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Multiple myeloma (MM) affects ~500,000 people and results in ~100,000 deaths annually,

being currently considered treatable but incurable. There are several MM chemotherapy

treatment regimens, among which eleven include bortezomib, a proteasome-targeted

drug. MM patients respond differently to bortezomib, and new prognostic biomarkers are

needed to personalize treatments. However, there is a shortage of clinically annotated MM

molecular data that could be used to establish novel molecular diagnostics. We report

new RNA sequencing profiles for 53 MM patients annotated with responses on two similar

chemotherapy regimens: bortezomib, doxorubicin, dexamethasone (PAD), and

bortezomib, cyclophosphamide, dexamethasone (VCD), or with responses to their

combinations. Fourteen patients received both PAD and VCD; six received only PAD,

and 33 received only VCD. We compared profiles for the good and poor responders and

found five genes commonly regulated here and in the previous datasets for other

bortezomib regimens (all upregulated in the good responders): FGFR3, MAF, IGHA2,

IGHV1-69, and GRB14. Four of these genes are linked with known immunoglobulin locus

rearrangements. We then used five machine learning (ML) methods to build a classifier

distinguishing good and poor responders for two cohorts: PAD + VCD (53 patients), and

separately VCD (47 patients). We showed that the application of FloWPS dynamic data

trimming was beneficial for all ML methods tested in both cohorts, and also in the previous

MM bortezomib datasets. However, the ML models build for the different datasets did not

allow cross-transferring, which can be due to different treatment regimens, experimental

profiling methods, and MM heterogeneity.
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INTRODUCTION

Multiple myeloma (MM) is a hematological cancer which arises
from abnormal antibody producing white blood plasma cells (1).
MM affects approximately 500,000 people and results in
~100,000 deaths annually (2, 3) being currently considered
treatable but rarely curable (4, 5). There are several MM
chemotherapy treatment regimens currently in use, among
which eleven include bortezomib (6) (Table 1). Bortezomib is
a targeted drug that specifically binds and inhibits 26S
proteasome, thus affecting proteolytic degradation pathways
(20). Patients with MM respond differently on bortezomib-
containing treatment schemes (21), and many patients develop
adverse effects including neuromuscular and cardiovascular
toxicity (22). Thus, new prognostic biomarkers are needed to
personalize treatments with bortezomib (21).

High-throughput gene expression data including RNA
sequencing profiles can be used for finding effective cancer
biomarkers (23, 24). There is a shortage now for clinically
annotated molecular profiles of MM that could be used to
establish novel molecular diagnostics for most of the current
clinical treatment regimens. For several regimens with
bortezomib, MM gene expression profiles had been previously
established and published for patients who were classified as
either responders or non-responders. For example, in a study
(25) using Affymetrix Human Genome U133 expression
microarrays, 169 MM profiles were published for 85 responder
patients and for 84 non-responders on monotherapy with
bortezomib (26). In another paper (27) an Affymetrix Human
Exon 1.0 ST Array expression dataset was published with the 33
responder and 28 non-responder profiles for the bortezomib
monotherapy followed by autologous stem cell transplantation
(ASCT) (28). However, monotherapy with bortezomib is not
currently a recommended option for the treatment of MM due to
its lower efficacy compared to combinational therapies (6). For
one of the options currently in clinical use for the MM namely
bortezomib + thalidomide + dexamethasone scheme, there is a
publicly available dataset (29) obtained using Affymetrix Human
Genome U133 Plus arrays for the 69 responder and 49 non-
responder patients (28). Other examples account for the studies
of bortezomib, doxorubicin, and dexamethasone (PAD)

chemotherapy regimen at Myeloma Institute for Research and
Therapy (55 responders and 153 non-responders) (30–40), and
during Dutch-Belgian HOVON project (30–32, 41–44), where 94
responders and 59 non-responders were investigated; for both
studies Affymetrix microarrays were used.

In this study we report new RNA sequencing profiles for 58
(53 after mapped reads threshold filtering) MM patients
annotated with the documented responses on two chemotherapy
regimens that include bortezomib: PAD, or bortezomib,
cyclophosphamide, and dexamethasone (VCD). These regimens
are similar in their composition and differ in the presence of
doxorubicin that interferes with the DNA replication by
intercalating with the nucleobases (45) or cyclophosphamide
that produces crosslinks between the DNA strands (46). Both
treatment regimens showed clinical benefit and were accepted as
first-line treatment of multiple myeloma internationally and in the
Russian Federation (Table 1). To our knowledge, this is the
first annotated RNA sequencing molecular dataset for the
PAD and VCD regimens of MM chemotherapy. In addition, the
current profiles were obtained using the same protocols,
equipment and reagents as for the ANTE database of RNA
sequencing profiles for healthy human tissues and are, therefore,
fully compatible with the enclosed eleven profiles for the normal
CD138+ cells (47).

The MM biosamples investigated here were taken prior to the
first-line chemotherapy treatments and subjected to RNA
sequencing. Following treatment, the patients were clinically
characterized to assess clinical responses according to the
International Myeloma Working Group. Totally, 11 high-
quality profiles were obtained for the “complete responders”
(CR), 17 for “very good partial responders” (VGPR), 12 for
“partial responders” (PR), and 13 for “minimal responders”
(MR), where CR + VGPR can be considered good responders
and PR + MR—poor responders. Among them, 14 patients
received both PAD and VCD treatments (3–12 courses,
sequentially), 33 received only VCD (3–12 courses) and 6—
only PAD (4–6 courses).

