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Abstract. Ecosystem Informatics is the study of computational meth-
ods for advancing the ecosystem sciences and environmental policy. This
talk will discuss the ways in which machine learning—in combination
with novel sensors—can help transform the ecosystem sciences from
small-scale hypothesis-driven science to global-scale data-driven science.
Example challenge problems include optimal sensor placement, model-
ing errors and biases in data collection, automated recognition of species
from acoustic and image data, automated data cleaning, fitting models
to data (species distribution models and dynamical system models), and
robust optimization of environmental policies. The talk will also discuss
the recent development of The Evidence Tree Methodology for complex
machine learning applications.

1 Introduction

There are many different ways of conducting scientific research. At one extreme—
which we might call “science-in-the-small”—individual scientists formulate hy-
potheses, perform experiments, gather data, and analyze that data to test and
refine their hypotheses. This approach provides profound scientific understand-
ing, but it tends to yield slow progress, because each individual scientist can
only study a small collection of phenomena limited in time and space. At the
other extreme—which we might call “science-in-the-large”—automated instru-
ments collect massive amounts of observational data, which are then analyzed
via machine learning and data mining algorithms to formulate and refine hy-
potheses. This approach to science can lead to rapid progress, but because it
is driven by data rather than hypotheses, it tends not to result in deep causal
understanding. Progress can be both fast and deep if we can combine these two
approaches to scientific research.

Until the early 1990s, molecular biology was conducted exclusively as science-
in-the-small. But the development of automated sequencing methods and
algorithms for proteins, DNA sequences, and ultimately whole genomes has per-
mitted the rapid development of science-in-the-large. We are now witnessing
a strong and healthy interaction between these two forms of research that is
producing rapid progress.
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Our planet is facing numerous challenges, including global climate change,
species extinctions, disease epidemics, and invasive species, that require the
development of robust, effective policies based on sound scientific understand-
ing. However, in most cases, the scientific understanding is lacking, because
the ecosystem sciences are still in their infancy. Ecology is still dominated by
science-in-the-small. Individual investigators collect observational data in the
field or conduct controlled experiments in order to refine and test hypotheses.
But there is relatively little science-in-the-large. The goal of our research at
Oregon State University is to develop novel computer science methods to help
promote science-in-the-large in the ecosystem sciences to address critical policy
questions.
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Fig. 1. The Ecosystem Informatics Pipeline

Figure 1 shows a conceptual model of the information processing pipeline for
ecological science-in-the-large. Each box corresponds to a computational problem
that requires novel computer science (and often machine learning) research to
solve. Let us consider each problem in turn.

– Sensor Placement. Many novel sensors are being developed including wire-
less sensor nodes and fiber-optic-based distributed sensors. The first decision
that must be made is where to place these sensors in order to most effec-
tively collect data. This problem can be formulated statically, or it can be
considered dynamically, as a form of active learning in which the sensors are
moved around (or new sensors are added) based on information collected
from previous sensors. Among some of the objective functions that must be
considered are (a) maximizing the probability of detecting the phenomenon
(e.g., detecting a rare or endangered species), (b) improving model accuracy
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(as in active learning), (c) improving causal understanding, and (d) improv-
ing policy effectiveness and robustness (which is related to exploration in
reinforcement learning).

– Data Collection. The process of data collection can introduce biases and
errors into the data. For example, the Cornell Lab of Ornithology runs a
large citizen-science project called ebird (www.ebird.org) in which amateur
bird watchers can fill out bird watching checklists and upload them to a web
site. In this case, humans are the “sensors”, and they may introduce several
kinds of noise. First, they introduce sampling bias because they tend to go
bird watching at locations near their homes. Second, even if a bird is present
at a location, they may not detect it because it is not singing and it is hidden
in dense foliage. Third, the humans may misidentify the species and report
the wrong species to ebird.org. Machine learning algorithms need to have
ways of dealing with these problems.

– Feature Extraction. It is almost always necessary to transform the raw
data to extract higher-level information. For example, image data collected
from cameras must be processed to recognize animals and classify them ac-
cording to species. In some applications, such as counting the number of
endangered wolves or bears, it is important to recognize individual animals
so that they are not counted multiple times. A related problem is to track in-
dividuals as they are detected by multiple instruments over time. At Oregon
State, we have been working on identifying the species of arthropods.

