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Machine learning and complex biological

data
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Abstract

Machine learning has demonstrated potential in
analyzing large, complex biological data. In practice,
however, biological information is required in addition
to machine learning for successful application.
of biological data [1]. Another challenge is data di-
The revolution of biological techniques and
demands for new data mining methods
In order to more completely understand complex bio-
logical phenomena, such as many human diseases or
quantitative traits in animals/plants, massive amounts and
multiple types of ‘big’ data are generated from compli-
cated studies. In the not so distant past, data generation
was the bottleneck, now it is data mining, or extracting
useful biological insights from large, complicated datasets.
In the past decade, technological advances in data gener-
ation have advanced studies of complex biological phe-
nomena. In particular, next generation sequencing (NGS)
technologies have allowed researchers to screen changes
at varying biological scales, such as genome-wide genetic
variation, gene expression and small RNA abundance, epi-
genetic modifications, protein binding motifs, and
chromosome conformation in a high-throughput and
cost-efficient manner (Fig. 1). The explosion of data, espe-
cially omics data (Fig. 1), challenges the long-standing
methodologies for data analysis.
Biological systems are complex. Most large-scale

studies focus only on one specific aspect of the bio-
logical system; for example, genome-wide association
studies (GWAS) focus on genetic variants associated
with measured phenotypes. However, complex bio-
logical phenomena can involve many biological as-
pects, both intrinsic and extrinsic (Fig. 1), and, thus,
cannot be fully explained using a single data type. For
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this reason, the integrated analysis of different data
types has been attracting more attention. Integration
of different data types should, in theory, lead to a
more holistic understanding of complex biological
phenomena, but this is difficult due to the challenges
of heterogeneous data and the implicitly noisy nature

mensionality: omics data are high resolution, or stated
another way, highly dimensional. In biological studies,
the number of samples is often limited and much
fewer than the number of variables due to costs or
available sources (e.g., cancer samples, plant/animal
replicates); this is also referred to as the ‘curse of
dimensionality’, which may lead to data sparsity, mul-
ticollinearity, multiple testing, and overfitting [2].

Machine learning versus statistics
The boundary between machine learning and statistics is
fuzzy. Some methods are common to both domains and
either can be used for prediction and inference. How-
ever, machine learning and statistics have different foci,
prediction or inference [3]. In general, classic statistical
methods rely on assumptions about the data-generating
systems. Statistics can provide explicit inferences
through fitting a specified probability model when
enough data are collected from well-designed studies.
Machine learning is concerned with the question of cre-
ation and application of algorithms that improve with
experience. Many machine learning methods can derive
models for pattern recognition, classification, and pre-
diction from existing data and do not rely on stringent
assumptions about the data-generating systems, which
makes them more effective in some complicated applica-
tions, as further described below, but less effective in
producing explicit models with biological significance, in
some cases [3].

The applications of machine learning in biology
There are two primary types of machine learning
methods: supervised learning and unsupervised learning.
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Fig. 1 Machine learning using complex biological data. High-throughput data generation techniques for different biological aspects are shown
(left). ATAC-seq assay for transposase-accessible chromatin using sequencing, ChIP-seq chromatin immunoprecipitation sequencing, DNase-seq
DNase I hypersensitive sites sequencing, GC-MS gas chromatography-mass spectrometry, LC-MS liquid chromatography–mass spectrometry,
lncRNA-seq long non-coding RNA sequencing, NMR nuclear magnetic resonance, RNA-seq RNA sequencing, smRNA-seq small RNA sequencing,
WES whole exome sequencing, WGBS whole-genome bisulfite sequencing, WGS whole genome sequencing, Hi-C chromatin conformation
capture combined with deep sequencing, iTRAQ isobaric tags for relative and absolute quantification
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Supervised learning algorithms learn the relationship be-
tween a set of input variables and a designated
dependent variable or labels from training instances and
can subsequently be used to predict the outcomes of
new instances. Many sophisticated machine learning
methods are supervised, e.g., decision tree, support vec-
tor machine, and neural network. Unsupervised learning
algorithms infer patterns from data without a dependent
variable or known labels. Cluster and principle compo-
nent analysis are two popular unsupervised learning
methods used to find patterns in high dimensionality
data such as omics data. Deep learning is a subtype of
machine learning originally inspired by neuroscience, es-
sentially describing a class of large neural networks.
Deep learning has been applied in many fields, largely
driven by the massive increases in both computational
power and big data. Deep learning can be both super-
vised and unsupervised, has revolutionized fields such as
image recognition, and shows promise for applications
in genomics, medicine, and healthcare.
Machine learning has been used broadly in bio-

