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Abstract

In this contribution, a concept is presented that combines different simulation paradigms during the engineering phase. These

methods are transferred into the operation phase by the use of data-based surrogates. As an virtual production scenario,

the process combination of thermoforming continuous fiber-reinforced thermoplastic sheets and injection overmolding of

thermoplastic polymers is investigated. Since this process is very sensitive regarding the temperature, the volatile transfer

time is considered in a dynamic process chain control. Based on numerical analyses of the injection molding process, a

surrogate model is developed. It enables a fast prediction of the product quality based on the temperature history. The

physical model is transferred to an agent-based process chain simulation identifying lead time, bottle necks and quality rates

taking into account the whole process chain. In the second step of surrogate modeling, a feasible soft sensor model is derived

for quality control over the process chain during the operation stage. For this specific uses case, the production rejection can

be reduced by 12% compared to conventional static approaches.

Keywords Production engineering · Machine learning · Digital twin · Surrogate modeling · Process chain simulation ·

Cyber physical production systems · Overmolded thermoplastic composites

1 Introduction

In today’s product development, it is a matter of course

to support the product and production engineering by vir-

tual methods. Model-based computer simulations are able

to analyze the material behavior of products and processes

using numerical methods based on finite elements or finite

difference schemes. The utilization of virtual and digital

methods reduces experimental testing and prototyping dur-

ing the product development. Furthermore, sophisticated

simulation models allow a deeper understanding of pro-

cesses and structural behavior and in particular, their inter-

action. If additionally total life cycle impacts need to be

assessed, integrated computational methods are the only

available and adequate tool to analyze different production,
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use and environmental scenarios with respect to the underly-

ing complexity [1]. The more reliable the used methods and

input data are, the more meaningful the scenario assessment

will be.

In contrary to the model-based approaches used for

engineering purposes, mainly data-based machine learning

(ML) algorithms have proven their suitability for industrial

operation purposes. By continuously collecting and pro-

cessing sensor, machine and process data parallel to the

manufacturing, these methods provide an objective, data-

driven process optimization and failure detection [2–4]. In

this context, digital twins are even able to implement a data-

based control of the production [5, 6]. Several approaches

for (virtual) quality gates in manufacturing systems based

on process and machine data can be found for single pro-

cesses, but very sparse approaches for process chains [7].

If process chains are considered, the data-driven models

widely draw on product data such as intermediate and final

product properties. In [8], a digital twin of a composite

part is designed by means of sensor data and an analyt-

ical model. Only for likely critical parts additional finite

element analyses were carried out to improve the digital

twin. For injection molding, usually in-mold sensors and

machine data are used for an adequate quality prediction
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[9, 10]. There exist also recent approaches that do not

require additional sensors by using simulation data from

flow simulations in combination with neural networks to

predict the quality of injection-molded components [11, 12].

However, these approaches concentrate mainly on the single

process and not on a complete process chain.

Therefore, the objective of this paper is to demonstrate a

general concept of how engineering tools and data (i.e., the

knowledge of the system behavior and physical relations)

can be transferred from the planning and engineering phase

into the operation phase to serve as virtual quality gates

or an adaptive process chain control. The proposed model

transfer and the interaction of the simulation models is

shown in Fig. 1.

The starting point of the proposed scheme is given by

a high fidelity simulation using the finite element method

(FEM). FEM is commonly used for a model-based engineer-

ing of production processes. Due to the underlying physical

modeling of material properties and process kinematics,

it is able to compute valid part properties. In this con-

text, the Integrated Computational Materials Engineering

combines methods from computational materials science

and multi-scale mechanics considering the microstructure

of materials and the corresponding effects of process-

ing [13, 14]. Especially, in the field of composite manu-

facturing, virtual process chains are important to predict

structural properties [15]. Furthermore, detailed simulations

allow the prediction of internal temperature distributions

that can hardly be measured to ensure the required tem-

perature conditions during manufacturing [16, 17]. Since

these simulations are usually time consuming and expen-

sive to evaluate [18], a real-time suitable surrogate model

is needed for virtual quality control to stay computational

feasible.

