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Abstract

Background: Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the

homogentisate 1,2-dioxygenase (HGD) gene. One of the main obstacles in studying AKU, and other ultra-rare

diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Quality of

Life scores (QoL) are a reliable way to monitor patients’ clinical condition and health status. QoL scores allow to

monitor the evolution of diseases and assess the suitability of treatments by taking into account patients’

symptoms, general health status and care satisfaction. However, more comprehensive tools to study a complex and

multi-systemic disease like AKU are needed. In this study, a Machine Learning (ML) approach was implemented

with the aim to perform a prediction of QoL scores based on clinical data deposited in the ApreciseKUre, an AKU-

dedicated database.

Method: Data derived from 129 AKU patients have been firstly examined through a preliminary statistical analysis

(Pearson correlation coefficient) to measure the linear correlation between 11 QoL scores. The variable importance

in QoL scores prediction of 110 ApreciseKUre biomarkers has been then calculated using XGBoost, with K-nearest

neighbours algorithm (k-NN) approach. Due to the limited number of data available, this model has been validated

using surrogate data analysis.

Results: We identified a direct correlation of 6 (age, Serum Amyloid A, Chitotriosidase, Advanced Oxidation Protein

Products, S-thiolated proteins and Body Mass Index) out of 110 biomarkers with the QoL health status, in particular

with the KOOS (Knee injury and Osteoarthritis Outcome Score) symptoms (Relative Absolute Error (RAE) 0.25). The

error distribution of surrogate-model (RAE 0.38) was unequivocally higher than the true-model one (RAE of 0.25),

confirming the consistency of our dataset. Our data showed that inflammation, oxidative stress, amyloidosis and

lifestyle of patients correlates with the QoL scores for physical status, while no correlation between the biomarkers

and patients’ mental health was present (RAE 1.1).

Conclusions: This proof of principle study for rare diseases confirms the importance of database, allowing data

management and analysis, which can be used to predict more effective treatments.
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Background
Alkaptonuria (AKU) was described by Garrod in 1908 [1]

as the first disorder to conform with the principles of Men-

delian recessive inheritance. The estimated incidence of

AKU is 1 case in 250.000–1.000.000 births in most ethnic

groups [2], with about 950 patients reported in 61 countries

[3]. AKU patients carry homozygous or compound hetero-

zygous mutations of the HGD gene leading to a deficiency

of the enzyme homogentisate 1,2-dioxygenase (HGD),

which is involved in the catabolic pathway of tyrosine [4, 5].

Such dysfunction causes accumulation of homogentisic acid

(HGA). Most of HGA is excreted through the urine, result-

ing in the characteristic darkening-upon-standing, but

smaller HGA amounts can also accumulate in connective

tissues, where HGA polymerizes forming a dark brown

melanin-like pigment (ochronotic pigment). Ochronosis af-

fects skin, sclera and ears (presenting with blue-black dis-

colouration), spine and joints (causing a dramatic

degeneration and chronic inflammation), heart valves (lead-

ing to stenosis), and kidneys (where stones may develop)

[2]. Ochronosis is also the main cause of arthropathy early

onset, severely reducing patients’ quality of life and causing

pain and deficiency in locomotion [6]. HGA has also been

found to trigger oxidative stress in AKU [7–10]. Since oxi-

dized lipids are cytotoxic and responsible for initiating in-

flammatory reactions, a strict correlation between

cytotoxicity of the ochronotic pigment and inflammation

has be suggested [11]. It has been shown that useful bio-

markers for oxidative stress and inflammation in AKU are

the Advanced Oxidation Protein Products (AOPP), the

products of the oxidation reaction between plasma proteins

and oxidizing agents [12–14].