– Data Cleaning. As large numbers of inexpensive sensors are placed in the
environment, the quantity of data increases greatly, but the quality of that
data decreases due to sensor failures, networking failures, and other sources
of error (e.g., recognition failures in image or acoustic data). This gives rise
to the need for automatic methods for data cleaning. This is an important
area for machine learning research.

– Model Fitting. The computational task of fitting models to data is a core
problem in machine learning with many existing algorithms available. How-
ever, ecological problems pose several novel challenges. One problem is the
simultaneous prediction of the spatio-temporal distribution of thousands of
species. A simplified view of species distribution modeling is that it is simple
supervised learning, where the goal is to learn P (y|x), where x is a descrip-
tion of a site (elevation, rainfall, temperature, soil, etc.) and y is a boolean
variable indicating whether a particular species is present or absent there.
However, we are often interested in the presence/absence of thousands of
species, and these species are not independent. Species can be positively
correlated (e.g., because they have similar environmental requirements or
because one of them eats the other) or negatively correlated (e.g., because
they compete for the same limited resources). While each species could be
treated as a separate boolean classification problem, it should be possible
to exploit these correlations to make more accurate predictions. This is a
form of very-large-scale multi-task learning. Existing methods are unlikely
to scale to handle thousands of species.
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Another machine learning challenge is to predict the behavior of species.
For example, many bird species are migratory. Ecologists need models that
can predict when the birds will migrate (north or south), what paths they
will take, and where they will stop. It may be possible to formulate this
problem as a form of structured prediction problem.

A third novel machine learning challenge is to fit dynamical systems models
to populations of single or multiple species. This involves fitting nonlinear
differential equations to observations, which is a problem that has received
very little attention in the machine learning community. Such models can
exhibit exponential increases and decreases as well as chaotic behavior, so
this presents formidable statistical challenges.

Figure 1 shows an arrow from model fitting back to sensor placement. This
is intended to capture the opportunity to apply active learning methods to
improve sensor placement based on fitted models.

– Policy Optimization. In many cases, the models that are fit to data be-
come the inputs to subsequent optimization steps. Consider, for example, the
problem of designing ecological reserves to protect the habitat of endangered
species. The goal is to spend limited funds to purchase land that will ensure
the survival (and even the recovery) of endangered species. An important
challenge here is to develop solutions that are robust to the errors that may
exist in fitted models. Can we develop ways of coupling optimization with
model fitting so that the solutions are robust to the uncertainties introduced
throughout the data pipeline?

The arrow leading from policy optimization back to sensor placement
suggests one possible solution to this challenge—position more sensors to
collect more data to reduce the uncertainties in the fitted models.

2 Summary Remarks

Machine Learning has the potential to transform the ecosystem sciences by en-
abling science-in-the-large. Although many problems in ecology are superficially
similar to previously-studied problems (e.g., active learning, density estimation,
model fitting, optimization), existing methods are not directly applicable or do
not completely solve the ecological problems.

The keynote talk will describe three instances of this. First, standard methods
for generic object recognition do not provide sufficient accuracy for recognizing
arthropods. The talk will describe two novel machine learning methods that
can solve this problem and that also work well for generic object recognition
tasks. Second, standard methods for multi-task learning do not suffice to jointly
predict thousands of species. The talk will provide evidence that joint prediction
is important, but no known method can currently solve this problem. Third,
the talk will describe a spatio-temporal Markov decision problem for managing
forests to reduce catastrophic forest fires. In principle, this can be solved by
existing dynamic programming algorithms. But in practice, the size of the state
and action spaces makes existing algorithms completely infeasible.
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I urge everyone to work on these interesting research problems. Given the
ecological challenges facing our planet, there is an urgent need to develop the
underlying science that can guide policy making and implementation. Ecology is
poised to make rapid advances through science-in-the-large. But ecologists can’t
do this alone. They need computer scientists to accept the challenge and develop
the novel computational tools that can make these advances a reality.
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