According to [19], surrogate modeling is a technique

that uses the sampled data to build surrogate models that

are able to predict the output of an expensive computer
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Fig. 1 Interaction between simulation models and their functionality

in planning and operation

code at untried points in the parameter space. Within man-

ufacturing, the data for surrogate modeling can be derived

by structured parametric studies based on numerical sim-

ulations (process level) and/or agent-based/discrete event

simulations (process chain/manufacturing system level).

A general procedure for data-driven surrogate modeling of

FEM data is proposed by Han and Zhang [19]. Applica-

tions can be found, e.g. in the field of biomechanics [20]

or composite manufacturing [21]. An open issue in data-

driven modeling of FEM data is its inevitable problem

specificity, which is addressed by an approach of Zimmer-

ling et al. [18]. In the context of this work, the surrogate

predicts the resulting part properties based on the process

parameters.

On higher abstraction levels, process chains and manu-

facturing systems are simulated by means of discrete-event

(DE) and agent-based (AB) models [22]. With respect to

the interdependencies between the single process steps of

the process chain and interactions with further processes

within a factory, the process chain modeling and simu-

lation extends the scope of detailed process simulations.

Extending the perspective from process to process chain

and simultaneously integrating the insights from the process

perspective allows for an evaluation of the whole process

chain. In this way, the dynamic effects of changing a sin-

gle process step (e.g. reduced cycle time or parallelization

of machines) can be evaluated holistically. Furthermore,

including surrogates from detailed process simulations in

the process chain, simulation enables an integrated evalua-

tion of the interactions of parameter variations [23]. Hence,

it is possible to derive an optimal strategy for the con-

trol or evaluate the potential for the specific use case. By

further deploying data-based surrogate models on the pro-

cess chain model, an adaptive process chain control can be

achieved.

The core idea of the concept is to derive an adaptive

process chain control without extensive experimental data

mining by using only engineering data. In the outline of

this paper, the functionality of the concept is demonstrated

on a purely virtual production scenario. However, it is also

possible to combine the simulation-based approach with

other data-driven approaches based on sensor and machine

data in the operation.

2Methods

The presented work is a continuation of preliminary

works on Integrated Computational Product and Production

Engineering (icPPE) [24] and surrogate modeling [17]. In

the following, the main aspects will be discussed in terms of

improved process chain operation.
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2.1 Integrated computational product and
production engineering

Within the concept of icPPE, different simulation paradigms

are combined along the multi-scale analysis of production

systems focusing on both, the product engineering and its

corresponding production processes. In Fig. 2, a schematic

representation of icPPE is illustrated.

It distinguishes between the three levels product, process

and process chain/ factory. At each level, different

simulation methods are used with regard to the desired

level of detail. Product properties such as mechanical

performance (e.g. strength, stiffness) are mainly influenced

by structural parameters (e.g. material orientation, wall

thickness). These quantities are in turn mainly influenced

by the manufacturing process. Therefore, the process

parameters have a significant influence on the structural

parameters and, thus, on the product properties. The

relationship between process and structural parameters is

investigated in a virtual process chain using, e.g. FEM.

Since detailed FEM simulations are time-consuming at

both, product and process level, surrogate (SG) models

enable rapid parameter studies to be carried out with

sufficient physical detail. In conjunction with machine data,

the FEM data obtained at the process level is used as

input for the process chain simulation. At the process

chain/factory level, the physical detail of the processes is

less relevant. Hence, mainly AB and DE simulations are

used. On even higher aggregation levels, e.g. when a factory

represents the lowest system level, also system dynamics

(SD) is applied. Furthermore, the process chains impose

requirements on the factory and vice versa.

