for example, risk of car-
diovascular disease) based on individual-level information including 
the perceived protected attribute, P, and clinical conditions, C. Even 
if successful in ensuring that the risk is fair using a group metric such 
as demographic parity (equal decision rates across groups regardless 
of outcome)94 with respect to racial identity as the protected group 
attribute, by only considering individual-level attributes, we are still 
left with unexplained variance for aspects that race can be acting as a 
proxy for, such as education, E, income levels, I, and neighbourhood 
characteristics N95. Indeed, equal risk scores for Black and non-Black 
patients would not eliminate disparities across lower-income Black 
patients versus higher-income Black patients. In health efforts, con-
sidering sensitive variables at macro96 and individual levels simul-
taneously is one route to a more holistic consideration of fairness97.

Another challenge in applying algorithmic fairness efforts that 
can exacerbate disparities is posed by the population to which the 
focus of algorithmic development and fairness efforts are devoted. 
Figure 4 represents a health care example wherein individual-level 
factors are included in an algorithm used to make a decision on a 
treatment, T, for patients based on C. An algorithm ensuring that 
model outcomes are fair with respect to P could still perpetu-
ate health inequities in the population if insurance status, repre-
sented by I, and necessarily populations for which this varies are 
not accounted for (because insurance status can be related to health 
outcomes98). A continued focus on efforts that improve care for only 
the top tier of patients will advance disparities and can be detri-
mental to all. Machine learning approaches such as transportation 
of causal effects and domain adaptation may be used to focus ques-
tions and studies on improving efforts for neglected populations99. 
At minimum, population representation (who is being included in 
fairness efforts) should be identified and tallied to draw focus to the 
development of innovations for underrepresented groups.

Conclusions
Through a discussion of the principles of population and public 
health, as well as current machine learning efforts, we synthesize 
and summarize areas where machine learning innovation may syn-
ergize with, advance and build on research and practice in these 
fields. We distil major areas of challenge spanning the data used, 
methods developed and questions asked, which are all important 
in equity considerations. These challenges include: the relevance of 
multi-level factors in health, privacy considerations with relation 
to health data, external validity concerns specific to public health 
data and questions, as well as the measurement of and inclusion of 
social determinants in causal models. We identify how algorithmic 
fairness efforts must be considered in the context of the data and 
systems in which they are applied, showing how they could other-
wise perpetuate or advance health disparities. Speaking of health 

equity when only referring to clinical decision-making and fair AI 
in health care limits equity considerations with respect to health, 
ignoring the multi-level influences on (and possible interventions 
in) our health. These principles to shape data, measures and ques-
tions of machine learning efforts in health should be leveraged from 
domains such as public and population health, in which the study 
of inequity and health is rooted. This grounding is desirable as we 
work towards improving health for all populations amidst shift-
ing climates, priorities and data. In sum, this Perspective aims to 
open the imaginary and activate the machine learning community 
regarding the types of data and questions we consider when think-
ing about machine learning and AI in health.
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