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Introduction

Microscopy assays enable the identi�cation of cell biologi-

cal phenotypes through the quanti�cation of cell morphology. 

These image-based methods are often used in genetically or 

environmentally sensitized conditions to probe the relationship 

between cell structure and function in response to a perturbation 

of interest (Liberali et al., 2015). For example, many groups 

have used light microscopy to investigate the phenotypic conse-

quences of single-gene knockouts on cell morphology (Turner 

et al., 2012). By integrating �uorescently labeled proteins or 

staining speci�c organelles, it is possible to investigate more 

complex subcellular phenotypes (Boutros et al., 2004; Negishi 

et al., 2009). Image-based assays of cellular and subcellular 

phenotypes have been performed in a variety of organisms and 

cell lines probing numerous cell biological processes, rang-

ing from the effects of chemical treatments on protein subcel-

lular localization in yeast (Chong et al., 2015) to the genetic 

contributors of more complex phenotypes such as the mitotic 

exit program in human cell lines (Schmitz et al., 2010; Matti-

azzi Usaj et al., 2016).

Technological advancements have led to the develop-

ment of automated �uorescent confocal microscopes that in-

crease throughput, enabling thousands of images to be acquired 

in a single day. This increase in data production has resulted 

in a new demand for ef�cient, automated computational im-

age-analysis strategies to overcome the resultant bottleneck 

associated with manual data scoring. Perhaps more importantly, 

computational analyses also enable identi�cation and quanti-

�cation of subtle phenotypes that would otherwise be impos-

sible to score manually.

Although there is no single solution for computational 

analysis of biological images, most image analysis pipelines 

follow a common work�ow in which individual cells are iden-

ti�ed as unique objects, from which phenotypic measurements, 

or features, are extracted from these single cells. These quanti-

tative features typically include measures of cell shape and size, 

pixel intensity, and texture. Depending on the research goal, the 

features can then be clustered or classi�ed in a variety of dif-

ferent ways to enable an unbiased assessment of phenotypes of 

interest (Fig. 1). For classi�cation or clustering, single-cell data 

from an individual experiment or treatment are typically aggre-

gated in a manner that re�ects distributions within populations.

Several different groups have used this general imaging 

platform in a targeted approach to quantify a single process 

or cellular function, which is often referred to as phenotypic 

screening. During the analysis of screening data, speci�c 

features relevant to the phenotype of interest are considered 

(Caicedo et al., 2016). For example, in a screen designed to 

identify cell size mutants, size-based image features will be 

identi�ed and used to discriminate populations of cells that are 

unusually small or large relative to a wild-type size distribu-

tion (Kitami et al., 2012). Many of the studies published using 

high-throughput microscopy have used this targeted approach, 

considering one or two single-cell features in their analysis 

(Singh et al., 2014). Alternatively, phenotypic pro�ling involves 

a less targeted approach in which many features of the sam-

ple are quanti�ed, allowing for the identi�cation of as many 

properties of the sample as possible and enabling the features 

that describe these properties to differentiate samples from 

one another in an unbiased manner (Caicedo et al., 2016). For 

example, in a high-throughput chemical screening project in 

which cell samples are exposed to an array of small molecules, 

changes in cell morphology can be quanti�ed and used to infer a 

mechanism of drug action in downstream experiments (Perlman 

et al., 2004; Ljosa et al., 2013).

Given this unbiased approach to phenotypic pro�ling, 

multiple analysis strategies allow researchers to translate mor-

phological features into meaningful biological information. 

With recent advances in high-throughput, automated mi-
croscopy, there has been an increased demand for effec-
tive computational strategies to analyze large-scale, 
image-based data. To this end, computer vision ap-
proaches have been applied to cell segmentation and fea-
ture extraction, whereas machine-learning approaches 
have been developed to aid in phenotypic classification 
and clustering of data acquired from biological images. 
Here, we provide an overview of the commonly used com-
puter vision and machine-learning methods for generat-
ing and categorizing phenotypic profiles, highlighting the 
general biological utility of each approach.
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Chief among these analyses are machine-learning methods that 

encompass data-driven models for both supervised and unsu-

pervised learning (Tarca et al., 2007). Machine-learning models 

�t their internal parameters to the data being pro�led, meaning 

that in a biological context, these approaches can be used to 

learn functional relationships from the data with minimal in-

tervention or bias. In this article, we focus on how both unsu-

pervised and supervised machine-learning strategies have been 

used to extract quantitative cell biological information from 

high-throughput, image-based data for phenotypic pro�ling.