As process and product quality are decisive for future

competitiveness of manufacturing, icPPE strives to leverage

data of engineering methods (FEM) and process chain
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Fig. 2 Concept of Integrated Computational Product and Production

Engineering (ICPPE) in accordance with [24]

simulation, to improve manufacturing operation. This is

accomplished by forwarding the detailed quality properties

derived by FEM simulations along multiple scales of

manufacturing. In this context, Hürkamp et al. show the

applicability and potentials of fast and accurate data-driven

surrogates of FEM simulations for the design of process

chains [24] and as virtual quality gates [17]. In addition, Filz

et al. [7] discuss the design and potentials of virtual quality

gates for future manufacturing, considering FEM surrogate

modeling as a promising approach.

2.2 Implementation concept for surrogate-based
icPPE

The implementation of a surrogate-based icPPE for

improved process chain operation is structured as two inte-

grated cyber physical production systems (CPPS). In Fig. 3,

the proposed concept is depicted. For demonstration pur-

poses, it addressees the use case of overmolded thermo-

plastic composite manufacturing described in Section 3.

However, the implementation concept is general applicable

transferable to other use cases.

The partition in two integrated CPPS is on the one hand

due to the continuous interplay between physical world

(process and process chain) and its cyber representative,

i.e. surrogate model, and on the other hand, the integration

of the quality-oriented process-specific surrogate model

within the process chain simulation linking the two cycles.

The complete concept covers eleven steps, which need

to be done consecutively. Steps 1–9 focus on model

training and engineering tasks and 10–12 on deployment

of models respectively manufacturing operation. A detailed

description on implementing a virtual quality gate on

process level based on FEM data as shown in the left cycle

in Fig. 3 (steps 1–4 and 10.1–12.1), can be found in [17].

In general, a structured design of experiment (DoE - 2) on

a FEM simulation (1) is pursued, which serves as a training

set for data-driven surrogate modeling. The surrogate

modeling (3) is based on machine learning approaches,

e.g. random forest and validated against experimental

data. Finally, the surrogate is embedded within a decision

support application, which is parameterized with sensor and

machine data, as a virtual quality gate (10.1–12.1).

The process chain level expands the approach proposed

in the previous study, by forwarding the surrogate model

build on the process level to process chain simulations

(5), e.g. integrated AB and DE simulation. Hereby, the

approach exploits the surrogate models’ property of fast

and accurately predicting the product quality properties

across the design parameter space. By defining thresholds

for the amount or density of weak spots of the spatial

surrogate model, a physics-based and process-parameter

dependent quality rate can be derived, which is integrated

2299Int J Adv Manuf Technol (2021) 117:2297–2307
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Fig. 3 Implementation concept for surrogate-based icPPE

as model parameter within the process chain simulation

(5). As for the virtual quality gate on process level, a

surrogate of a process chain simulation can be used as soft

sensor that captures the dynamics of the underlying process

chain, e.g. expected temperature of the part insert based on

process chain dynamics. This information can be interpreted

as decision support for adaptive process chain control

measures (10.2–12.2), like reheating the organo sheet. In

order to derive the soft sensor, a process chain simulation

is carried out (6), taking into account the operational state

specific quality rate modeled on process level. Analogous

to process level surrogate modeling, a structured DoE on

the process chain simulation (7) is calculated (e.g. change

in ambient temperature, machine failures). Based on the

simulation output, machine learning is applied with one or

more target variables (8). Again, the soft sensor should be

validated within an experimental setup or by supplementary

measurements during production (9).

3 Use case study for themanufacturing of
overmolded thermoplastic composites

Within this contribution, the expanded framework is demon-

strated by means of a manufacturing system for the produc-

tion of overmolded thermoplastic composites. Overmolded

thermoplastic composites are produced in an integrated

manufacturing process, combining thermoforming of con-

tinuously fiber reinforced thermoplastic composite sheets

(organo sheets) and injection molding of a thermoplastic

polymer that is compatible with the organo sheet’s matrix

[25, 26]. In that way, composite structures with high specific

stiffness and strength can be produced on an injection mold-

ing machine, which allows an economic production with

short cycle times.