We then used enhanced algorithms for five machine learning
(ML) methods to build a classifier distinguishing good and poor
treatment responders: support vector machines (SVM),
Tikhonov (ridge) regression (RR), binomial naïve Bayes (BNB),

TABLE 1 | Bortezomib containing chemotherapy regimens currently in use for the first-line treatment of multiple myeloma.

Chemotherapy regimen Primary therapy for transplant

candidates

Primary therapy for non-transplant

candidates

Bortezomib + Doxorubicin + Dexamethasone (PAD) yes (7) no

Bortezomib + Cyclophosphamide + Dexamethasone (VCD) yes (8, 9) yes (8, 10)

Bortezomib + Lenalidomide + Dexamethasone yes (11) yes (12)

Daratumumab + Bortezomib + Lenalidomide + Dexamethasone yes (13) no

Bortezomib + Thalidomide + Dexamethasone yes (14) no

Daratumumab + Bortezomib + Cyclophosphamide + Dexamethasone yes (15) no

Daratumumab + Bortezomib + Thalidomide + Dexamethasone yes (16) no

Bortezomib + Thalidomide + Dexamethasone + Cisplatin + Doxorubicin +

Cyclophosphamide + Etoposide (VTD-PACE)

yes (17) no

Daratumumab + Bortezomib + Melphalan + Prednisone no yes (18)

Daratumumab + Bortezomib + Cyclophosphamide + Dexamethasone no yes (15)

Bortezomib + Dexamethasone no yes (19)
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random forest (RF) and multi-layer perceptron (MLP). The best
result for full PAD+VCD cohort (n = 53) was produced by BNB
method (AUC 0.84, sensitivity >0.8, specificity >0.84), and for
the VCD cohort (n = 47) by the MLP method (AUC 0.89,
sensitivity >0.87, specificity >0.83). In both optimal solutions,
FloWPS dynamic data trimming method (26, 48, 49) was used to
reduce data dimensionality. We also showed that the same
approach was effective for classifying other annotated MM
datasets with different bortezomib treatment regimens. We also
compared gene expression profiles for the good and poor
responders and found five genes commonly regulated here and
in the previous datasets (all upregulated in the good responders):
FGFR3, MAF, IGHA2, IGHV1-69, and GRB14.

MATERIALS AND METHODS

Clinically Annotated Biosamples
From March 2016 till June 2018, we collected 58 biosamples of
bone marrow cells enriched for the presence of CD138-
expressing mononuclear cells, isolated for the patients
diagnosed with multiple myeloma (MM) and prescribed with
further first-line chemotherapy treatments according to PAD
and/or VCD regimens. The MM patients were 29–78 years old,
mean age was 58 y.o., 31 male and 27 female patients
(Supplementary Table 1). To isolate mononuclear cells, we
used Ficoll Paque Plus medium (Sigma) according to the
manufacturer’s recommendations. CD138+ cells fractions were
obtained using magnetic granules coated with CD138-specific
human antibodies MicroBeads (Miltenyi Biotec) and MS
Columns (Miltenyi Biotec), according to the manufacturer’s
recommendations. Cells were counted by Scepter™ 2.0
Handheld Automated Cell Counter (Merck Millipore) and
immediately subjected to RNA extraction.

In parallel, a set of normal samples of CD138+ mononuclear
cells was isolated from eleven 25–42 y.o. (mean age 32 y.o.; five
males and six females) healthy volunteers as described in (47).

In all tumor related CD138+ experimental fractions the
content of MM cells varied between 45 and 97%, as estimated
by the pathologist using BD FACSCanto II flow cytometer
(Becton Dickinson, USA) and phycoerythrin-conjugated anti-
CD138 antibodies. This fraction was then subjected to RNA
sequencing with approximately 30 million sequencing reads per
library. In parallel, the patient treatment responses on
bortezomib, doxorubicin, and dexamethasone (PAD) or
bortezomib, cyclophosphamide, and dexamethasone (VCD)
regimens, or their combinations, were registered and
documented. Among them, 17 patients received both PAD and
VCD treatments (3–12 courses, sequentially), 36 received only
VCD (3–12 courses), and 5-only PAD (4–6 courses). Totally, 13
RNA sequencing profiles were obtained for the “complete
responders” (CR), 17 for “very good partial responders”
(VGPR), 14 for “partial responders” (PR), and 16 for “minimal
responders” (MR), Supplementary Table 1. Moreover, for two
poor responder cases (patients 111 and 115) we isolated
MM mononuclear CD138+ cells following tumor relapse on

PAD + VCD treatment and performed RNA sequencing
(Supplementary Table 1).

For all the biosamples, informed written consents to
participate in this study were collected from the patient’s legal
representatives. The consent procedure and the design of
the study were approved by the ethical committees of the
Sechenov Moscow First Medical University, of the Clinical
Center Vitamed (Moscow), and of the National Research
Center for Hematology (Moscow, Russia).