Generating phenotypic profiles

Cell segmentation.  Toward the generation of phenotypic 

pro�les, individual objects of interest, such as cells or whole 

organisms, must �rst be identi�ed and distinguished from the 

background of an image, in a process called segmentation 

(Bengtsson et al., 2004; Meijering, 2012; Kraus and Frey, 

2016). The most widely used segmentation algorithms include 

thresholding, region growing, edge detection, and Markov 

random �elds (MRFs). In thresholding, objects of interest are 

differentiated from background based on an optimal difference 

in pixel intensity, whereas in region growing, objects are identi-

�ed by expanding from a seed point, such as the labeled nucleus 

of a cell, to neighboring pixels based on a membership criterion 

such as texture or intensity (Bengtsson et al., 2004; Beneš and 

Zitová, 2015). Edge-detection algorithms, such as Canny edge 

detection (Canny, 1986), segment objects using cell boundaries 

(i.e., contours or edges) inferred in images based on pixel inten-

sity gradients. In MRFs, graphical models are used to incorpo-

rate information from a variety of sources, and segmentation is 

based on the class probability of each pixel assigned  

by approximate inference algorithms such as expecta-

tion-maximization (Chen et al., 2006).

There is no universally preferred segmentation approach; 

rather, the choice of algorithm depends on required computa-

tional ef�ciency, performance, and type of images being seg-

mented. For example, bright-�eld or differential interference 

contrast images typically require edge detection–based algo-

rithms (Chen et al., 2006), whereas �uorescent images can rely 

on thresholding and region-growing techniques (Wählby et al., 

2004). Another factor is the number of images that need to be 

processed. For large-scale datasets, it is preferable to use algo-

rithms that scale well, such as thresholding and region growing, 

in place of more complex methods such as MRFs, which can 

take considerably longer to run (Celeux et al., 2003).

Feature extraction

After segmentation, biologically useful information needs to 

be extracted from sample images (Fig. 2). As noted earlier, in 

phenotypic pro�ling, a large variety of features are typically 

extracted to achieve an unbiased quanti�cation of sample mor-

phology. These methods are based on classic computer vision–

based feature extractors and include morphology and texture 

measurements. Morphological features characterize object 

size and shape, including direct measurements such as area, 

or more complex shape features (Boland et al., 1998). Texture 

features quantify spatial statistics of pixel intensities, includ-

ing measurements from different channels (e.g., mean, sum, 

standard deviation) and low-level patterns such as edges and 

blobs (Gabor, 1946; Haralick, 1979). Several groups have pack-

aged these sets of feature extractors with modular segmentation 

pipelines into software platforms that are publicly available and 

widely used (Eliceiri et al., 2012). Speci�c examples of popular 

platforms include CellPro�ler (Carpenter et al., 2006), Cell-

Cognition (Held et al., 2010), and PhenoRipper (Rajaram et al., 

2012). Outputs from these platforms typically contain hundreds 

to thousands of different features for each object and image. Al-

though these methods are mostly applicable to 2D images, new 

tools are being developed to extract features from 3D images as 

well (Ollion et al., 2013).

Feature selection and dimensionality reduction

Because phenotypic pro�ling typically involves the extraction 

of many features, it is important to differentiate useful features 

for classifying cells from those that are uninformative, irrele-

vant, or redundant. Unnecessary features increase the dimen-

sionality of the feature space and introduce noise and irrelevant 

correlations that can negatively affect downstream analysis. 