Recent studies have classified AKU as a secondary

amyloidosis [11, 15–18], characterised by deposition of

serum amyloid A (SAA) fibers, which in its soluble form

is a circulating protein produced during chronic inflam-

matory processes. Studies on AKU patients’ samples

(cartilage, salivary glands, chondrocytes and synovio-

cytes) showed that ochronotic pigment and amyloid fi-

bers share the same location, confirming that SAA is

associated with the ochronotic pigment derived from

HGA [15]. Under normal conditions SAA is found at

low concentrations in plasma (4–6mg/L), while inflam-

matory stimulus or tissue damage increase SAA plasma

levels 100–1000 times [19], making SAA a sensitive bio-

marker of inflammation [19]. On top of SAA deposition,

SAA plasma level have also been reported to be high in

AKU patients ([11, 12, 15–18, 20].

Chitotriosidase (CHIT1) is a chitinase mainly expressed

in the differentiated and polarized macrophages [21].

CHIT1 serum concentration correlates with the progres-

sion or the severity of several diseases (sarcoidosis, rheuma-

toid arthritis, ankylosing spondylitis, uveitis, idiopathic

pulmonary fibrosis, scleroderma-associated interstitial lung

diseases, and chronic obstructive lung diseases), suggesting

a potential use of CHIT1 as an AKU biomarker [20, 21].

The major obstacle in carrying out clinical research on

AKU is the lack of a standardized methodology to assess

disease severity and response to treatment [22], which is

complicated by the fact that AKU symptoms differ from

an individual to another and no correlation between spe-

cific HGD mutations and disease severity has been ob-

served so far [5, 23]. A reliable way to monitor patients’

clinical condition and overall health status is the use in

clinical practice and research of measures of quality of life

(QoL) [20, 24]. QoL allows to observe the evolution of dis-

eases from acute to chronic, and to assess the suitability of

the therapeutic interventions considering patients’ symp-

toms, general health status and care satisfaction [24].

Our previous studies showed that, in a rare and multisys-

temic disease like AKU, QoL scores help to identify health

needs and to evaluate the impact of disease [20, 25], sug-

gesting the presence of a correlation between QoL and the

clinical data deposited in the ApreciseKUre database, which

could be instrumental in shading light on AKU complexity.

Here we have developed a machine learning application

that perform a prediction of the QoL scores based on clin-

ical data deposited in the ApreciseKUre. We believe this ap-

proach can be turned into a best practice model also for

other rare diseases and can be useful for overcoming the

obstacles in small dataset management and analysis.

Materials and methods
Patient data

The ApreciseKUre contains data from 203 patients, but only

129 have a complete and comprehensive set of information,

which have been used in this study [26–28]. ApreciseKUre

contains information about biomarkers and replies to ques-

tionnaires (for a full description of data deposited in Apreci-

seKUre see [20]. Patients data are classified according with

11 QoL scores: (i) physical health score, (ii) mental health

score, (iii) AKU Severity Score Index (AKUSSI) joint pain,

(iv) AKUSSI spinal pain, (v) Knee injury and Osteoarthritis

Outcome Score (KOOS) pain, (vi) KOOS symptoms, (vii)

KOOS daily living, (viii) KOOS sport, (ix) KOOS QOL, (x)

Health Assessment Questionnaire Disability Index (HAQ-

DI) and (xi) global pain visual analog scale (hapVAS). (for

more details see Additional file 1).

Statistical analysis and machine learning

– Preliminary statistical analysis

The input data were firstly examined through a pre-

liminary statistical analysis. A correlation matrix based

on Pearson correlation coefficient was calculated to

measure the linear correlation between QoL scores:
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where σxy is the covariance of the two variables x and y,

σx and σy are the variances of x and y, respectively, and

μx and μy are the mean values.

Application of different ML algorithms

Machine learning (ML) is an algorithm-based novel

modeling technique that has been introduced recently to

select key behavior features (biomarkers) and predict

risk levels [29]. ML methods are more precise and ac-

curate in terms of prediction abilities compared with

traditional statistical methods, because complex inter-

variable interactions are taken into account in ML only

[30]. There are several key steps of the machine

learning-based classification model: data preprocessing,

feature selection, algorithm selection and model evalu-

ation. Our workflow is described in Fig. 1.

