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Abstract

In light of recent advances in biomedical computing, big data science, and precision medicine, there is a
mammoth demand for establishing algorithms in machine learning and systems genomics (MLSG), together with
multi-omics data, to weigh probable phenotype-genotype relationships. Software frameworks in MLSG are
extensively employed to analyze hundreds of thousands of multi-omics data by high-throughput technologies. In
this study, we reviewed the MLSG software frameworks and future directions with respect to multi-omics data
analysis and integration. Our review was targeted at researching recent approaches and technical solutions for the
MLSG software frameworks using multi-omics platforms.
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Background
Over the past few years, researchers and scientists have
made remarkable progress in the interdisciplinary fields
of precision medicine, data mining and predictive algo-
rithms, bioinformatics, and computational medicine [1].
Machine learning and systems genomics (MLSG) ap-
proaches integrate multiple data types from multi-omics
data by using data mining and predictive algorithms,
pointing out that the MLSG approaches can support a
more meaningful interpretation of phenotype-genotype
relationships than an analysis using only a single data
type. Therefore, there is an acute need for development
of the MLSG software frameworks that can generate
prediction of a given quantitative or categorical pheno-
type using next-generation multi-omic data [2].
Precision medicine, an emerging field of medicine, is

becoming the cornerstone of medical practices with
prospects of the customization of healthcare, which
means medical decisions, practices, and treatments are
tailored to individual patients [3]. The use of genomic
biomarkers, such as multi-omics data, has played a
major role in precision medicine in oncology and other

chronic diseases such as asthma [4], mental disorders [5, 6],
and diabetes [7–9]. More specifically, patients are divided
into groups by genetic variability and other biomarkers so
that medications may be tailored to individual patients with
similar or related genetic characteristics [10, 11]. For ex-
ample, accumulating evidence reveals that selected single
nucleotide polymorphisms (SNPs) could be used as genetic
markers to influence clinical treatment response and ad-
verse drug reactions for antidepressants in patients with
major depressive disorder [12–14]. With the advent of
technology in multi-omics approaches such as genomics,
proteomics, metabolomics, and epigenomics, we are able to
employ materials or devices that can interact with bio-
logical systems at the molecular level and then target differ-
ent molecules with high precision.
In big data science, machine learning methods are com-

puter algorithms that can automatically learn to recognize
complex patterns based on empirical data [15, 16]. The
goal of an machine learning method is to enable an algo-
rithm to learn from data of the past or present and use
that knowledge to make predictions or decisions for
unknown future events [17, 18]. In the general terms, the
workflow for an machine learning method consists of
three phases including build the model from example in-
puts, evaluate and tune the model, and then put the model
into production in prediction-making. Some of the best-
known algorithms in machine learning methods include
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naive Bayes [19], C4.5 decision tree [20], artificial neural
networks (ANNs) [21–23], support vector machine (SVM)
[24], k-Means [25], k-nearest neighbors (kNN) [26], and
regression [27, 28]. There were some key emerging diag-
nostics studies for various diseases and treatments of sig-
nificance for public health with consideration of machine
learning methods, including applications in mental health
[29–33], cancer [34–38], and pharmacogenetics [39–41].
In this review, we surveyed the MLSG software frame-

works that could enable definite assessment of the
phenotype-genotype interplay status by using multi-omics
platforms. The MLSG software frameworks encompass
the model-based integration (MBI), concatenation-based
integration (CBI), and transformation-based integration
(TBI) approaches (Table 1). Furthermore, we investigated
some potential data reduction and feature selection ap-
proaches that can be leveraged together with the MLSG
software frameworks. Finally, we summarized the future
perspectives with respect to the MLSG approaches.

Model-based integration approach
First, we explored the MBI approach, which generates
multiple models using different data types as training
sets, and then generates a final model from the multiple
models created during the training phase (Fig. 1). One
advantage of the MBI approach is that this approach can
merge predictive models from different data types and
each data type can be assembled from a different set of
patients with same phenotype [42].
In order to identify interactions between different

levels of genomic data associated with certain disease or
phenotype (for example, survival in ovarian cancer), the
MBI approach can integrate multi-omics data, including,
but not limited to, miRNA, methylation, gene expres-
sion, and copy number variation data. The MBI ap-
proach can then conduct the final multi-dimensional
model from a particular machine learning algorithm (for
example, Bayesian networks) with variables from the
best models of each individual genomic dataset. Next,

the MBI approach can compare the predictive power of
the integration model with the one of the individual
model from single level of genomic data to see whether
the integration model can show the improvement. Finally,
the MBI approach can obtain the best multi-dimensional
model of all variables from multi-omics dimension as well
as a balanced accuracy for the final model.
In the literature, the MBI approach encompasses the

following computational frameworks for constructing a
model: a majority voting approach [43], an ensemble clas-
sifier approach [44], and probabilistic causal networks
[45]. In addition, we can employ the Analysis Tool for
Heritable and Environmental Network Associations meth-
odology, which is a suite of analysis tools for integrating
multi-omics data [46].