The two classes of approaches that can be used to reduce the 

size of the feature space are feature selection and dimension-

ality reduction. Feature-selection techniques choose a subset 

Figure 1. General workflow for the generation and classification of 
phenotypic profiles. (A) Generation of phenotypic profiles involves 
high-throughput image acquisition, followed by segmentation, feature ex-
traction, and feature selection. (B) A variety of machine-learning tasks can 
then be applied depending on the research goal, including clustering, out-
lier detection, and classification.
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of features from the original feature space that are determined 

to be most relevant to the machine-learning task (Saeys et al., 

2007). For example, Loo et al. (2007) selected a subset of in-

formative features by iteratively removing other subsets that did 

not affect downstream performance of their classi�er. In con-

trast, dimensionality-reduction techniques transform the orig-

inal feature space into lower dimensions using linear methods 

(such as principal components analysis [PCA]) or nonlinear 

techniques (such as t-distributed stochastic neighbor embed-

ding; Van Der Maaten and Hinton, 2008) that preserve the vari-

ance in the dataset. The selected or transformed set of features 

can then be treated as a single vector representing the pheno-

typic pro�le of a given sample.

Dimensionality-reduction algorithms can be �tted di-

rectly to most datasets and automatically provide reduced 

feature representations. In contrast, feature-selection methods 

require more effort and domain expertise to implement. How-

ever, a signi�cant bene�t of feature selection is that the original 

features are maintained, thereby preserving the interpretability 

of the features used in downstream models.

Clustering and classifying phenotypic profiles

After selecting the features that best represent the phenotypic 

information in a dataset, a variety of computational strategies 

can be used to cluster or classify the resultant pro�les into bio-

logically interpretable groups. The choice of approach is largely 

dependent on the distribution of distinct phenotypes repre-

sented in the dataset as well as any prior knowledge of what 

those phenotypes might be.

In machine-learning terminology, clustering is a form of 

unsupervised learning in which models are trained using an un-

labeled dataset and patterns are discovered by grouping similar 

data points. In contrast, classi�cation is a form of supervised 

learning in which models are trained on labeled datasets to gen-

erate predictions on unseen data points (Libbrecht and Noble, 

2015). Choosing whether to use unsupervised or supervised 

learning ultimately depends on how well de�ned classes of 

phenotypes are a priori, as well as how many training examples 

can be identi�ed for each phenotypic category. A third approach 

is outlier detection, in which normal or wild-type phenotypes 

are known and the goal is to �nd examples of rare phenotypes 

that differ signi�cantly from the reference samples. Here we re-

view clustering, outlier detection, and classi�cation approaches.

Clustering.  Clustering is typically the simplest ap-

proach for grouping phenotypic pro�les into biologically inter-

pretable classes and is appropriate when the desired or expected 

output of classi�cation is not known (Fig. 3 A). For example, 

Young et al. (2008) pro�led a library of ∼6,500 compounds for 

cell cycle defects in HeLa cells. In that study, hierarchical clus-

tering of the pro�les generated from imaging of the top ∼200 

most responsive compounds identi�ed seven phenotypic cate-

gories. The cell cycle defects represented in those clusters cor-

responded with compound structure similarity, suggesting that 

the clusters were driven by related molecules that share a com-

mon biological target. Clustering was an ideal approach for 

classifying and interpreting these data, because the dataset in-

cluded a variety of complex phenotypes, and no knowledge of 

the phenotypes was required before classi�cation. Furthermore, 

had the researchers assumed a speci�c phenotypic output, some 

signi�cant classes may have been overlooked or misclassi�ed, 

exemplifying the importance of the unsupervised approach. For 

this reason, hierarchical clustering has been implemented by 

many groups in several different organisms (Bakal et al., 2007; 

Seewald et al., 2010; Gustafsdottir et al., 2013; Hand�eld et al., 

2013) and is often the �rst approach used if there is any uncer-

tainty regarding the expected phenotypic output.

Outlier detection.  Although clustering is an ideal un-

supervised approach for classi�cation of common phenotypes, 

it may fail to identify rare pro�les within a dataset. For exam-

ple, if a particular phenotype is present at a low frequency, pro-

�les representing that phenotype will likely get grouped into a 

similar, yet biologically distinct, cluster; this may cause rare 

pro�les to be misclassi�ed and their underlying biology to be 

misinterpreted or overlooked by the researcher.