In this study, to select the most representative predic-

tors (among biomarkers included in ApreciseKUre) for

QoL scores we have applied Extreme Gradient Boosting

(XGBoost). It is a key algorithm in the processes of clus-

tering evaluation, resampling evaluation, feature selec-

tion and prediction, [31] able to calculate variable

importance defined as the statistical significance of each

variable with respect to its effect on the generated model

[32]. Starting from selected biomarkers, QoL score pre-

diction is then evaluated comparing the performance of

three other different ML techniques: (i) Linear Regres-

sion [33], (ii) Neural networks [34], and (iii) K-nearest

neighbours algorithm (k-NN) [35].). Finally, we applied a

surrogate data method [36].

Results
QoL scores statistical correlation

In the present study, a machine learning algorithm was

implemented with the aim to perform a prediction of

QoL scores based on 129 patients’ clinical data deposited

in the ApreciseKUre database [26, 27]. QoL scores were

firstly examined through a preliminary statistical analysis

in order to evaluate the degree of correlation among

pairs of variables (Fig. 2).

It is interesting to notice the presence of correlation

among AKUSSI, KOOS and HAQ scores. Specifically,

KOOS pain, KOOS symptoms, KOOS daily living and

KOOS sport have a high correlation with AKUSSI joint

pain and spinal pain, and with hapVAS and HAQ-DI.

Differently, the mental health score correlation with all

the other QoL scores is not statistically significant (be-

tween − 0.3 and 0.3). Taken together, these data suggest

that the mental health score, the only one assessing the

psychological status of the patient, is independent from

other QoL scores linked to the individual’s physical sta-

tus. Surprisingly, this finding shows that the patients’

psychological experience, based on the evaluation of

levels of anxiety and depression, is not directly related

with their actual physical and clinical status.

AKU biomarkers selection using XGBoost

Selection of the most representative predictors for QoL

scores was performed by Extreme Gradient Boosting.

XGBoost reveals that the most statistically significant

variables among 110 biomarkers included in Aprecise-

KUre [27] are: age, SAA, CHIT1, AOPP, RSSP, BMI.

Variable importance scores of the above mentioned six

best biomarkers, with respect to every QoL score, are re-

ported in Fig. 3.

ML algorithm selection

Based on these preliminary analyses, different ML

models (Linear Regression, Neural networks and k-NN)

were implemented to improve the correlation analysis of

biomarkers and QoL score. The ML models were com-

pared based on RAE (Relative Absolute Error) indicator

(Table 1) and R2 score (Coefficient of determination):

As such, k-NN resulted to be the most accurate algo-

rithm to predict QoL scores. Therefore, we performed a

Fig. 1 Machine learning framework. A 4-steps workflow of the machine learning-based classification model
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k-NN on each of the 11 QoL scores and KOOS symp-

toms score showed the most accurate prediction (lowest

RAE: 0.25) (Fig. 4). Conversely, mental health scores

might not be predicted with a sufficient accuracy (high-

est RAE: 1.1), indicating limited or no connection with

age, SAA, CHIT1, AOPP, RSSP, BMI values, which is in

line with our preliminary statistical analysis.

Differently from other scores (AKUSSI, KOSS, HAQ,

hapVAS), mental health score is measured across eight

domains (vitality, physical functioning, bodily pain, gen-

eral health perception, physical role functioning, social

functioning, emotional role functioning, mental health),

thus it is not unexpected that there is not a correlation

with age and other AKU biomarkers. This observation,

in line with [20], confirms a not infrequent disability

paradox in inherited/chronic disease, underlying the

difference between the physical and mental impact on

disease severity, which may underestimate overall men-

tal state.

The obtained results demonstrated the power of ML

techniques in extrapolating information from a bio-

markers dataset to make predictions of QoL scores.

