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Abstract

Purpose of Review With the unprecedented advancement of data aggregation and deep learning algorithms, artificial intelligence

(AI) and machine learning (ML) are poised to transform the practice of medicine. The field of orthopedics, in particular, is

uniquely suited to harness the power of big data, and in doing so provide critical insight into elevating the many facets of care

provided by orthopedic surgeons. The purpose of this review is to critically evaluate the recent and novel literature regardingML

in the field of orthopedics and to address its potential impact on the future of musculoskeletal care.

Recent Findings Recent literature demonstrates that the incorporation of ML into orthopedics has the potential to elevate patient

care through alternative patient-specific payment models, rapidly analyze imaging modalities, and remotely monitor patients.

Summary Just as the business of medicine was once considered outside the domain of the orthopedic surgeon, we report evidence

that demonstrates these emerging applications of AI warrant ownership, leverage, and application by the orthopedic surgeon to

better serve their patients and deliver optimal, value-based care.

Keywords Artificial intelligence . Machine learning . Patient-specific payment models . Remote patient monitoring systems .

Value-based care . Big data

Introduction

Originally coined in the 1950s, the term “artificial intelli-

gence” initially began as the simple theory of human intelli-

gence being exhibited by machines [1•]. In 1976, Jerrold S.

Maxmen foretold that artificial intelligence (AI) would bring

about the “post-physician era” in the twenty-first century [2,

3]. In today’s era of rapid technological advancement and

exponential increases in extremely large data sets (“big data”),

AI has transitioned from mere theory to tangible application

on an unprecedented scale [4]. From evaluating extraordinari-

ly large data sets in near real-time, autonomous driving cars

and stream history-influenced video viewing recommenda-

tions (Netflix, Los Gatos, CA, USA), to online purchase rec-

ommendations, advertisements, and fraud detection (Amazon,

Seattle,, WA, USA), AI has become fundamentally ingrained

within many facets of society and often functions invisibly in

the background of our personal electronic devices.

Considered a subset of AI, machine learning (ML) exhibits

the experiential “learning” associated with human intelli-

gence, while also having the capacity to learn and improve

its analyses through the use of computational algorithms [1•,

3]. These algorithms use large sets of data inputs and outputs

to recognize patterns and effectively “learn” in order to train

the machine to make autonomous recommendations or deci-

sions. After sufficient repetitions and modification of the al-

gorithm, the machine becomes able to take an input and to

predict an output [1•, 3]. Outputs are then compared with a set
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of known outcomes in order to judge the accuracy of the

algorithm, which is then iteratively adjusted to perfect the

ability to predict further outcomes [5••].

“Deep neural networks” are more complex versions of

these models that make use of hierarchical tiers to segregate

andmanage the final output. The network begins with an input

tier that then progresses to a number of “hidden tiers” that each

respond to different features of the input (Fig. 1) [4, 6••].

These tiers allow for an increase in understanding as the input

ascends “deeper,” permitting the development of models with-

out explicitly programmed directions [7••]. As the machine

studies a specific concept on multiple tiers, the existing algo-

rithm is then able to successively refine itself as new data is

available. Similar to the way the human brain functions, the

machine is able to make “neuronal” connections from “den-

dritic” connections on multiple hierarchical data levels. These

networks have thus given rise to a new form of AI, known as

“deep learning” [5••].

The predictive abilities of ML are being increasingly ap-

plied in the field of healthcare. As a convergence between

health and data sciences, ML models have been proposed

and tested as potential solutions to a variety of issues involv-

ing diagnostic errors, treatment mistakes, workflow inefficien-

cies, and impediments to value-based care [3, 4]. One

prominently theorized application of automated machine

learning involves the automation of “clicks” in the electronic

health record (EHR) to combat the “world of shallow medi-

cine” we currently live in with “insufficient time, insufficient

context, and insufficient presence,” as Dr. Eric Topol has de-

scribed [4]. Specifically, a single patient in the EHR is asso-

ciated with approximately 32,000 discrete data elements for

analysis, necessitating an AI-based algorithm to process pa-

tient data [8]. Presently, efforts to automate actions in the

electronic medical record are limited due to regulated propri-

etary access issues. However, when the eventual automation

capabilities are realized, AI offers physicians the gift of time to

finally execute the tasks for which they were trained, and “to

make healthcare human again” [4].

In 2018, the Cleveland Clinic’s Department of Orthopaedic

Surgery established the Machine Learning Arthroplasty

Laboratory (MLAL) in an effort to further the study of these

seminal issues and assess the ability to apply machine learning

to musculoskeletal medicine, specifically as it relates to pa-

tient-specific, value-based care and human mobility [9••].