Figure 2. Micrographs of individual budding yeast cells identified during segmentation, with illustrative examples of four types of features that could be 
identified during feature extraction. In these micrographs, red pixels mark the cellular cytosol, whereas green pixels represent GFP-fusion proteins that 
localize to unique subcellular structures in each cell. Area features are concerned with the number of pixels in the segmented region, GFP intensity features 
consider overall green pixel brightness, shape features examine the contours of the cell objects, and texture examines the spatial arrangement of pixel 
intensities. These features, and many others, are quantified for each cellular object and then used in downstream clustering or classification.
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Outlier detection seeks to identify pro�les that are highly 

dissimilar from the remaining data (Knorr and Ng, 1998; Hodge 

and Austin, 2004; Fig.  3  B). Many different algorithms exist 

for performing outlier detection based on statistics (Barnett and 

Lewis, 1994), distance (Knorr and Ng, 1998; Ramaswamy et 

al., 2000), density (Breunig et al., 2000), clustering (Jain et al., 

1999; He et al., 2003), and deviation (Arning et al., 1996). One 

of the most commonly used methods is density-based outlier de-

tection, which identi�es outliers based on an object’s neighbor-

hood density (Breunig et al., 2000). The power of density-based 

methods is that they provide improved performance relative to 

methods that use statistical or computational geometry princi-

ples, but they suffer from an inability to scale well (Orair et 

al., 2010). A second commonly used approach is distance-based 

outlier detection, which is based on the k-nearest neighbor al-

gorithm (Knorr and Ng, 1998) and uses a well-de�ned distance 

metric (e.g., Euclidean, Mahalanobis) to determine outliers 

(Ramaswamy et al., 2000). Put simply, the greater the distance 

of the pro�le from its neighbors, the more likely it is to be an 

outlier. The power of distance-based outlier detection lies in its 

simplicity and scalability to large datasets with high dimension-

ality (Orair et al., 2010). However, outlier detection identi�es 

images that are very different from other images, and these 

outliers must be manually inspected to assign them biological 

signi�cance. This process may allow for the detection of rare 

phenotypes that are dif�cult to detect with other methods.

Although outlier detection algorithms have been widely 

used in fraud detection and equipment monitoring, as well as for 

removal of biological noise, they have been less developed for 

high-dimensional data such as images (Ju et al., 2015; Li et al., 

2015). One important biological application of outlier detection 

is in biomedical image analysis. For example, a statistical-based 

outlier detection method was used to provide reliable and fully 

automated quantitative diagnosis of white-matter hypersensitiv-

ities in the brains of elderly subjects (Caligiuri et al., 2015).

Classification.  Although clustering and outlier detec-

tion are powerful unsupervised methods for phenotypic pro�le 

classi�cation, they both require substantial evaluation and vali-

dation of the identi�ed categories to enable cogent biological 

interpretation. Alternatively, supervised methods necessitate 

that phenotypic categories are established before classi�cation, 

making evaluation and validation of classes much easier. Clas-

si�cation is one of the most commonly used approaches for 

phenotypic analysis of image-based data. Broadly, classi�ers 

are preassigned a distinct set of categorical class outputs (sub-

cellular localization classes, mutant compartment morphology 

classes, etc.), and the classi�er is then trained to recognize fea-

ture pro�les that are representative of each class, such that novel 

pro�les can be classi�ed into one or more discrete output classes 

based on feature similarity to the training data (Libbrecht and 

Noble, 2015). Next we review the two major types of classi�ers, 

linear and nonlinear models.

Linear classifiers.  Linear classi�ers combine input 

features in a linear combination and then assign classi�cation 

based on the output value. As such, linear classi�ers de�ne a 

decision boundary, called a hyperplane, that separates the 

classes in the dataset (illustrated for a 2D example in Fig. 3 C). 

Several types of linear classi�ers have been used to analyze im-

age-based data. For example, naive Bayes is a linear classi�ca-

tion model that uses Bayes theorem to analyze feature 

probabilities and assumes feature independence. This approach 

is particularly useful when the dataset is large and contains 

many different features. Jolly et al. (2016) recently applied a 

naive Bayes classi�er to images generated from a genome-wide 

RNAi screen of lysosome motility in the Drosophila melano-

gaster S2 model cell system. Images were classi�ed from more 

than 17,000 gene knockdowns, and samples with an abnormal 

degree of lysosomal motility were identi�ed with 94% accu-

racy. A similar model that assumes equal covariance among the 

classes is Fisher’s linear discriminant (Wang et al., 2008). This 

approach assigns weights to each feature in the dataset, high-

lighting features that have high variance in the data and may be 

more useful for classi�cation. This model was recently applied 

to the study of neuronal differentiation in PC12 cells (Weber et 

al., 2013) and has been used to classify a diverse range of 

image-based datasets (Wang et al., 2008; Horn et al., 2011; 

Pardo-Martin et al., 2013). Fisher’s method performs best for 

low-dimensional, small datasets, whereas the combination of 

PCA and naive Bayes can provide a performance similar to 

Fisher’s method when applied to large datasets.