ML, with their remarkable ability to derive meaning

from complicated or imprecise data, can be used to ex-

tract patterns and detect trends that are too complex to

be noticed by either humans or other computer

Fig. 2 Correlation matrix of health survey questionnaires. In this correlation matrix all QoL scores are correlated to each other. In black statistically

significant inverse correlation, in light-pink statistically significant direct correlation, in red or purple not statistically significant correlations

Fig. 3 Variable importance Xgboost for each QoL score. In the matrix are reported all the most representative indicators (X axes) with respect to

Qol scores (Y axes) for scores prediction with their corresponding variable importance. Color scale goes from the lower value (in black) to highest

value (light pink)
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techniques. For instance, in Fig. 3, age, SAA, CHIT1,

AOPP, RSSP, BMI related to AKUSSI spinal pain and

AKUSSI joint pain scores assumed the highest variable

importance, suggesting the hypothesis they would have

been the best QoL indicators. However, as shown in

Fig. 4, AKUSSI spinal score and AKUSSI joint pain

RAE for k-NN prediction resulted to be higher in com-

parison with KOOS symptom. Additionally, HAQ hap-

VAS and HAQ-DI showed high RAE despite the

biomarkers variable importance is not different from

KOOS symptom score. In view of this, based on the k-

NN prediction, KOOS symptoms can be considered as

a useful guide for better understanding symptoms and

difficulties experienced by patients.

In conclusion, a k-NN based on the combination of

parameters like age, SAA, CHIT1, AOPP, RSSP and

BMI was able to predict with low RAE the value of

KOOS symptoms. Taken singularly these features are

not predictive and it is already well known that parame-

ters like age, SAA, CHIT1 are linked with disease sever-

ity. The innovative finding of the present work is that,

for the first time, we have found an ensemble of mul-

tiple complementary features (SAA, CHIT1, AOPP,

RSSP, related with inflammation, oxidative stress, amyl-

oidosis; age and BMI, linked with lifestyle) whose com-

bination produce better k-NN prediction results than

any single one.

Validating ML models using surrogate data

Small dataset conditions and the associated random ef-

fects make validation of ML models a challenging task.

For these reasons, to validate the obtained model, we ap-

plied a surrogate data method, which has been previ-

ously shown to be the most suitable method for small

dataset [36]. In this approach, the surrogate data were

generated from random numbers able to mimic the dis-

tribution of the original dataset independently for each

component of the input. They statistically resemble the

original data in terms of their mean, standard deviation

and range, but they do not maintain the complex rela-

tionships between the variables of the real dataset

(Table 2).

Therefore, real-data models are expected to perform

significantly better than the surrogate data models [36].

The same k-NN algorithm was applied to both datasets,

which were randomly split into 80–20% for, respectively,

the training and test sets. Each model was trained and

validated on 1000 different runs, each using a different

training sets, selecting a 10% of the training set to valid-

ate the model. The performances of the model, in terms

of RAE and R2 score, were calculated as the average over

the runs.

The models trained on our real biochemical and clin-

ical dataset achieve an increase in the average of predict-

ive performance than analogous models trained on the

surrogate controls. Indeed, the error distribution of

surrogate-model (RAE 0.38) was unequivocally higher

than the true-model one (RAE of 0.25) confirming the

consistency of our dataset. Thus, it is possible to con-

clude that the obtained predictive method is not biased

or resulting from an overfitting of the model on a small-

sized dataset (Fig. 5). This framework allowed ML algo-

rithms to successfully predict clinical and QoL scores

outcomes despite small datasets.

Table 1 ML algorithm performance comparison

Model RAE R2

Linear Regression 0.34 0.87

Neural networks 0.28 0.91

k-NN 0.25 0.94

Comparison based on RAE and R2 score among different ML models. K-NN

resulted to have the lowest RAE, thus the best performance

Fig. 4 Performance for each QoL Score. Representation of model accuracy (RAE) for each QoL score, scale from the lower value (in light green) to

highest value (blue)
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Discussion
The limited number of AKU patients spread around the

world represent a major obstacle for generating a stan-

dardized strategy to assess disease stage and progression.