These research efforts are laying the groundwork for the future

design and application of increasingly accurate ML algo-

rithms that may directly improve patient outcomes and the

practice of orthopedics in general [6••, 9••, 10••, 11••, 12••,

Fig. 1 Example of input, hidden,
and output layers used to predict
value-based metrics prior to
elective primary total hip or knee
arthroplasty from Ramkumar
et al. [6••]. Dr. Ramkumar retains
the rights to this figure
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13•]. This review serves to stand on the shoulders of those

coming before it and critically evaluate the literature published

over the last 5 years regarding ML in the field of orthopedic

surgery, as well as to address its impact on the future of

medicine.

Machine Learning in Orthopedics

Although ML is relatively new to the field of orthopedic sur-

gery, it is vital for tomorrow’s orthopedic surgeons intending

to practice in the future to be conscious of and fully under-

stand ML and the paradigm shift it represents within medicine

in the delivery of optimal care [7••]. In 2018, Cabitza et al.

conducted one of the first literature reviews of ML in ortho-

pedics, demonstrating a 10-fold increase in ML publications

over the previous two decades [14••]. Many of these studies

have very practical applications to orthopedics. For example, a

study by Thong et al. created a collection of algorithms known

as an “artificial neural network” (ANN) to optimize encoding-

decoding of 3D spine model vectors for the automatic detec-

tion of adolescent idiopathic scoliosis [15]. ANNs are

modeled loosely after the human brain and designed to recog-

nize patterns in order to generate an output. Using a specific

type of ANN known as a stacked auto-encoder (SAE), the

authors demonstrated the successful ability to cluster patients

by deformity and simplify the complex nature of 3D spine

models. With separate encoding and decoding stages, the

SAE was able to learn the parameters needed to map an input

vector from a latent representation, and to use that input vector

to regenerate an output vector consisting of a 3D spine model

[15]. Another study by Olczak et al. made use of an ANN

trained to identify fractures from plain radiographic images

[16]. The network was benchmarked against a gold standard

for fractures that was created by reviewing each image in full

resolution with its multiple views in addition to the radiologist

report. All of their networks exhibited an accuracy of at least

90% in identifying laterality, body part, and exam view when

compared with the “gold standard” radiology report, as well as

the interpretation of the image by two additional senior ortho-

pedic surgeons. Possible implications of this kind of image-

based analysis include improved ability to detect pathology,

and the ability to identify orthopedic implants for the purpose

of facilitating hardware removal and/or modular revision [17].

With the use of ML, a specific manufacturer’s implant may be

identified via a simple radiographic film, eliminating the cost-

ly impact of delays in care or misidentifications leading to lack

of appropriate equipment during the operation, and potential

complications imposed by work-around options [17].

In a different application, Shah et al. used a validated ML

segmentation model to automate the measurement and seg-

mentation of articular cartilage thickness (ACT) in healthy

knees on MR images [18]. The algorithm analyzed 3910

MRIs and accurately identified which pixels represented

which tissue type. This demonstrated how ML could poten-

tially be used as a tool for automated tracking of the impact of

medical intervention on the progression of cartilage degener-

ation [18]. Using dual-energy X-ray absorptiometry (DEXA),

Kruse et al. built 24 statistical models to apply ML principles

to the prediction of hip fractures over time in 4722 women and

717 men with 5 years of follow-up [19•]. The best “female

model” performed with a test area under the curve (AUC) of

0.92, while the best “male model” performed with a test AUC

of 0.89. Identifying predictive factors such as bone mineral

density, glucose measurements, and osteoarthritis diagnosis,

the model demonstrated that ML can improve hip fracture

prediction beyond logistic regression [19•].

While many of these original ML applications in orthope-

dics focused primarily on imaging-based pathology detection

and prediction, more current and advanced applications of

these predictive models have become increasingly centered

on outcome-based measures and patient-specific, value-

based care models [6••, 7••, 10••, 11••, 12••]. Recently,

Haeberle et al. conducted a review of these more novel appli-

cations, specifically exploring imaging-based analyses, value-

based payment models, and mobile health technologies in the

setting of lower extremity arthroplasty [5••]. Demonstrating

the novelty and effectiveness of many of these models, this

review concluded that the incorporation of ML is critical for

orthopedic surgeons in order to elevate their level of care and

advocate for their patients through alternative payment models

and preoperative expectation management [5••]. Specifically,

with the advent of bundled care programs by the Center for

Medicare and Medicaid Services, ML has been used to assess

the financial feasibility of these models. After analyzing

98,562 patients from the New York Statewide Planning and

Research Cooperative System database, Karnuta et al. found

bundling hip fractures represented an unsustainable business

model as the cost of delivering care was based on non-

modifiable patient-specific factors [12••].