The quality of the final structure is determined by the

resulting bond strength between organo sheet and injected

polymer since it determines to a large extend its ultimate

strength. Experimental results emphasize that this interface

bond strength depends mainly on the interface temperature

during the process, which is also considered in different

modeling approaches [17, 27, 28]. According to [17], the

contact time

tc =

∫
Tif ≥ T ∗

PP dt , (1)

is a suitable process indicator for the final part quality. It is

defined by the time the interface temperature Tif is greater

than the melting temperature T ∗
PP = 163◦C. Since the

contact time tc is hardly to measure within the process, it

is computed from injection molding simulations using the

Fig. 4 Correlation between contact time tc and bond strength σb [17]
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same process parameters as for the manufacturing of the

testing specimens. In Fig. 4, the correlation between contact

time and experimentally determined bond strength values of

cross tension specimens is depicted. Fig. 5.

It can be seen that the bond strength is strongly correlated

to the contact time and that larger contact times result in

higher bond strength values. Hence, the part quality strongly

correlates with the contact time.

3.1 Process chain for overmolded thermoplastic
composites

A schematic illustration of the process chain for man-

ufacturing overmolded thermoplastic composites and the

corresponding interface temperature Tif is shown in start-

ing from the cutting and stacking (1.), the organo sheets

are heated up from the initial temperature (T0) to the pro-

cessing temperature (2.), which is usually above the melting

temperature Tmelting of the matrix and below the oxida-

tion temperature Toxidation. The heating can either be carried

out in an infrared oven or directly by an in-mold heat-

ing device. The heated organo sheet is then transferred (3.)

by, e.g. a handling robot to the injection molding machine,

where the sheet starts to cool down due to heat convec-

tion. Hereby, it has to be ensured that the organo sheet’s

temperature when leaving the oven is high enough to com-

pensate the cooling [29]. After reaching the final position,

the organo sheet is thermoformed by closing the mold (4.)

and directly afterwards overmolded in the same tool (5.).

After a cooling phase and solidification in the mold, the

part is demolded (6.) and transferred to finishing (7.). In

addition to the ideal temperature distribution (blue curve),

a variability in the course of the temperature might occur

due to different temperature influences in the production

zone. Furthermore, possible failures along the process chain

lead to waiting times that cause too much cooling to ensure

sufficient product qualities.

3.2 Set up of the parametric study

The proposed concept is exemplary investigated for the

structure displayed in Fig. 6.

For the numerical studies, the cavity and the part insert

are discretized by 872,443 4-node tetrahedral elements. The

injection location is placed at the center of the structure.

The numerical parametric study of the injection molding

is performed in Autodesk Moldflow using polypropylene

as injection polymer. All necessary material data are taken

from the Autodesk Moldflow material database [30].

The sampling space is designed in accordance with [17].

In order to achieve a meaningful database of different

Injection

Location

Part 

Insert

Mold

Fig. 6 Tetrahedral mesh of the overmolded thermoplastic structure

used in the numerical studies
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process combinations with minimal computational effort,

a latin hypercube sampling [31] with n = 100 samples

is used. The minimum and maximum values and the

corresponding distribution of the process parameters used in

the parametric study are summarized in Table 1.

The melt temperature of the injected polymer Tinj =

240 ◦C is constant for all simulations. For each of the 100

full-scale simulations, the contact time tc (1) is computed

from the temperature evolution during the simulation and

stored in a database for the subsequent surrogate modeling.

3.3 Data-driven surrogatemodeling of
FE-simulation

In order to run a comprehensive study on quality properties

across the possible design space of process parameters,

a data-driven surrogate model of FE simulation is build.