While several biomarkers for AKU have been identified,

a clear connection between biomarkers levels and dis-

ease severity (QoL score) is still missing. Here, we imple-

mented an ML method from which QoL of AKU

patients can be predicted based on age, oxidative stress

(AOPP and RSSP), amyloidosis (SAA) inflammation

(CHIT1) biomarkers and BMI, while HGA appears to be

extremely variable and unrelated with disease severity.

An intricate and complex pattern of oxidative stress,

amyloidosis and inflammation is evidently the main im-

portant indicator of patients’ health status.

Moreover, QoL scores worsen progressively with the

age. Aging is associated to decrease antioxidant defenses

(for instance the age-related decline in plasma glutathi-

one (GSH) and low molecular weight thiols) and in-

crease ROS production, allowing oxidatively damaged

macromolecules to accumulate [37]. AKU subjects

undergo a significant decrease in serum free protein

thiols and a significant increase in low molecular weight

mixed-protein thiols with aging [38].

Our ML model suggested that KOOS indicators could

be used to better understanding symptoms and difficul-

ties experienced by AKU patients.

KOOS is a valid, reliable and responsive tool to evalu-

ate both short-term and long-term consequences of knee

injury and primary OA. It is a patient-reported outcome

measurement, developed to assess the opinion of pa-

tients about their knees and associated problems, and it

is routinely used for follow-up evaluations [39]. Multiple

studies in patients with knee injury and knee OA report

that the KOOS demonstrates expected convergent and

divergent construct validity, with the KOOS more

strongly correlated with subscales of the ShortForm- 36

(SF-36) that measure similar constructs [40]. This is the

reason why KOOS prediction could be potentially useful

to assess consequences of primary OA, to evaluate

changes from week to week induced by treatment (medi-

cation, surgery, physical therapy) or over the years due

to a primary knee injury, posttraumatic OA or primary

OA [39], to identify the main important prognostic bio-

markers of AKU, to help the clarification of physiopath-

ological mechanisms of AKU and ochronosis, and to

assess the efficacy of future pharmacological treatments.

Similarly, AOPP and RSSP, indicators of oxidative

stress and inflammation, have shown to influence the k-

NN model. This is not surprising since AKU patients

undergo a significant increase in RSSP with aging [38].