One of the first studies to apply these ML algorithms in

orthopedics was that of Kuo et al. [20•]. Using a model that

produces multiple decision trees from randomly selected fea-

tures known as a “random forest model,” they demonstrated

the successful prediction of medical costs in 532 spinal fusion

cases over the span of 3 years. With an accuracy of 84.30%, a

sensitivity of 71.4%, a specificity of 92.2%, and an AUC of

0.904, the model showed promise in its ability to inform hos-

pital strategy regarding financial management and decision-

making. Navarro et al. took this a step further by using a

similar model to explore the impact and predictive ability of

patient-specific factors such as race, gender, age, and comor-

bidities on postoperative length of stay (LOS) and cost for

patients undergoing total knee arthroplasty (TKA) [11••].

Using 141,446 patients, they demonstrated that as patient

complexity increased, cost incrementally increased in tiers of

3%, 10%, and 15% for moderate, major, and extreme
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mortality risks, respectively [11••]. Ramkumar et al. applied

the same model to patients undergoing primary total hip

arthroplasty (THA), demonstrating continued successful pre-

dictive ability with the same postoperative factors despite a

different joint and a different operation [10••].

By creating these more complex “deep learning” algo-

rithms that are capable of unmonitored learning through mul-

tiple layers of connected “neurons,” Karnuta et al. built upon

this work by comparing the performance of two different

ANN designs (MLP and DenseNet) along with multiple tech-

niques for modifying the two algorithms known as “regulari-

zation” techniques, in predicting outcomes for primary THA

and TKA in 295,605 patients [4, 7••]. Demonstrating the

DenseNet neural network model’s ability to achieve a higher

AUC above 0.80, the study established important relation-

ships to consider when choosing a specific model to predict

surgical cost. The study was also one of the most comprehen-

sive to date, validating ML as a valuable predictive tool be-

yond that of disease detection.

These ANNs were created and specifically applied to THA

and TKA to create dynamic models that proposed patient-

specific payment models (PSPMs) that risk-stratified patients

based on their preoperative complexity to support reimburse-

ment commensurate with complexity. While quantifying

global patient risk was previously based on individual experi-

ence and therefore non-quantifiable, Ramkumar et al.

established risk increases of 2.5%, 8.9%, and 17.3% for mod-

erate, major, and severe comorbidities in the primary THA

population and risk increases of 2.0%, 21.8%, and 82.6% in

the primary TKA population [6••, 21••]. Armed with this data,

a PSPM may be used to communicate case complexity to the

payers, and reverse the narrative that THA or TKA are pres-

ently “misvalued” commodities [22]. As an example of the

application of such an algorithm, THA patients with extreme

comorbidities and severity of illness incur $10,200 in addi-

tional costs (17.3% greater risk) over those with minor risk in

the Medicare population. This analysis provides value-based

insights and evidence-based support to inform and hopefully

influence policy advocates and decision-makers to provide

more equitable reimbursement via a patient-specific tiered

bundled payment model. Moreover, such a patient-specific

payment model (PSPM) provides surgeons the long-sought

ability to prospectively characterize and quantify non-

modifiable patient-level factors.

Total hip arthroplasty (THA) has been called “the operation

of the century,” because it can reliably restore quality of life,

physical activity and function, and mobility, while improving

overall health status, in part, by reducing obesity and the im-

pact of diabetes mellitus [23]. However, the present bundled

payment model that offers a singular fee for an entire episode

of care remains agnostic to patient variation, and indirectly

encourages exclusion of those patients with risk factors for

potential complications and increased costs of care. It

incentivizes one of the healthiest patients, who in fact may

demonstrate less overall benefit from THA. In contrast, a

PSPM informed by the ANN described above represents a

dynamic framework which can be utilized by patient, surgeon,

care coordinator, and administrator alike, anywhere in the

world, to analyze relevant patient-specific data and obtain

meaningful, evidence-based output assessing patients’ risk

and profile for complications and increased costs. In turn,

reimbursement could be adjusted to more realistically account

for the most costly care provided to medically or surgically

complex patients and create an equitable, cost-sharing rela-

tionship between payer, patient, hospital, and surgeon.

As another example, Karhade et al. used ML to develop a

preoperative algorithm for the prediction of postoperative opi-

oid use following total hip arthroplasty [24•]. Five algorithms

analyzed 5507 patients, 345 of which had prolonged postop-

erative opioid use, and determined the predictive factors for

prolonged postoperative opioid prescriptions. The best model

achieved fair discrimination (AUC of 0.77) and exhibited

higher net benefit than the default strategies of changing man-

agement for all patients or no patients [24•]. Once externally

validated, this algorithm will allow clinicians to preoperative-

ly identify specific THA patients at highest risk for developing

postoperative opioid use dependence and alter their perioper-

ative management, and hopefully outcome, accordingly.

In addition to these value-based payment and perioperative

predictive models, ML is beginning to be used in clinical

workflow to evolve our remote patient monitoring systems.