The surrogate model is trained based on the sampling

data set derived in Section 3.2, taking 80 simulations as

training data and 20 simulations as testing data. The final

surrogate model is then deployed on 1000 further samples

across the parameter space to provide a sophisticated data

set for quality analysis. Due to the importance of the

interface bond strength on the final product quality, as

output feature of the surrogate model the spatial distribution

of tc is considered. As input features, the surface of the

part insert (i.e. tetrahedral mesh with nodal coordinates

x, y, z encompassing 25,351 nodes), the flow rate, mold

temperature and part insert temperature are chosen. In order

to stay computational feasible, the training data is down-

sampled to 20%, which results in a final training data set

that is sized 405,600×7. In contrast, no down-sampling is

applied for the testing data, having a test set dimension

of 507,020×7. Within data pre-processing, the features are

standardized by MinMax scaling in the range of 0 to 1.

Within previous studies, the two data-driven approaches

decision tree (DT), i.e. good fit and fast training / prediction,

and random forest (RF), i.e. best fit, have shown best

performances for surrogate modeling of FE simulation data

[17, 24, 32]. Hence, within this paper, DT and RF are

selected for the data-driven modeling. The modeling is

implemented based on the Python library scikit-learn [33]

using a 5-fold cross-validation. The model parameters of

Table 1 Investigated process parameters and the corresponding

sampling distribution

Process parameter Min Max Distribution

Part insert 20 240 Modified

Temperature in °C Log-normal

Mold temperature in °C 30 80 Uniform

Flow rate in cm3/s 10 100 Uniform

Table 2 Hyperparameter optimization for DT and RF

Method Model parameter Range # Steps Optimum

Decision tree Max depth 1–none 7 200

Min samples leaf 1–10 10 3

Random forest Max depth 10–110 6 50

Min samples leaf 1–5 3 1

# estimators 10–900 8 900

both methods are tuned according to the parameters listed

in Table 2. Here, a wider parameter spectrum is investigated

than in previous studies.

The best-found model parameters in parameter tuning

for R2 are shown in the last column of Table 2. Most of

the parameters (except of amount of estimators for RF)

lie within the defined parameter range, so that an under-

and overfitting should have not been occurred. This is also

reflected within the test data metrics shown in Table 3.

The table shows the scores based on the test data set

including their standard deviation. The metrics R2, mean

absolute error (MAE), mean squared error (MSE) and mean

maximum error (Mean Max Error) reveal the slightly better

performance and in general smaller standard deviation of

RF against DT. However, DT is much faster in training and

prediction than RF, which becomes crucial for real-time

applicability as virtual quality gate in production, especially

for complex parts. For both models, the smallest maximum

error on test data is achieved on sample 96 manufactured

under the process conditions of part insert temperature =

158.85 ◦C, mold temperature = 48.25 ◦C and flow rate =

76.15 cm3/s. Again, RF reaches a better performance with

2.1248 s as minimum max error in contrast to 4.4306 s for

DT. However, such larger errors appear very rarely, which

should not affect the overall decision on product quality.

3.4 Quality analysis

The simulation and consequently the surrogate model yields

a detailed distribution of the contact time tc. Here, we define

the quality of a part based on the quality domains defined by

Table 3 Test data metrics for FEM surrogate modeling based on DT

and RF (test score ± standard deviation)

Metric Decision tree Random forest

R2 0.9868 ± 0.0086 0.9919 ± 0.0077

MAE 0.1278 ± 0.0539 0.1028 ± 0.0549

MSE 0.2199 ± 0.1689 0.1338 ± 0.1425

Mean Max Error 7.3249 ± 1.8929 5.4323 ± 1.7371

Training time 1.39 s 133.37 s

Prediction time 0.05 s 9.27 s

2302 Int J Adv Manuf Technol (2021) 117:2297–2307



Table 4 Classification of quality values

Numerical Range Classification

value

q = 0 – “no bond”

q = 1 tc ≤ 0.4 “poor”

q = 2 0.4 < tc ≤ 1.5 “good”

q = 3 tc > 1.5 “excellent”

Hürkamp et al. [17]. For each value of tc, a discrete numeric

value q is defined in order to distinguish between “poor”,

“good” and “excellent” bond strength values. The discrete

values for the present use case are given in Table 4. The

nodes of the part insert without interface to the polymer are

denoted by q = 0.