A second major group of linear classi�ers directly model 

decision boundaries. In other words, these models directly 

predict class membership given features, without modeling 

the joint probabilities of classes and features (Ng and Jordan, 

2002). A common example is a linear support vector machine 

(SVM), which de�nes a hyperplane that separates two classes 

by maximizing the distance between the hyperplane and the 

data points from opposite classes closest to each other (called 

Figure 3. Schematic representation of unsupervised and supervised methods to classify phenotypic profiles. (A–D) Each shape represents one object in 
the dataset. All features associated with each object are reduced to 2D feature space.
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support vectors; Noble, 2006). This hyperplane is generated 

based on images of manually annotated samples, and the SVM 

classi�er assigns membership to new data points based on their 

positions relative to the hyperplane (Weston et al., 2000).

Chong et al. (2015) recently generated an ensemble of ∼60 

binary linear SVM classi�ers to assign GFP-fusion proteins in 

images of budding yeast cells to 16 distinct subcellular com-

partments. Classi�cation accuracy was compartment speci�c, 

but on average, the SVM classi�er ensemble performed with 

>70% precision and recall. SVM classi�ers were useful for an-

alyzing this set of protein subcellular localization data, largely 

because of the high quality of the training set. In this case, the 

training set was composed of high-quality ground-truth exam-

ples of GFP-fusion proteins localized to distinct compartments 

and reported in the abundance of literature on manually scored 

protein localizations in budding yeast.

Nonlinear classifiers.  Nonlinear classi�cation algo-

rithms are required when the decision boundary is nonlinear 

and potentially discontinuous (Fig. 3 D). These algorithms are 

more complex than linear classi�ers and generally require more 

training data to �t. For example, the SVM classi�ers described 

earlier can be used to produce nonlinear decision boundaries if 

nonlinear kernel functions are used. These functions transform 

the feature space before �tting the SVM model for classi�ca-

tion, enabling nonlinear decision boundaries in the original fea-

ture space (Weston et al., 2000). Nonlinear SVM classi�ers 

have been used to distinguish aberrant HeLa cell morphology 

after RNAi-mediated gene knockdown (Fuchs et al., 2010). In 

that study, cells were classi�ed into one of 10 distinct morpho-

logical classes, including groups for elongated, enlarged, or 

condensed morphologies as well as cell cycle arrest phenotypes. 

Numerous other groups have also taken advantage of SVM 

classi�ers to classify morphological phenotypes in human cells, 

including mutant morphology (Schmitz et al., 2010), cell cycle 

arrest phenotypes (Neumann et al., 2010), and subcellular local-

ization classes (Conrad et al., 2004).

Another example of a nonlinear classi�cation algorithm 

is a random forest (RF) classi�er. The underlying principle of 

an RF classi�er is to use a series of decision/classi�cation trees 

that map the features of a sample to a class output. These are 

referred to as classi�cation trees because of their branch-like 

structure in which features are conjugated in a path such that 

a particular combination will trickle down to a resultant class 

output. RF classi�ers combine an ensemble of uncorrelated 

decision trees with random feature combinations to reduce the 

variance in the data and help resolve issues with over�tting the 

data to the training set (Hastie et al., 2005). Roosing et al. (2015) 

performed an siRNA knockdown study of ∼18,000 genes in a 

human cell line to look for genes that might be implicated in 

cilia formation. After extracting and selecting 18 nonoverlap-

ping cellular features, an RF classi�er was trained on positive 

(aberrant cilia) and negative (wild-type cilia) instances.