logical studies for prediction and discovery. With the
increasing availability of more and different types of
omics data, the application of machine learning
methods, especially deep learning approaches, has be-
come more frequent. One area of opportunity for ma-
chine learning approaches is in the prediction of
genomic features, particularly those that are hard to
predict using current approaches such as regulatory
regions. Machine learning has been used to predict
the sequence specificities of DNA- and RNA-binding
proteins, enhancers, and other regulatory regions [4,
5] on data generated by one or multiple types of
omics approach, such as DNase I hypersensitive sites
(DNase-seq), formaldehyde-assisted isolation of regu-
latory elements with sequencing (FAIRE-seq), assay
for transposase-accessible chromatin using sequencing
(ATAC-seq), and self-transcribing active regulatory re-
gion sequencing (STARR-seq). Machine learning can
be used to build models to predict regulatory ele-
ments and non-coding variant effects de novo from a
DNA sequence [5] that can then be tested/validated
for their contribution to gene regulation and ultim-
ately to observable traits/pathologies.
In addition to the prediction of regulatory regions, re-

cently, supervised learning showed considerable poten-
tial for solving population and evolutionary genetics
questions, such as the identification of regions under
purifying selection or selective sweeps, as well as more
complicated spatiotemporal questions (reviewed in [6]).
Up to now, machine learning approaches have also
been used to predict transcript abundance [7], imput-
ation of missing SNPs and DNA methylation states [8,
9],variant calling [10], disease diagnosis/classification,
and many different biological questions using datasets
from different biological aspects such as genomes, epi-
genomes, transcriptomes, and metabolomes.

Challenges and future outlooks
The massive and rapid advancements in both bio-
logical data generation and machine learning method-
ologies are promising for the analysis and discovery
from complex biological data. However, there are sev-
eral hurdles. Firstly, interpretation of models derived
from some sophisticated machine learning approaches
such as deep learning can be difficult if not
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impossible. In many cases, researchers are more inter-
ested in the biological meaning of the predictive
model than the predictive accuracy of the model and
the ‘black box’ nature of the model can inhibit inter-
pretation. The information from the model may need
further processing and should be carefully interpreted
with corresponding biological knowledge (Fig. 2).
Although several methods have been developed for

interpreting and understanding complicated models,
such as perturbation-based methods and gradient-
based methods for the interpretation of convolutional
neural networks (CNNs), the interpretation of many
complicated cases may yet be challenging and currently
out of reach. Joint analysis of multiple biological data
types has the potential to further our understanding of
complex biological phenomena; however, data integra-
tion is challenging due to the heterogeneity of different
data types. For example, an expression profile is a vec-
tor of real values and the length of vector is equal to
the number of genes in the genome, while the genetic
variants are categorial and of different vector length.
Various strategies for data integration have been used
in different studies [1, 4] but best practices about which
data types can be integrated and how to integrate data
are still needed.
Another challenge is the curse of dimensionality.

Problems such as sparsity, multicollinearity, and over-
fitting are difficult to avoid in high-resolution studies
such as in omics datasets, although the larger sample
size and modern machine learning methods can par-
tially mitigate these problems [2]. To increase the
number of samples it may be necessary to combine
data from multiple sources, which may be feasible for
qualitative data like single-nucleotide polymorphisms
(SNPs) but can be hard for quantitative data such as
gene expression data due to the many ‘hidden’ effects
such as variation in developing stages or batch effects
from experimental methodologies that can confound
analyses. It is still an open question how to normalize
Fig. 2 Interpretation of machine learning model. Model information may b
data from different sources and additional work on
data production, sharing, and processing will be
necessary.
Although improved machine learning methods and

the increasing number of available samples show great
promise to increase our understanding of complex bio-
logical phenomena, building proper machine-learning
models can still be challenging due to hidden biological
factors such as population structure among samples or
evolutionary relationship among genes. Biological data-
sets should be carefully curated to remove confounders.
Without properly accounting for such factors, the
models can be overfit, leading to false-positive discov-
ery. To build proper models, the biological and tech-
nical factors specific to the modeling scenario need to
be taken into account. For example, biological data are
often imbalanced, such as the case in some diseases or
traits that occur only in a small fraction of a popula-
tion. It is usually more meaningful to access metrics
like precision and recall for the non-major class rather
than simple accuracy to evaluate model performance
for imbalanced classes in the data.
Traditional statistical approaches still dominate the

biological research field, even for large omics data ana-
lyses. However, the flood of omics data across scales,
cells to tissues to organisms to ecosystems, and types,
genotyping, resequencing, RNA-seq, bisulfite sequencing
(BS-seq), etc., and new more powerful machine learning
methods, hold great promise to provide biological in-
sights from the large and often heterogeneous data. Dif-
ferent machine learning methods may correspond to
underlying assumptions about data; for example, two
popular deep learning methods, convolutional neural
network (CNN) and recurrent neural network (RNN),
were designed for different types of data. No single
computational approach or rule is suitable for all bio-
logical questions. Rather, each complex biological ques-
tion will require specific machine learning approaches,
e.g., support vector machine, random forest, and deep
e interpreted directly or be further processed for better understanding
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neural network, and combinations of disciplines, e.g.
computer science, statistics, physics, engineering, and
biology. We predict that researchers who are capable of
applying machine learning to complex biological data
will be increasingly in demand in the future.
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