Such a trend suggests that progression of AKU symp-

toms could be related to impaired anti-oxidant status

[10]. HGA induces a significant oxidation of a number

of serum and chondrocyte proteins. Further investiga-

tions allowed highlighting how HGA-induced proteome

alteration, lipid peroxidation, thiol depletion, and amyl-

oid production could contribute to oxidative stress gen-

eration and protein oxidation in AKU [7]. Furthermore,

this is in line with our findings that SAA can be consid-

ered as an AKU biomarker for amyloidosis [15]. In fact,

a chronic inflammatory status paralleled by inadequate

antioxidant defenses is known to promote the aberrant

production of amyloidogenic proteins, ultimately leading

to secondary amyloid deposition [7]. SAA-amyloidosis

Table 2 Correlation matrix of original and surrogate dataset

ORIGINAL Pearson correlation coefficient

Variables SAA CHIT1 AOPP RSSP age BMI

SAA 1.00 −0.01 − 0.01 0.15 0.02 0.23

CHIT1 −0.01 1.00 0.00 0.28 0.40* −0.01

AOPP −0.01 0.00 1.00 0.06 0.09 0.17

RSSP 0.15 0.28 0.06 1.00 0.38* 0.09

Age 0.02 0.40* 0.09 0.38* 1.00 0.14

BMI 0.23 −0.01 0.17 0.09 0.14 1.00

p-value

Variables SAA CHIT1 AOPP RSSP age BMI

SAA 0.00 0.56 1.00 0.11 0.57 0.01

CHIT1 0.56 0.00 0.87 0.00 0.00 0.86

AOPP 1.00 0.87 0.00 0.69 0.45 0.10

RSSP 0.11 0.00 0.69 0.00 0.00 0.59

Age 0.57 0.00 0.45 0.00 0.00 0.28

BMI 0.01 0.86 0.10 0.59 0.28 0.00

SURROGATE Pearson correlation coefficient

Variables SAA CHIT1 AOPP RSSP age BMI

SAA 1.00 −0.16 0.02 0.22 −0.02 −0.16

CHIT1 −0.16 1.00 −0.03 −0.06 −0.08 0.06

AOPP 0.02 −0.03 1.00 −0.12 0.06 −0.01

RSSP 0.22 −0.06 −0.12 1.00 −0.18 0.09

Age −0.02 −0.08 0.06 −0.18 1.00 −0.10

BMI −0.16 0.06 −0.01 0.09 −0.10 1.00

p-value

Variables SAA CHIT1 AOPP RSSP age BMI

SAA 0.00 0.72 1.00 0.23 0.57 0.10

CHIT1 0.72 0.00 0.88 0.02 0.00 1.00

AOPP 1.00 0.88 0.00 0.66 0.61 0.20

RSSP 0.23 0.02 0.66 0.00 0.02 0.58

Age 0.57 0.00 0.61 0.02 0.00 0.28

BMI 0.10 1.00 0.20 0.58 0.28 0.00

The first table shows the Pearson correlations coefficients and the p-values of

our original dataset, the second table shows the Pearson correlations

coefficients and the p-values of surrogate dataset

*indicates statistically significant values
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colocalizes with ochronotic pigment as well as with tis-

sue calcification, lipid oxidation, macrophages infiltra-

tion, cell death, and tissue degeneration [11, 16, 17].

One of the most striking results is that, differentially

from the physical QoL scores based on bodily pain scales

and general factor of physical health, mental health sta-

tus is not predictable by k-NN using the biomarkers

listed above. It is measured across eight domains: vitality,

physical functioning, bodily pain, general health percep-

tion, physical role functioning, social functioning, emo-

tional role functioning, mental health. Surprisingly, in

line with the study of [20], the level of biomarkers re-

ported to be directly linked to physical status and pain

are not influencing social functioning, role-emotional,

levels of depression and anxiety [20]. In conclusion, the

outcome of our work was that, for the first time, we have

found a biomarkers combination which, in accordance

with literature, was able to produce reliable k-NN pre-

diction results. Thanks to this ML algorithm, we will be

able to correctly predict KOOS symptoms of a new

AKU patient just relying on clinical and lifestyle data.

Current study limitations and future perspective

There are several challenges in studying an ultra-rare

and complex disease like AKU, and specifically (i) the

paucity of specimens and available data, and (ii) the lack

of a standardized method able to objectively assess dis-

ease severity or response to treatment. For this reason

we developed ApreciseKUre database, aiming to collect

as many AKU patients’ data as possible, and to use QoL

scores to monitor patients’ clinical condition and health

status, although the database does not yet include ob-

jective disease severity findings (i.e. imaging, cardiac

valve or calcification, radiographic severity score, treat-

ment modalities, time to surgery, etc). We believe that

this study could be a starting point for a better investiga-

tion of the utility and reliability of QoL scores, which are

becoming increasingly popular, and their correlation to

biochemical and clinical biomarkers. For example, the

AKUSSI score, which incorporates into a single score

multiple clinically meaningful AKU outcomes, medical

photography imaging investigations and detailed ques-

tionnaires, performed poorly in the model based on the

selected biomarkers (AKUSSI joint pain RAE 0.37 and

AKUSSI spinal pain RAE 0.55). However, as shown in

Fig. 3, parameters like age, SAA, CHIT1, AOPP, RSSP,

BMI were the 6 variables with the highest importance

values. In literature, these 6 variables have been already

used as biomarkers for AKU. In fact, there is an intimate

connection between HGA and the ochronotic process,

SAA and amyloidosis, inflammation and oxidative stress

in AKU, as demonstrated by structural co-localization of

ochronotic pigment and SAA-amyloid and co-

localization of SAA with crucial cytoskeletal proteins in

AKU chondrocytes [20]. As described in [12], some

AKU patients, who underwent joint replacement surgery

Fig. 5 Surrogate Test Analysis. Comparison of performance based on RAE values, between k-NNs trained on surrogate data (red) and original