Notably, a mobile and wearable knee technology has been

developed (FocusMotion, Santa Monica, CA, USA) to create

ML-driven recovery solutions that track and assess pre- and

postoperative progress remotely [17]. With real-time, patient-

specific feedback sent from a “smart” orthotic to a smartphone

application, the surgeon is able to use movement data to mon-

itor the patient’s mobility and activity compliance. The patient

is then provided with an individually optimized interactive

recovery platform, utilizing notifications and real-time feed-

back to encourage compliance, guiding them throughout each

step of their personalized recovery process. Ramkumar et al.

validated the feasibility of the remote patient monitoring

(RPM) system by successfully capturing uninterrupted, pas-

sive data for mobility, knee range of motion, patient-reported

outcome measures, opioid use, and home exercise program

compliance in 25 patients undergoing primary TKA for oste-

oarthritis [25••]. By establishing the ability to remotely ac-

quire continuous data, the study introduces a scalable RPM

system in orthopedics and challenges the current paradigm of

capturing patient data only through standardized, geographi-

cally dependent, inefficient, and costly processes [25••].

Recently, Bini et al. conducted a pilot study designed to

demonstrate the accuracy and feasibility of coupling ML with

these wearable technologies to predict outcomes of total joint

arthroplasty (TJA) [13•]. Wrist-based Fit Bit (FitBit, San
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Francisco, CA) activity trackers and Mio Activity Tracker

(Mio Technology, Taipei, Taiwan) and the Lumo Run waist-

based posture sensory (Lumo Bodytech, Mountain View, CA)

were used to collect 3 million data points from 15 patients

undergoing total joint arthroplasty (TJA).ML algorithmswere

then able to successfully cluster sensor data from as early as

11 days postoperatively into groups that correlated to 6-week

patient-reported outcomes measures (PROMs) (Hip and Knee

Disability and Osteoarthritis Outcome Score, Knee

Osteoarthritis Outcome Score, and Veterans RAND 12-Item

Health Survey Physical Component Score). Bloomfield et al.

also made use of a ML algorithm to successfully separate 68

postoperative unilateral TKA patients into clinically relevant

groups based on wearable sensor-instrumented performance

tests [26]. Using the instrumented timed-up-and-go test, a cus-

tom wearable system extracted 55 metrics for analysis that

were separated by ML into functionally distinguished groups

with significantly different test completion times. By identify-

ing these different cohorts, functional outcomes and PROMs

could potentially be predicted, and those patients destined for

negative result could be identified early. Armed with this in-

formation, the surgeon could potentially intervene in a timely

fashion in order to change the negative trajectory and improve

the overall outcomes [26]. In addition, this technology enables

the surgeon to more carefully monitor patients postoperative-

ly, potentially reducing the number of clinical visits and post-

operative compilations, and also providing the means to har-

ness the full potential of virtual medicine and remote patient

monitoring [5••, 25••].

As the availability of information grows and modern data

science improves, predictive models relying on AI and ML

will continue to be incorporated into the orthopedic care of our

patients. With its large patient volumes, reliance on radiologic

and imaging studies for diagnosis, and robust outcomes data-

driven nature, orthopedics is poised to embrace and propagate

transformative technological advancements in an increasingly

value-based era of medicine.

Conclusions

It is critical that we as musculoskeletal specialists understand,

embrace, and apply AI and ML to maximize the quality and

cost-effectiveness of our care. We must not consider this ex-

plosive area of research and knowledge outside of our scope.

However, it is mandatory that we exercise caution when in-

corporating new and potentially revolutionary technology into

our healthcare system.Wemust understand the limitations and

pitfalls of implementing AI and ML, especially the impact of

skewed databases in creating potentially erroneous conclu-

sions and the inability to dissect decision-making from these

“black box” algorithms. Nevertheless, as data is being aggre-

gated at an unprecedented rate, AI and ML will provide

critical insight into somany facets of the care we as orthopedic

surgeons provide. Thus far, the Machine Learning

Arthroplasty Laboratory at Cleveland Clinic and other similar

endeavors have generated preoperative tools to predict opioid

use and cost of care, insights into imaging analysis, and ad-

vanced remote patient monitoring systems.

By harnessing the power of big data, AI andML are poised

to transform orthopedics in particular and medicine in general.

It can enable automation of redundant tasks and save time,

assist in evidence-based decisions by using algorithms to

identify risk factors for complications or other outcomes of

concern, and is uniquely capable of predicting outcomes

based on patient-specific algorithms. This empowers the cli-

nician to intervene and intercede in order to change the course

of treatment and favorably impact and transform an undesired

outcome into a more acceptable or even positive overall clin-

ical and surgical result.

While Maxmen predicted the emergence of a “post-physi-

cian era,” Topol more pragmatically predicts AI may offer the

profound opportunity to usher in a “physician-aided” era

whereby human and artificial intelligence converge to offer

physiciansmore time to paradoxically make healthcare human

again [2, 4].
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