Probabilistic causal network framework
In order to integrate highly dissimilar types of data, we
can leverage Bayesian networks that are one type of
probabilistic causal networks [47]. Bayesian networks are
directed acyclic graphs where the edges of the graph are
represented by conditional probabilities, which define
the distribution of states of each node given the state of
its parents [47]. In Bayesian networks, each node charac-
terizes a quantitative trait that can be a genomic factor
(such as variation in DNA, gene expression, methylation,
metabolite, and protein). These conditional probabilities
represent not only relationships between genomic factors,
but also the stochastic nature of these relationships. By as-
suming the observed data as a function of our prior belief,
the Bayes formula is used to determine the likelihood of a
Bayesian network model. Because the number of potential
network structures grows super-exponentially with the
number of nodes, it is infeasible to find the best model by
an exhaustive search of all possible structures. Therefore,
we can utilize Monte Carlo Markov Chain simulation [48]
to pinpoint probably a huge amount of different plausible
Bayesian networks, which are then integrated to accom-
plish a consensus network model. In the beginning, there

Table 1 Summary, strength, and limitation of each method of machine learning and systems genomics (MLSG) software frameworks

Software framework Summary Strength Limitation

Model-based
integration (MBI)

Multiple predictive models are generated
by using various multi-omics data types;
then a final predictive model is generated
by using the multiple models.

Predictive models can be consolidated from
various multi-omics data types, and each data
type can be gathered from a various set of
patients with same phenotype.

It may be challenging to avoid
overfitting.

Concatenation-based
integration (CBI)

Multiple data matrices of different
multi-omics data types are incorporated
into a large input matrix; then a predictive
model is generated by using the large
input matrix.

It is fairly easy to leverage various machine
learning methods for analyzing continuous
or categorical data once a large input matrix
is formed.

It may be challenging to
combine a large input matrix.

Transformation-based
integration (TBI)

Datasets for various multi-omics data types
are first converted into intermediate forms,
which are united into a large input matrix;
then a predictive model is generated by
using the large input matrix.

Unique variables such as patient identifiers
can be used to link multi-omics data types
and integrate a variety of continuous or
categorical data values.

It may be challenging to
transform into intermediate
forms.
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is a null network. Then, slight arbitrary changes are made
to the network by flipping, adding, or deleting individual
edges. Ultimately, accepting those changes will lead to an
overall improvement by fitting the network to the data. In
order to avoid over-fitting owing to the addition of new
parameters, the Bayesian information criterion score [49]
can be employed to assess whether a change improves the
network model.

Ensemble classifier framework
In order to reduce the variance caused by the distinct-
iveness of a single genomic factor, Shen and Chou
employed ensemble classifier models to integrate mul-
tiple classifiers, where each of those classifiers was based
on individual genomic factor [50]. Thus, ensemble clas-
sifier models were able to obtain a more concrete con-
cept in classification than a single classifier. The final
output of the ensemble classifier model was the
weighted fusion of the outputs generated by the individ-
ual basic classifiers. The weighted factor was assigned
with the value of the success rate obtained by the indi-
vidual basic classifier. Here, Shen and Chou adopted the
optimized evidence-theoretic K-nearest-neighbors algo-
rithm for the basic classifier [50].

Concatenation-based integration approach
Second, we investigated the CBI approach, which com-
bines multiple data matrices for each dataset into one
large input matrix before constructing a model (Fig. 2).

One advantage of the CBI approach is that, after we de-
termine how to combine all of the variables into one
matrix, it is relatively simple to employ a variety of
machine learning methods for analyzing continuous or
categorical data [42].
In the literature, the CBI approach encompasses the

following computational frameworks for constructing a
model: Bayesian networks [51], multivariate Cox LASSO
models [52], grammatical evolution neural networks
[53], iCluster [54], Bayesian correlated clustering [55],
and Bayesian consensus clustering [56]. In addition, We
can consider some of the best-known machine learning
algorithms including naive Bayes [19], C4.5 decision tree
[20], ANNs [21–23], SVM [24], k-Means [25], kNN [26],
and regression [27, 28]. Depending on the number of
variables in the data matrix, we can also employ data
reduction and feature selection methods as described
below.
In order to assess response to cancer therapeutics such

as gemcitabine, Fridley et al. employed a Bayesian inte-
grative model, which combines the ideas of Bayesian
pathway analysis with Bayesian variable selection using
stochastic search variable selection [51]. They employed
two various high-throughput multi-omics datasets, such
as mRNA expression and SNPs data, which were inte-
grated into one large input matrix [51]. Fridley et al. re-
ported that the Bayesian integrative model had greater
sensitivity to detect genomic effects in the drug gemci-
tabine, as compared to the traditional single data type
analysis [51].
Furthermore, instead of a single data type, Shen et al.

implemented the iCluster framework to carry out
cancer subtype discovery in glioblastoma using three
multi-omics data types such as copy number data,
mRNA expression data, and methylation data [54]. The
iCluster framework is a CBI method that can simultan-
eously accomplish both data integration and dimension
reduction to combine multi-omics data into one large
input matrix [54]. Shen et al. revealed three distinct
integrated tumor subtypes by using iCluster and multi-
omics data [54].