Preparation of Libraries and RNA
Sequencing
For RNA extraction, cells were resuspended in TRI Reagent (MRC)
and then Direct-zol RNAMiniPrep (Zymo Research) was used for
theRNAextraction.RNAwasquantifiedusingNanodrop (Thermo
Fisher Scientific), ethanol-precipitated, and stored in liquid
nitrogen until sequencing. For library preparation, RNA Integrity
Number (RIN) was measured using Agilent 2100 bioanalyzer.
Agilent RNA 6000 Nano or Qubit RNA Assay Kits were used to
measure RNA concentration. For depletion of ribosomal RNA, we
used KAPA RNA Hyper with RiboErase Kit (KAPA Biosystems).
Different adaptors were used for multiplexing samples in one
sequencing run. Library concentrations and quality were
measured using Qubit ds DNA HS Assay kit (Life Technologies)
andAgilentTapestation (Agilent). RNA sequencingwas performed
using Illumina HiSeq 3000 equipment for single end sequencing,
50 bp read length, for approximately 30 million raw reads per
sample.Data quality checkwas conducted using Illumina SAV.De-
multiplexing was performed using Illumina Bcl2fastq2 v 2.17
software. In parallel, we also isolated fractions of control CD138+
cells from eleven healthy volunteers and subjected them to RNA
sequencing using the same protocol, equipment and reagents. The
healthy donor profiles were published previously as part of the
ANTE atlas of RNA sequencing data in healthy tissues (47).

Processing of RNA Sequencing Data
RNA sequencing FASTQ files were processed with STAR aligner
(27) in ‘GeneCounts’ mode with the Ensembl human
transcriptome annotation (Build version GRCh38 and
transcript annotation GRCh38.89). Ensembl gene IDs were
converted to HGNC gene symbols using Complete HGNC
dataset (https://www.genenames.org, database version of July
13, 2017. In total, expression levels were established for 36,596
annotated genes with corresponding HGNC identifiers.
Additional quality control (QC) metrics for obtained data were
generated using NCBI MAGIC software (28, 49, 50). All metrics
and detailed protocol for each sample can be found in
Supplementary Table 2.

Data Clustering
‘1’ was added to all raw gene counts prior to cluster analyses, to
avoid zero expression values, as described by Dillies et al. (51),
the gene expression data were merged into single datasets and
quantile normalized (52). Hierarchical clustering was performed
using R ward.D2 method. The dendrogram was visualized using
custom R script.
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Dataset Preparation for Machine Learning
(ML) Applications
According to (26, 48, 49), the preparation of datasets for the
analysis included several steps: (i) normalization of expression
levels using the DESeq2 method (51); (ii) finding top 30 marker
genes having the highest AUC values for discriminating good
and poor responder cases; (iii) performing the leave-one-out
(LOO) cross-validation procedure to identify robust core marker
gene set that will be used for building the ML models. The latter
core marker gene set is an intersection of top 30 marker gene sets
for all combinations of but one samples (26, 28, 48, 49).

ML Applications
Although modern ML applications in clinical cancer genomics
may rely on deep learning methods (53–55), they require large
preceding case cohorts (56), which was not the case for neither of
the MM expression datasets under investigation. Thus, to further
characterize them we used several non-deep ML methods
implemented in the Python sklearn library (56).

The ML analysis of the experimental MM profiles was
performed in two modes. First—when all 53 patients were
included whose gene expression profiles passed the quality
control (PAD+VCD cohort). Second, when 47 patients were
included who had either only VCD or combination of PAD and
VCD, but not only PAD (VCD cohort).

For each ML method we used a data trimming/preprocessing
step using FloWPS method (R package flowpspkg.tar.gz) to
increase robustness and efficiency due to individual sample-
specific selection of training dataset (26, 48, 49). Among the
MLmethods, we used linear support vector machines (SVM) and
ridge regression (RR) with default parameter settings for the
sklearn package. Additionally, we applied random forest (RF),
binomial naïve Bayes (BNB), and multi-layer perceptron (MLP)
with the settings, which previously showed the best performance
for building cancer responder classifiers (26). For RF these
settings were n_estimators = 30, criterion = ‘entropy’. For BNB:
alpha = 1.0, binarize = 0.0, and fit_prior = False. For MLP:
hidden_layer_sizes = 30, alpha = 0.001. To compensate possible
effect of unequal number of responder and non-responder samples,
all SVM and RF calculations were done with setting class_weight =
‘balanced’ and class_weight = ’balanced_subsample’, respectively.
All other parameters were used with the default settings.

Data Records
MM gene expression profiles were deposited to Gene Expression
Omnibus database (GEO) under accession number GSE159426.
The data is provided as a matrix of raw counts as produced by
STAR. The mapping statistic for the corresponding dataset is
shown in Supplementary Table 2. The RNA sequencing profiles
for healthy CD138-positive controls were deposited in GEO
database with accession number GSE120795.

Code Availability
R code for building dendrograms with bar plots is freely available on
Gitlab at: https://gitlab.com/oncobox/watermelon_multisection/

blob/master/utils/gallow_plot.R. Flowpspkg.tar.gz is available on
Gitlab at: https://gitlab.com/borisov_oncobox/flowpspkg.