dataset (blue)
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and complained about articular disorders, arthropathy

and joint pain together with other co-morbidities,

showed pathological levels of SAA and AOPP above the

reference value. Moreover, serum concentration of SAA

[41, 42] and CHIT1 activity [43, 44] are markers of dis-

ease severity in several rheumatic conditions, and in [20]

was provided the evidence that AKU patients present

significantly high SAA and chitotriosidase activity in

comparison with controls. Some objective disease sever-

ity findings, such as cardiac valve calcification and

treatment modalities, are strictly linked with amyloid-

osis, inflammation and oxidative stress. For example, in

[11, 16, 17], SAA deposition was detected by immuno-

fluorescence technique in AKU aortic valve and it was

tested that low dose methotrexate can down-regulate in-

flammation and lower SAA production in AKU [20].

In a complex disease like AKU, also lifestyle parameters

like BMI are not neglectable. As shown in Table 2, SAA

and AOPP have a weak direct correlation with BMI (p-

value respectively 0.01 and 0.10), which in turn increases

with age. It has been previously shown that oxidative stress

increase with a rising BMI, as a consequence of an impaired

antioxidant status [20, 45] through various biochemical

mechanisms, such as superoxide generation from NADPH

oxidases, oxidative phosphorylation and glyceraldehyde

auto-oxidation [46]. Moreover, in line with [20], a positive

association was found between SAA and BMI, since in

obesity (where low-grade inflammation is found) adipose

tissue is the major source of SAA, which can be considered

an obesity-related inflammatory protein [47, 48].

Age is an important driving factor for the prediction of

QoL scores and it is a common observation that clinical

symptoms might worse with aging. In fact, as shown in

Table 2, CHIT1 and RSSP correlate with age (p-value 0.0

for both biomarkers). This is confirmed by the fact that

when age is removed from the set of six biomarkers (SAA,

CHIT1, AOPP, RSSP, BMI) able to predict QoL scores,

the k-NN RAE of KOOS symptoms jump to 0.31. Unfor-

tunately, it is not easy to gather data of very young pa-

tients, since people start showing AKU symptoms in their

30/40s, even if the dark discoloration of the urine is

present from birth. The systematic use of the Aprecise-

KUre database will increase the number of patients and

will allow us to develop an upgraded version of our algo-

rithm to include an adjustment for the age of the patients.

It is important to specify that this study was based on

baseline biochemical and clinical analysis, since the very

limited number of information regarding the longitu-

dinal changes, changes during the acute phase, medica-

tion effects, differences after joint replacement did not

produce robust statistical results. Being AKU a chronic

but not lethal disease, the future direction of our study

will aim at collecting more AKU follow-up patients’ data

before and after treatments, in order to evaluate the

effectiveness of different therapies. This will be an essen-

tial point for a typical precision medicine approach, in

which each patient is closely monitored over time and

several types of information are collected to understand

the uniqueness of each individual. This predictive system

will allow for the easy monitoring of AKU disease evolu-

tion and it will help clinicians in the selection of the

most appropriate treatment, and evaluate its efficacy by

observing the trend of QoL scores and biomarkers. In

summary, this cost-effective computational method will

be beneficial in supporting experimental and clinical

studies and, at the same time, will help patients by iden-

tifying the most promising treatments.

Conclusion
In conclusion, the combination of a ML to analyse and re-

interpret data available in the ApreciseKUre shows the po-

tential direct benefits for patient care and treatments,

highlighting the necessity of patient databases for rare dis-

eases, like ApreciseKUre. We believe this is not limited to

the study of AKU, but it represents a proof of principle

study that could be applied to other rare diseases, allowing

data management, analysis and interpretation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s13023-020-1305-0.

Additional file 1. In Additional file 1 a more detailed description of QoL

scores is provided. Moreover, informational layers, data and features

included in ApreciseKUre are collected and listed.
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