In order to derive valuable quality criteria for the whole

part, a specific quality measure needs to be defined that

evaluates if a part will be “okay” (OK) or “not okay”

(NOK). Here, we define the part quality

Qpart = 1 −
|{n|q(n) = 1}|

ntot
with 0 ≤ Qpart ≤ 1 (2)

by the number of nodes that have a poor (q=1) quality. A

value of Qpart = 1 represents a part of perfect quality. If the

areas with poor quality are too large, the structural integrity

is low and hence, the total part quality will be low.

In Fig. 7, five exemplary quality distributions are illustrated.

It can be seen that the number of poor values decreases

with increasing temperature. Furthermore, it is observed that

the quality inside the U-profile is always better than on the

outside. This is due to the fact that the flow path increases and

therefore the part insert and the plastic melt exhibit lower

temperatures and thus, lower bond strength.

3.5 Process chain simulation

In order to address the challenges associated with an

integrated process-process chain modeling and to provide

the needed insights, an integrated AB and DE modeling

and simulation approach is chosen. Core of the modeling

approach is the material flow in the sense of a passive

DE process chain model. The AB modeling principles are

consequently applied to extend the passive material flow

by active objects and their behavior, i.e. machines and

products. Going beyond the logic of passive product entities

that only enter and exit process steps in a conventional DE

model, product agents store a set of parameter values that

interact bidirectionally with machine models. Based on the

parameter values stored in a product agent, modeling an

adaptive machine control becomes feasible (e.g. product-

specific heating time based on arrival temperature before

an oven). Machines change in turn during their processing

sequence the product agent’s parameter values (e.g. part

temperature) or store additional information in the agent

(e.g. part quality).

Within this case study, the process chain model covers

the process steps from Fig. 5. Note that the present use case

represents a rather linear process chain for demonstrations

purposes. The subject to be assessed was how process chain

inherent dynamics affect the quality rate of the overmolding

process. The most critical factor for the quality of the

process is the surface temperature of the part insert at the

injection molding machine. The heating cycle inside the

infrared oven is modeled with a simplified physics-based

approach, where the end temperature of the organo sheet

T1(t) =
P · t

m · c
+ T0 (3)

is calculated via its mass m, its specific heat capacity c,

the initial temperature T0 and a constantly applied heating

power P . The oven is controlled according to the ideal

overmolding cycle without any failures. In this case, the

heated organo sheet is directly transferred into the mold.

During this time (transfer and insertion into the mold), the

organo sheet starts to cool down. Its cooling behavior is

approximated based on an empirical cooling curve that was

measured and parametrized. The current temperature T (t)

T (t) = (T1 − TA) · e−at + TA (4)

depends on the cooling rate a = 0.011 s−1, the ambient

temperature TA and the part temperature after the heating

cycle T1. At this point of the process chain simulation, the

FEM-surrogate model calculates the part quality based on

the arrival temperature at the mold.

For the use case, ten scenarios, each with 10,000 parts

were designed. Within this factorial scenario assessment

five different ambient temperatures of 10, 15, 20, 25 and 30

°C in the production zone and two different machine failure

probabilities of 5% and 10% are combined. The ambient

temperature in the production zone can vary seasonally (e.g.