RESULTS AND DISCUSSION

Initial Analysis of RNA Sequencing Data
Primary RNA sequencing data were characterized in detail with
the NCBI MAGIC software (57) (Supplementary Table 2) and
analyzed to assess if the profiles obtained are congruent with the
biological nature of the biosamples under study. To this end we
mixed the MM data obtained here with the profiles obtained by
us using the same protocols, equipment and reagents for eleven
samples of CD138+ cells of healthy volunteers (47). We
performed hierarchical clustering analysis and observed that in
line with the biological significance with one exception the
norms formed a compact cluster on the dendrogram separately
from the cancers (Figure 1). Furthermore, the outstanding
normal profile had relatively low number of sequencing reads
(Figure 1) and didn’t meet the previously established quality
control (QC) criterion for this RNA sequencing protocol of
having at least 2.5 million uniquely gene-mapped reads per
library (47). This established threshold effectively marked
samples with low quality values of other QC metrics, e.g.
proportion of genomic counts, high rate of mismatches,
number of reads spanning splice junction, high percentage of
ribosomal counts (47). Filtering of the profiles that didn’t meet
mapped-reads QC resulted in a tight clustering both on the
dendrogram and on the principal component analysis (PCA)
plot and removed healthy outlier (Figures 2A, B). However, the
good (CR + VGPR) and poor (PR + MR) MM responders
showed mixed trend and didn’t form any response-specific
clusters (Figures 2C, D).

Building of ML-Assisted Classifiers for
VCD MM Responders and
Non-Responders
For our further analyses we used molecular profiles that passed
mapped-reads QC and represented 53 MM patients
(Supplementary Table 1), where 28 were classified as the good
(CR + VGPR) and 25 as the poor (MR + PR) responders.

Reducing data dimensionality in disproportionately rich
datasets is required for statistically justified tests (49). Prior to
using machine learning (ML) approaches, we performed feature
selection procedure to identify core marker gene expression set
comparable in size to the number of the patient cases under analysis
(26, 28). To this endwe selected themost informative fractionof the
initial data that can distinguish between the good and poor
treatment responder classes using a leave-one-out-based method
(48). Because of the size of our MM dataset (n = 53 for full cohort
and47 forVCD) the n-fold cross-validation scheme is too rough for
such a limited dataset, and the leave-one-out (i.e., 53/47-fold cross-
validation approach for full/VCD cohort, respectively) is the best
way to obtain more accurate results.

For each clinical case i = 1,… 53/47, we determined the top 30
marker genes that distinguished responder and non-responder
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cases in a sub-dataset that contains all samples but i. For all 52/46
such sub-datasets each having 52/46 cases, we interrogated each
gene taken one by one and obtained the set of top 30 genes
showing the highest ROC AUC values for the difference between
responder and non-responder profiles. Area under the ROC
curve (AUC) is the universal metric of a biomarker robustness
depending on its sensitivity and specificity (28). It varies from 0.5
till 1, and the standard discrimination threshold is typically set as
0.7, where the items with greater AUC are thought high-quality
biomarkers (58). AUC is broadly used for scoring of molecular
biomarkers in oncology (23, 59–62).

The final list of core marker genes was then obtained by
intersecting top 30 gene sets for all 53/47 sub-datasets. By using
this procedure, we obtained a set of 8 core marker genes whose
expression was characteristic for the MM patient (non)responder
cohort (Figures 3, 4; Table 2, Supplementary Tables 3, 4).

Interestingly, many of those genes were previously reported as
cancer biomarkers. For example, gene ARPC2 is prognostic
biomarker in ovarian carcinomas (65). Gene KLHDC7B is
regulated by interferon signaling pathway (66) and was
previously published as the methylation marker in breast

cancer (67) and also poor prognosis biomarker in triple
negative breast cancer (68) and laryngeal cancer (69). OSR2
gene is methylation marker in gastric cancer (70) and TRIM9 was
reported as cell-free DNA methylation marker of metastatic
breast cancer (71). Finally, TSSC4 gene is located in 11p15.5

locus, an important tumor-suppressor gene region which
alterations are linked with the Beckwith–Wiedemann
syndrome, Wilms tumor, rhabdomyosarcoma, adrenocortical
carcinoma, and lung, ovarian, and breast cancer (https://www.
genecards.org/cgi-bin/carddisp.pl?gene=TSSC4).

To improve performance of ML, we used a recent data
preprocessing/trimming technique termed floating-window
projective separator (FloWPS). This method increases AUC for
most of ML methods in most of the clinically annotated gene
expression datasets investigated (26, 48, 49). FloWPS improves
the classifier robustness by performing dynamic data trimming
and selecting sample-specific sets of relevant genes to prevent
extrapolation in the feature space (described in detail in
Supplementary Text 1). It prevents extrapolation in the
feature space by excluding the features that cause such
extrapolation. Second, it selects only k nearest neighbors for

FIGURE 1 | The hierarchical clustering dendrogram of all experimental RNA sequencing profiles of the control and multiple myeloma samples. Gene expression data

were used to calculate Euclidian distances between the samples. Color indicates the sample type. The lower scale indicates the number of uniquely mapped reads.

QC denotes the quality control threshold of 2.5 million uniquely mapped reads.
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the training dataset to build a ML model similarly to the kNN
method (72) to avoid confusing interference from too distant
points from the training dataset in the feature space.

We then built binary classifiers of MM response on PAD and
VCD regimens using five ML methods: linear support vectors
machine (SVM) (50, 73, 74), random forests (RF) (75), ridge
regression (RR) (76), binomial naïve Bayes (BNB) (77), and
multi-layer perceptron (MLP) (52, 74, 78). We checked
performance of these methods with and without FloWPS.
Cross-validation of the results for every method was done
using the leave-one-out approach to calculate quality metrics
such as AUC, sensitivity and specificity. The results are shown in
Figures 5, 6 depending on different values of B, a relative balance
factor for false positive and false negative errors. For all ML
methods, application of FloWPS increased quality of the
classifiers built as reflected by AUC metric (Figures 5, 6).
Taking together the three criteria of AUC, sensitivity (Sn)
and specificity (Sp), the optimal solution was provided

by the BNB method with FloWPS (AUC = 0.84) for the
full cohort, and by MLP method with FloWPS (AUC = 0.89)
for the VCD cohort.