Considerations.  Validation and testing are both im-

portant steps that must be performed on separate datasets to en-

sure that a classi�er can generalize to new datasets. Classi�ers 

update their internal parameters during the training phase in a 

manner that reduces the error rates between predicted values 

and the given labels on the training set. With many nonlinear 

classi�ers (and some linear classi�ers), these updates may con-

tinue to the point where the model’s performance begins to de-

teriorate on unseen validation data but continues to improve on 

the training set. This behavior is referred to as over�tting to the 

training dataset. Over�tting becomes more severe as the model 

complexity (i.e., the number of trainable parameters in the 

model) increases relative to the size of the dataset. An approxi-

mate guideline is that the number of data points in the training 

set should be a small multiple of the number of parameters in 

the model (∼5–10). An additional class of techniques that pre-

vent complex models from over�tting to the training data are 

called model regularization. Regularization typically modi�es 

the model training procedure in a manner that prevents the mod-

el’s parameters from �tting to noise or speci�cities in the train-

ing data. To evaluate whether models are over�tting, two 

separate datasets are typically held out and are used to ensure 

that models generalize to new datasets. The validation set is 

used to optimize the model, whereas the test set is a held-out 

dataset used only with the �nal implementation to compare dif-

ferent classi�cation approaches. For small datasets, an alterna-

tive to held-out validation sets is k-fold cross validation, in 

which the model is repeatedly trained k times on k separate sub-

sets of the available data and evaluated on the remaining data 

during each repetition. In the extreme case, this is called leave-

one-out cross validation, in which the model is repeatedly 

trained by leaving out one data point and is then validated on the 

left-out data point. For both forms of cross validation, the mean 

of the validations across the repetitions is used as the valida-

tion metric (Bishop, 2006).

The approaches we have described so far aim to pro�le 

individual cells, but researchers often need to summarize these 

�ndings on a per-sample or population basis. Various methods 

are used to aggregate single-cell pro�les, including techniques 

that maintain information regarding subpopulation heteroge-

neity. The most straightforward methods for aggregating sin-

gle-cell pro�les across treatment conditions include calculating 

statistics, such as the mean or median across the population, for 

each feature (Ljosa et al., 2013). When comparing conditions, 

statistical tests that include variance estimates, such as t tests 

and Z-factors, may be used (Singh et al., 2014). In addition, 

the Kolmogorov–Smirnov statistic is a popular metric, as it 

does not assume normal distribution of features (Perlman et al., 

2004) and compares population distributions directly. Finally, 

pipelines that categorize individual cells based on clustering, 

classi�cation, or small subsets of descriptive features can be 

used to study how the cell subpopulation proportions change 

under different conditions (Snijder et al., 2009).

Perspective

Typically, research groups implement the classi�cation ap-

proach that works best for their particular dataset or that they 

are the most familiar with implementing. However, this strat-

egy can lead to duplicated efforts, as new image sets often re-

quire labeling new training sets for classi�cation, even when 

classifying identical phenotypes seen in previous assays. This 

is largely because many of the classic machine-learning strat-

egies described here fail to discover the intricate structure of 

large datasets, making it dif�cult to apply them to multiple as-

says. This dif�culty is partly a result of the feature extraction 

and dimensionality reduction steps, which typically vary for 

different assays. Recently, deep learning technologies have 

been developed that learn feature representations and classi�-

cation boundaries directly from raw pixel data. In deep learn-

ing, multilayer, nonlinear classi�ers called neural networks 

use back-propagation during training to learn how the network 

should update its internal parameters to minimize classi�cation 
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error in each layer, ultimately discovering intricate hierarchical 

feature representations that can be broadly applied to multiple 

image sets (LeCun et al., 2015).

Based on this approach, deep learning networks have re-

cently surpassed human-level accuracy at classifying modern 

object recognition benchmarks (Krizhevsky et al., 2012). Deep 

learning has been applied to numerous types of biological data 

for modeling gene expression (Chen et al., 2016a,b) and pre-

dicting protein structure (Zhou and Troyanskaya, 2015), DNA 

methylation (Wang et al., 2016), and protein–nucleic acid in-

teractions (Alipanahi et al., 2015). Deep learning has also been 

used to classify protein localization in yeast and mechanisms of 

action in a publicly available drug screen (Kraus et al., 2016; 

Pärnamaa and Parts, 2016 Preprint). Based on the success of 

deep learning, its application to biological image data should 

overcome the pitfalls associated with conventional analysis 

pipelines, with the potential to automate the entire process of de-

veloping analysis pipelines for classifying cellular phenotypes.
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