Fig. 1 A flowchart for the model-based integration (MBI) software framework

Fig. 2 A flowchart for the concatenation-based integration (CBI)
software framework
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Transformation-based integration approach
Third, we assessed the TBI approach, which transforms
each dataset into an intermediate form, such as a graph
or a kernel matrix, and then merges multiple graphs or
kernels into one before constructing a model (Fig. 3).
One advantage of the TBI approach is that this approach
can be employed to integrate a variety of continuous or
categorical data values if the data contain unique vari-
ables such as patient identifiers for linking multi-omics
data types [42].
In the literature, the TBI approach encompasses the

following statistical frameworks for constructing a
model: a kernel-based integration method [57] and a
graph-based semi-supervised learning method [58]. The
TBI approach investigates whether there is a relevant
intermediate representation, such as a kernel or graph,
for each multi-omics data type.
In order to find metabolic consequences underlying

body weight change, Wahl et al. implemented a weighted
correlation network approach [59], which was inferred
using the Gaussian graphical model [60]. Instead of a
single data type, they leveraged two different high-
throughput multi-omics datasets, such as serum metabo-
lomics and whole blood gene expression [59]. Wahl et al.
first clustered multi-omics data into intermediate forms,
namely modules of closely connected molecules, and then
constructed a partial correlation network from the mod-
ules. Their analysis revealed that four metabolite and two
gene expression modules were significantly associated
with body weight change, indicating an association of
long-term weight change with serum metabolite concen-
trations [59].

Data reduction and feature selection approach
Accounting for models is not a trivial task because even
a relatively small set of factors results in the large num-
ber of possible models [61]. For example, if we study 10

factors, then these 10 factors yield 210 possible models.
The purpose of data reduction and feature selection ap-
proaches is to find a subset of factors that maximizes
the performance of the prediction model, depending on
how these methods incorporate the feature selection
search with the classification algorithms. There are two
data reduction and feature selection approaches including
extrinsic approaches (which use information external to
the data set itself ) and intrinsic approaches (which use the
data set and some analytical technique for filtering). The
extrinsic approaches, such as Biofilter [62], employ prior
knowledge that is accessible in the public domain. Add-
itionally, the intrinsic approaches encompass factor
analysis [63], ReliefF [64], chi-square statistics, principal
component analysis [65], and genetic algorithms [66].
Furthermore, a hybrid approach, which combines the

information-gain method and the chi-squared method,
is designed to reduce bias introduced by each of the
methods [67]. Each feature is measured and ranked ac-
cording to its merit in both methods. The measurement
of the merit for the two methods is defined as follows.
The information-gain method measures the decrease in
the entropy of a given feature provided by another
feature, and the chi-squared method is based on Pear-
son chi-squared statistic to measure divergence from
the expected distribution. Next, all features are sorted
by their average rank across these two methods. After
the features are ranked, the classifiers are utilized to
add one feature at a time based on its individual
ranking and then select the desired number of the
top ranked features that provides the best predictive
performance, respectively.
Moreover, in a wrapper-based feature selection ap-

proach, the feature selection algorithm acts as a wrapper
around the classification algorithm. The wrapper-based
feature selection approach conducts best-first search for
a good subset using the classification algorithm itself as

Fig. 3 A flowchart for the transformation-based integration (TBI) software framework
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part of the function for evaluating feature subsets [68, 69].
Best first search starts with empty set of features and
searches forward to select possible subsets of features
by greedy hill-climbing augmented with a backtrack-
ing technique [18].

Future perspective
The MLSG modeling is essential to root out the false
positive candidate genes discovered at the current asso-
ciation analyses by using meta-analysis, epistasis analysis,
and pathway models [13]. Using multi-omics data not
only could take care of missing information from any
single data source, but also could help bridge the gap be-
tween phenotypes and more comprehensive biological
regulation models [70]. In future research, models in
MLSG will be established to predict the probability of
drug efficacy to guide clinicians in choosing medications.
In order to establish models for predicting drug efficacy,
techniques in MLSG may provide a plausible way to pre-
dict drug efficacy in therapy. Finally, data analysis and
integration in MLSG may play a key role in weighing
gene–gene and gene–environment interactions.

Conclusions
In this study, we reviewed several recent findings and
relevant studies in terms of the MLSG software frame-
works. The work also underscores the importance of
techniques in MLSG to track down a greater diversity of
populations in the clinical settings of diseases and their
treatments. In fact, facilitating the MLSG tools based on
multi-omics data plays a pivotal role, economically and
clinically, in predicting the possible outcomes of diseases
and treatments. Future research using the MLSG ap-
proaches is needed in order to weigh the interplay among
clinical factors and multi-omics data.
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