Comparison With Other Publicly Available
Gene Expression Datasets With Known
MM Response to Bortezomib-Containing
Chemotherapy Regimens

We found seven publicly available MM datasets containing gene
expression profiles annotated by clinical responses to the different
bortezomib containing treatment schemes (25, 27–29, 32)
summarized here on Table 3. Among them, only two
chemotherapy scheme (bortezomib + thalidomide +
dexamethasone) and PAD are currently accepted by the NCCN
guidelines (79).All those alternativedatasetswereobtainedbyusing
expression microarrays whereas RNA sequencing that can be
considered gold standard of cancer transcriptomic analyses (80)

A B

DC

FIGURE 2 | (A) The hierarchical clustering dendrogram of QC-passed experimental RNA sequencing profiles of the control and multiple myeloma samples. Gene

expression data were used to calculate Euclidian distances between the samples. The color markers indicate the sample types. The lower scale indicates the

number of uniquely mapped reads. ‘QC’ denotes the quality control threshold of 2.5 million uniquely mapped reads. (B) PCA for QC-passed experimental RNA

sequencing profiles of the control and multiple myeloma samples. The color markers indicate the sample types. (C) The hierarchical clustering dendrogram of QC-

passed experimental RNA sequencing profiles of the multiple myeloma samples. Gene expression data were used to calculate Euclidian distances between the

samples. The color markers indicate the response. The lower scale indicates the number of uniquely mapped reads. ‘QC’ denotes the quality control threshold of

2.5 million uniquely mapped reads. (D) PCA for QC-passed experimental RNA sequencing profiles of the multiple myeloma samples. The color markers indicate

the response.
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was used here for the first time to characterize PAD and VCD
treatment efficiencies.

When processed in the same way as the current experimental
dataset to apply different ML methods, 7–18 core marker genes
distinguishing good and poor responders were obtained for these
literature datasets (26).We foundno intersections between the core

marker genes corresponding to these and current experimental
datasets (Table 4). Moreover, using the current experimental set of
8/10 core marker genes (for the full/VCD cohorts, respectively)
couldn’t be used for building robust classifiers with the same
repertoire of ML methods (data not shown). This can be due to
differences in both gene expression interrogation methods, MM

A B

D

E F

G H

C

FIGURE 3 | Gene expression levels of genes ARPC2 (A), EIF4BP8 (B), KLHDC7B (C), OSR2 (D), RPL21P1 (E), SETP4 (F), TRIM9 (G), and TSSC4 (H) in the full

cohorts of MM responders and poor responders to PAD/VCD therapy. For every gene, paired t-test p-values and AUC values are shown. Each dot on the graph

represents single MM sample. Grey indicates good treatment responders, black—poor responders.
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FIGURE 4 | Gene expression levels of genes ARPC2 (A), CDHR4 (B), EFCAB8 (C), EIF4BP8 (D), OSR2 (E), SETP4 (F), SLC25A6P3 (G), TOGARAM1 (H), TRIM9

(I), and TSSC4 (J) in the cohorts of MM responders and poor responders to VCD therapy. For every gene, paired t-test p-values and AUC values are shown. Each

dot on the graph represents single MM sample. Grey indicates good treatment responders, black—poor responders.
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FIGURE 5 | Area under receiver-operator curve (AUC), sensitivity (Sn) and Specificity (Sp) for five ML methods (A) linear SVM, (B) RF, (C) RR, (D) BNB, (E) MLP

during classification of response to PAD/VCD treatment of 53 MM patients (full cohort). Parameter B is false positive vs. false negative balance factor.

TABLE 2 | Core marker genes for the current PAD/VCD MM dataset (full cohort/VCD cohort).

Gene ID1 Cohort Regulation in responders/non-

responders2
Molecular function3

ARPC2 Full,

VCD

Up/down control of actin polymerization

CDHR4 VCD Down/up cell adhesion protein; sorting of heterogeneous cell types

EFCAB8 VCD Down/up Calcium ion binding

EIF4BP8 Full,

VCD

Down/up eukaryotic translation initiation factor 4B pseudogene 8

KLHDC7B Full Down/up Kelch domain-containing protein 7B

OSR2 Full,

VCD

Down/up transcription factor

RPL21P1 Full Down/up ribosomal protein L21 pseudogene 1

SETP4 Full,

VCD

Down/up SET pseudogene 4

SLC25A6P3 VCD Down/up mitochondrial carrier; adenine nucleotide translocator, member 6 pseudogene 3

TOGARAM1 VCD Down/up microtubule binding

TRIM9 Full,

VCD

Down/up includes TRIM motif with three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2,

and a coiled-coil region

TSSC4 Full,

VCD

Down/up tumor suppressing subtransferable candidate 4

1Gene name according to HGNC nomenclature (63).
2Up/downregulation of marker genes in the treatment responders and non-responders, accordingly.
3Gene function according to GeneCards knowledgebase (64).
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heterogeneity, and the composition of MM treatment schemes.
Similarly, findings of Intergroupe Francophone du Myeĺome (IFM)
suggest the absence of a robust gene signature associated with the
treatment response (14, 81, 82).