in summer and winter) and more dynamically over a day

(e.g. open gates upon a delivery). These fluctuations are

also accompanied by the cooling process during the transfer

from the oven into the injection mold. Although, injection

molding is an established manufacturing process for high

production volumes, the process is subjected to infrequent

failures. For the sake of simplicity, it is assumed that

failures only occur during demolding. Those failures in the

injection molding machine model are attributed to clamping

or sticking to the wrong side of the tool. The resulting time

delay at the injection molding machine causes waiting times

at the oven after the heating cycle, which consequently leads

to a longer cooling time and lower arrival temperature at

the mold. Additionally, the part temperature before heating

varies, which in turn affects the temperature after the
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Fig. 7 Exemplary illustration of different qualities based on the com-

puted contact time tc and corresponding quality values computed

from the RF surrogate model: a Tin = 180.28◦C, Qi = 0.8807;

b Tin = 186, 03◦C; Qi = 0.9062, c Tin = 188.80◦C, Qi = 0.9636;

d Tin = 205.53◦C, Qi = 0.9895; e Tin = 219, 09◦C Qi = 0.9929

heating (with constant P and t) cycle. These fluctuations are

for example attributed to direct sunlight exposure, closeness

to a heat source (e.g. the oven itself) or storage conditions.

In Fig. 8, the quality rate is determined for each scenario

with respect to the ambient temperature and the failure

probability. Here, we observe a significant increase of the

quality rate when the mean temperature in the production

zone increases from 10 to 15°C. This behavior indicates

the temperature sensitivity of the production process. Based

on the temperature of the organo sheet when arriving at

the oven and the corresponding waiting times, the product

quality is predicted. In particular, it is determined if a part

will be OK or NOK. In Fig. 9, a map of the resulting

qualities for the standard scenario with 20 °C mean ambient

temperature and a failure rate of 5% is depicted.

From the results, it can be seen that for a perfect

process (total time between leaving oven and starting the

thermoforming process is 12 s) with a defined heating

power of the oven, the product’s quality is ensured

almost temperature independent. Only for relatively cold

sheets below 3.5°C, the quality criterion is not fulfilled.

Furthermore, an increase in tolerable transfer times is

observed with increasing temperatures.

Without the scenario assessment, a constant threshold

would probably be introduced to sort out parts after

a significant downtime. In Fig. 9, an exemplary fixed

threshold of 15 s is drawn to show the potential of the

proposed dynamic, physical modeling. By this threshold,

Fig. 8 Quality rate vs. production zone temperature for failure

probabilities of 5% and 10%

the quality map is divided into three areas. All parts with a

larger transfer time than the threshold are contained in area

(I). Without the physical knowledge from the surrogate, all

parts in this area would be denoted as failure parts and they

would have been sorted out before further processing. Since

the surrogate predicts the quality based on the complete part

temperature history, also larger waiting times would lead to

OK parts, when the initial temperature was large enough. In

this particular example, 12% of the discarded parts would

still be OK. In addition, we observe in area (II) only NOK

parts, although they are under the threshold. Hence, a fixed

threshold could also lead to NOK parts without rejecting

defective parts before processing. Finally, only the parts

contained in area (III) would be denoted as OK parts when

a fixed threshold for the transfer time is used as control

variable. In comparison with the total number of OK parts,

this would extremely narrow down the process window.

Although, the present use case study represents a rather

linear process chain, the installation of physical information

shows an significant impact on the number of accepted or

rejected parts.

The case study underlines the potential of using the

dynamic process chain surrogate modeling approach:

neglecting the (potentially volatile) transfer time as impor-

tant state variable leads to a significant share of NOK parts

(3.6% in the investigated use case). Although, using a fixed

threshold for the transfer can help to reduce the share of

Fig. 9 Quality analysis for a virtual production scenario with mean

T0 = 20◦C and failure probability of 5%
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NOK parts, it leads to a significant amount of parts that

are falsely declared as NOK which eventually results in an

inefficient utilization of resources.