However, for all the literature datasets investigated utilization
of best ML methods enhanced by FloWPS using their own core
biomarker genes resulted in high-quality classifiers with ROC
AUC varying in the range 0.79–0.96 (Table 5). Interestingly, one
of those previous MM datasets (25) for bortezomib monotherapy
(best AUC = 0.8) was previously characterized as “inconvenient”
for ML because other attempts to build a response classifier
without using core marker gene approach and FloWPS were
unsuccessful resulting in AUC <0.66 (83–87).

For ROC AUC metric, FloWPS enhancement was beneficial
for all global ML methods such as SVM, RF, BNB, and MLP.
Likewise, it increased the precision-recall AUC (AUPR) metric
for global ML methods in most datasets (Table 5). This was also
in line with the previous findings where it could improve
accuracy and Matthews correlation coefficient metrics (48).

Differentially Expressed Gene Analysis
We performed the analysis for differentially expressed genes that
distinguish responders from non-responders using the DESeq2

(51) method with the criteria pAdjusted <0.05, |LFC2| >0.5
(Supplementary Figure 2). Interestingly, we found no marker
role of bortezomib molecular target genes PSMB1 and PSMB5 for
neither dataset, as reflected by AUC levels of less than 0.7
(Supplementary Figure 1).

Despite the lack of intersection between core marker genes
that served for ML model creation, there were several differential
genes that were regulated similarly among the good vs poor
responders in the different datasets, and the intersection pattern
was not random (Figure 7).

The intersections between differential genes for all datasets
were analyzed using UpSetR method (88); Figure 7A. To assess
randomness of differential genes in the MM datasets, we used the
following test. Differential gene sets for all MM datasets can form
7·8/2 = 28 pair intersections. For each of these paired
intersections the number of observed intersected genes was
calculated and compared with the random expectation model
(Figure 7B). For random expectations, in each dataset we picked
1,000 times randomly the observed number of differential genes,
and modeled all 28 possible intersections (Figure 7B).

The maximum similarities were observed between the
datasets GSE68871 and GSE19784_1 (Jaccard coefficient J =
0.042), GSE68871 and GSE19784_2 (J = 0.037), GSE68871 and
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FIGURE 6 | Area under receiver-operator curve (AUC), sensitivity (Sn) and Specificity (Sp) for five ML methods (A) linear SVM, (B) RF, (C) RR, (D) BNB, (E) MLP

during classification of response to VCD treatment of 47 MM patients (VCD cohort). Parameter B is false positive vs. false negative balance factor.
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GSE1978_4 (J = 0.030), and GSE68871 and GSE2658 (J = 0.028);
Supplementary Table 5.

Interestingly, we found several common differential genes in
the current experimental RNAseq and in the previous
microarray datasets (Table 6). All these common differential
genes were overexpressed in the good vs poor treatment
responders. Among them, the fibroblast growth factor receptor

3 gene (FGFR3) was found three times, and the transcription
factor MAF gene was detected twice. Other differential genes
(IGHA2, IGHV1-69, GRB14) were detected once. Among
them, GRB14 was found only for the full (PAD+VCD) dataset,
but not in the reduced VCD dataset. Other abovementioned
differential genes were shared for the PAD + VCD and
VCD datasets.

TABLE 3 | General characteristics of bortezomib chemotherapy response-annotated MM datasets.

Reference Dataset ID Therapy Experimental

platform

Number N of cases (R vs NR) Number of

core marker

genes

Current study (full

cohort)

Bortezomib, doxorubicin, dexamethasone (PAD)

AND/OR bortezomib, cyclophosphamide,

dexamethasone (VCD)

RNA sequencing,

Illumina HiSeq 3000

53 (28 R: complete response + very good

partial response; 25 NR: partial response +

minimal response)

8

Current_Study_VCD Bortezomib, cyclophosphamide,

dexamethasone (VCD)

RNA sequencing,

Illumina HiSeq 3000

47 (24 R: complete response + very good

partial response; 23 NR: partial response +

minimal response)

10

(25) GSE9782 Bortezomib monotherapy Affymetrix Human

Genome U133

Array

169 (85 R: complete response + partial

response; 84 NR: no change + progressive

disease)

18

(29) GSE68871 Bortezomib-thalidomide-dexamethasone Affymetrix Human

Genome U133 Plus

118 (69 R: complete, near-complete and

very good partial responders; 49 NR:

partial, minor and worse)

12

(27) GSE55145 Bortezomib followed by ASCT Affymetrix Human

Exon 1.0 ST Array

61 (33 R: complete, near-complete and very

good partial responders; 28 R: partial, minor

and worse)

14

(32, 41) GSE19784_1 Bortezomib, doxorubicin, dexamethasone (PAD) Affymetrix Human

Genome U133 Plus

2.0 Array

61 with ISS stage I [32 R, 29 NR (32)] 7

(32, 41) GSE19784_2 Bortezomib, doxorubicin, dexamethasone (PAD) Affymetrix Human

Genome U133 Plus

2.0 Array

51 with ISS stage II [33 R, 18 NR (32)] 12

(32, 41) GSE19784_3 Bortezomib, doxorubicin, dexamethasone (PAD) Affymetrix Human

Genome U133 Plus

2.0 Array

41 with ISS stage III [29 R, 12 NR (32)] 11

(32, 34) GSE2658 Bortezomib, doxorubicin, dexamethasone (PAD) Affymetrix Human

Genome U133 Plus

2.0 Array

208 [55 R, 153 NR (32)] 16

TABLE 4 | Core marker genes identified for bortezomib chemotherapy response-annotated MM datasets; genes that are overexpressed in the treatment responders

are marked by (+), downregulated in the responders by (−).

Current study

full cohort

Current study

VCD cohort

GSE9782 GSE68871 GSE55145 GSE19784_1 GSE19784_2 GSE19784_3 GSE2658

ARPC2 (+) ARPC2 (+) ABHD14A (−) BORCS8 (-) AKNA (−) ACE2 (+) DCUN1D2 (−) ANKRD11 (−) BCOR (+)

EIF4BP8 (−) CDHR4 (−) ATP2B4 (+)1 BTG1 (-) CATSPER3 (+) C22orf24 (−) GTF2H5 (+) FN1 (+) CENPE (+)

KLHDC7B (−) EFCAB8 (−) ATP5S (−) CCND1 (-) EMP3 (+) FAM132A (−) HAUS8 (−) HDAC2 (−) COX6C (+)

OSR2 (−) EIF4BP8 (−) ATP5SL (−) CSTB (−) MYH9 (−) GPR124 (+) PPIEL (−) HS3ST5 (+) FH (+)

RPL21P1 (−) OSR2 (−) ATP6V0D1 (+) CTCFL (+) NDRG2 (+) GTF2A1L (+) PSPC1 (−) KRT35 (−) FUNDC1 (+)

SETP4 (−) SETP4 (−) B2M (+) GAS6_AS1 (−) NUCB2 (+) PPP4R4 (+) RAD52 (−) LINC00511 (−) G2E3 (+)

TRIM9 (−) SLC25A6P3 (−) BCL2L11 (−) NOMO3 (+) PASK (−) RP11.680G24.5 (−) RBP5 (+) MFSD4 (−) HMGB3 (+)

TSSC4 (−) TOGARAM1 (−) C7orf26 (−) ORAI1 (−) RAPGEF1 (−) RP5.1098D14.1 (−) NOXO1 (−) HMGB3P1 (+)

TRIM9 (−) CCNB1IP1 (−) PLOD3 (+) RRP7BP (−) SMARCA2 (+) REM1 (−) MEI1 (−)

TSSC4 (−) COX7C (−) SCN9A (+) TMEM131L (−) STK32A (−) RP11.960B9.2 (−) NEDD9 (−)

DLST (−) STK33 (+) TMEM99 (+) TIAM1 (−) SNCAIP (−) PAM (−)

DLSTP1 (−) SYBU (+) TRAF3 (−) TMEM57 (+) RP11.164P12.4 (−)

FAM106A (+) TRAF4 (−) S100PBP (+)

GFER (−) ZNF286A (+) SHCBP1 (+)

NDUFB1 (-) SMC4 (+)

PATZ1 (−) UNC13C (+)

RPS7 (−)

TCP11L1 (−)
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Four out of these five differential genes (FGFR3, MAF, IGHA2,

IGHV1-69) are associated with translocation of immunoglobulin
locus on 14q32 region that frequently occurs in MM (89), which
clearly connects our results with the MM biology. Differential
genes IGHA2 and IGHV1-69 are both located on the above 14q32
locus and encode for immunoglobulin heavy chain constant
region alpha 2, and immunoglobulin heavy chain variable
regions 1–69, respectively. To our knowledge, they were never
associated before with bortezomib effectiveness in MM and in
other tumors. We also found no known associations for GRB14
with MM.

Our results on FGFR3 are congruent with the previous
findings. Fibroblast growth factor receptor 3 (FGFR3) is
receptor tyrosine kinase which prevents apoptosis in MM cells
and promotes adhesion to bone marrow stromal cells
(90). It is overexpressed in ~20% of MM cases (91). High
expression of FGFR3 was reported as the positive clinical
response prognostic factor for bortezomib monotherapy (92),
and for the bortezomib + thalidomide + dexamethasone
(VTD) regimen (93). In parallel with FGFR3 activating
mutations (94), it was also shown a factor mediating and
positively correlating with bortezomib-related apoptosis in
cultured MM (91) and lymphoma (95) cells. Interestingly, at
the same time FGFR3 overexpression was reported as a negative
factor for treatment with thalidomide, another targeted MM
therapeutic (96).

However, for transcriptional factor MAF contradictory reports
have been published that its expression is either positive (97),
neutral (98–100) or negative (101) prognostic factor for response
on bortezomib containing treatments. MAF is a transcriptional
activator of many genes, including cyclinD2 and Integrin-b7
(102). Translocation of MAF into immunoglobulin locus is
initiating oncogenic event in 5–10% of MM cases, and it was
estimated to be up-regulated in 40–50% of all multiple myelomas
(103, 104).

To further functionally characterize the differential gene sets, we
performed Gene Ontology (GO) analysis (105), Supplementary

Figure 3. We identified enrichment clusters only for four datasets
investigated: for the current study, GSE9782, GSE19784_1, and
GSE2658. Those clusters corresponded predominantly to the
various immune cell-specific processes (Supplementary Figure 3).