3.6 Transfer into operation

In order to enable an adaptive process chain control (cf.,

Fig. 1 top right), a model-based soft sensor for process

chain control is proposed by transferring the process chain

simulation into operation. This is done analogously to the

surrogate based transfer of FEM simulation into operation

as a virtual quality gate by data-driven surrogate modeling

(cf. Fig. 3, steps 8–12). Drawing on the process chain DoE

in the previous subsection, a solid data base for surrogate

modeling is compiled. The data set covers the above-

described 10 scenarios. Besides the ambient temperature

and failure probability, the temperature at leaving the

oven as well as the transfer time is considered as input

features. Those features are easy to measure in a real

production environment, which makes them appropriate

for the parametrization of the soft sensor to predict the

expected product quality before actual processing of the

organo sheet. For demonstrative purposes, a simple model

benchmark without intensive feature tuning is carried out.

The benchmark encompasses the models DT (max depth:

None; min samples per leaf: 2), logistic regression (LR;

epochs: 400; epsilon: 1E-5; learning rate: line search) and

RF (estimators: 100; no restrictions on tree depth and

minimum samples per leaf). For model evaluation a train-

test-split, i.e. .8/.2, stratified on product quality due to

high class imbalance is done. The final test set includes

57 NOK parts within the summer scenario (30°C ambient

temperature, 5% failure probability) and 437 NOK parts

at winter scenario (10°C ambient temperature, 10% failure

probability).

The surrogate modeling results listed in Table 5 indicate

a high classification accuracy, with no misclassifications

for DT and RF on test data and only a few false positives

for the OK class by the LR approach. According to the

LR model, those 32 misclassified parts would have been

Table 5 Metrics for test data of process chain surrogate modeling

DT/RF LogR

Metric OK NOK OK NOK

True pos. 18321 1679 18321 1647

False pos. 0 0 32 0

Precision 1.000 1.000 0.998 1.000

Recall 1.000 1.000 1.000 0.981

Accuracy 1.000 0.998

manufactured, although it is likely to result in a bad

product quality. Those surrogate models, which still have

to be experimentally validated, can be deployed as a soft

sensor for active decision support on process chain control

based on only a few easy to measure and/or calculate

variables.

4 Conclusion

Within this paper, a novel concept of combining and

transferring different engineering and planning simulation

paradigms into the operation stage by data-driven surrogate

modeling is presented for the production of overmolded

thermoplastic composites. Based on a detailed parametric

study of injection molding simulation, a data-driven

surrogate is developed that is able to predict physical

reliable product qualities based on the given process

parameters. Hereby, RF performs slightly better than DT.

However, DT is much faster in training and prediction

than RF. In order to assess different production scenarios,

the surrogate is transferred into a process chain simulation

to derive process parameter-dependent quality rates. From

the results, it is observed, that for cold production zones

(below 15°C) the quality rate significantly decreases.

This is an interesting finding to be considered for the

production in regions with strong seasonal variations in

temperature. In addition to the planning support, the

model is again transferred into the operation stage by a

second step of surrogate modeling. Once more a parametric

study is conducted, this time based on process chain

simulation. Based on the parametric study, a soft sensor

for adaptive process chain control is derived. The soft

sensor captures process chain dynamics like machine

failures and transfer times. In the investigated use case

example the dynamic model was able to reduce the

production reject of 12%. Furthermore, the dynamic model

enables a real-time decision on material processing, e.g.

reheating, by model-based prediction of the expected

product quality based on easy to measure variables. Hence,

it leads to a better utilization of production resources. The

studied models (DT, RF, LogR) show an overall good

performance.

In the present use case, the part quality is limited to

the evaluation of only one variable (contact time tc). In

real-world production environments, also other variables

such as pressure influence the quality and need to be

introduced in future works. Furthermore, an improvement

of the surrogate modeling may be achieved by adding

model reduction techniques for the data generation and pre-

processing. Eventually, the developed concept needs to be

tested and experimentally validated.
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In summary, this contribution shows the potential of

transferring already well-established methods for engineer-

ing purposes into the operation stage. With sophisticated

simulation models, the main features of the system behav-

ior can be implemented into CPPS already during product

development without large experimental or sensorization

effort. After start of production, of course, it can then be

further improved by continuously accruing production data.
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