We also considered 20 experimental MM cases treated with
PAD regimen and found four differential genes between the good
and poor responders (Supplementary Figure 2C), including
gene SEZ6L2 which was common with the literature dataset
GSE9782. We found no previous mentions of the association of
this gene with MM.

Gene Expression Changes in MM
After PAD/VCD Treatment
To our knowledge, MM gene expression profiles before and
after relapse on PAD/VCD regimens had never been reported
in the literature. For two MM patients included in this study,
we were able to isolate CD138+ fraction of MM cells for the
bone marrow biopsies taken after recurrence of the disease
(Table 7). The patient 111 sequentially had four courses
of first-line PAD and two courses of VCD chemotherapy
regimens and showed partial response before relapse. In turn,
the patient 115 also had four courses of first-line PAD and two
courses of VCD chemotherapy regimens but demonstrated only
minimal response before relapse (Supplementary Table 1).

We compared expressions of bortezomib targeted genes in
those patient biosamples before and after PAD/VCD treatment
(Table 7). Interestingly, genes for both molecular targets of
bortezomib (PSMB1, PSMB5) were downregulated after PAD/
VCD treatment in both patients. This can represent tumor
adaptation to the chemotherapy regimens used. However, it
should be mentioned that those genes couldn’t serve as the
bortezomib response prognostic biomarkers in all datasets
investigated here (Supplementary Figure 1).

TABLE 5 | Best ROC AUC and AUPR (precision-recall AUC) values obtained for good versus poor responder classifiers built using different ML methods without/with

FloWPS for different MM annotated expression datasets.

Dataset SVM RF RR BNB MLP

Current study full ROC AUC 0.80/0.82 0.76/0.82 0.86/0.87 0.79/0.84 0.81/0.83

Current study full AUPR 0.79/0.82 0.78/0.79 0.88/0.90 0.78/0.83 0.79/0.81

Current study VCD ROC AUC 0.82/0.86 0.74/0.83 0.86/0.87 0.78/0.88 0.84/0.89

Current study VCD AUPR 0.82/0.86 0.76/0.86 0.86/0.84 0.79/0.92 0.83/0.88

GSE9782 ROC AUC 0.68/0.72 0.68/0.80 0.77/0.77 0.73/0.76 0.72/0.76

GSE9782 AUPR 0.65/0.70 0.70/0.80 0.77/0.77 0.69/0.76 0.69/0.74

GSE68871 ROC AUC 0.68/0.77 0.73/0.83 0.78/0.77 0.74/0.84 0.70/0.80

GSE68871 AUPR 0.64/0.76 0.73/0.83 0.79/0.77 0.71/0.80 0.69/0.76

GSE55145 ROC AUC 0.78/0.82 0.77/0.90 0.87/0.84 0.82/0.87 0.80/0.85

GSE55145 AUPR 0.72/0.84 0.72/0.84 0.88/0.85 0.83/0.82 0.83/0.82

GSE19784_1 ROC AUC 0.65/0.82 0.74/0.77 0.84/0.84 0.74/0.84 0.72/0.81

GSE19784_1 AUPR 0.64/0.77 0.71/0.77 0.86/0.84 0.72/0.84 0.69/0.79

GSE19784_2 ROC AUC 0.83/0.87 0.75/0.82 0.92/0.94 0.88/0.94 0.86/0.87

GSE19784_2 AUPR 0.85/0.91 0.79/0.86 0.96/0.97 0.92/0.97 0.88/0.89

GSE19784_3 ROC AUC 0.84/0.94 0.84/0.86 0.95/0.95 0.86/0.96 0.91/0.94

GSE19784_3 AUPR 0.89/0.95 0.89/0.90 0.98/0.98 0.92/0.98 0.95/0.96

GSE2658 ROC AUC 0.72/0.77 0.67/0.79 0.79/0.79 0.76/0.78 0.63/0.72

GSE2658 AUPR 0.45/0.55 0.51/0.61 0.58/0.61 0.49/0.54 0.42/0.48
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FIGURE 7 | Intersection analysis for differentially expressed genes (DEG) distinguishing good and poor treatment responders in eight bortezomib MM datasets (A).

Observed vs expected (under the hypothesis of random DEG distribution) numbers of intersection events in all possible pairwise comparisons (B).

TABLE 6 | Common differentially expressed genes (DEGs) in the current experimental dataset (full or VCD only cohorts) and in seven previously published MM datasets.

Dataset GSE9782 GSE68871 GSE55145 GSE19784_1 GSE19784_2 GSE19784_3 GSE2658

Common DEGs with full cohort IGHA2 (+), MAF (+) FGFR3 (+) – FGFR3 (+) IGHV1-69 (+) FGFR3 (+) GRB14 (+), MAF (+)

Common DEGs with VCD cohort IGHA2 (+), MAF (+) FGFR3 (+) – FGFR3 (+) IGHV1-69 (+) FGFR3 (+) MAF (+)

(+) marks genes overexpressed in the good treatment responders.

TABLE 7 | Normalized expression levels of bortezomib targeting genes in MM patients before and after PAD/VCD treatment.

Patient ID Best response status Sample status PSMB1 expression1 PSMB5 expression1

MM111 Partial response Pretreatment 880,4 669,9

Relapse 553 483,5

MM115 Minimal response Pretreatment 814 456,3

Relapse 604,8 282,8

1Normalized counts of gene-mapped RNA sequencing reads.
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