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Endocrine neoplasms remain a great threat to human health. It is extremely important to make a clear diagnosis and timely
treatment of endocrine tumors. Machine learning includes radiomics, which has long been utilized in clinical cancer research.
Radiomics refers to the extraction of valuable information by analyzing a large amount of standard data with high-throughput
medical images mainly including computed tomography, positron emission tomography, magnetic resonance imaging, and
ultrasound.With the quantitative imaging analysis andmodel building, radiomics can reflect specific underlying characteristics of
a disease that otherwise could not be evaluated visually. More and more promising results of radiomics in oncological practice
have been seen in recent years. Radiomics may have the potential to supplement traditional imaging analysis and assist in
providing precision medicine for patients. Radiomics had developed rapidly in endocrine neoplasms practice in the past decade.
In this review, we would introduce the general workflow of radiomics and summarize the applications and developments of
radiomics in endocrine neoplasms in recent years. +e limitations of current radiomic research studies and future development
directions would also be discussed.

1. Introduction

Endocrine neoplasms are derived from specialized hor-
mone-secreting cells. Most of these tumors specialize in
synthesizing and secreting hormones with a small portion
lacking hormone-secreting ability [1]. Except for those that
occurred in classic endocrine glands, endocrine neoplasms
also include multiple endocrine neoplasms, neuroblastoma,
lung neuroendocrine tumors, small intestinal neuroendo-
crine tumors, and skin neuroendocrine tumors [2].

Endocrine neoplasms remain a great threat to human
health. Breast cancer accounts for about 30% of female
cancers, and its incidence rate is still rising [3]. In 2020, there

would be approximately 52,890 new thyroid cancers in the
USA [4]. Pancreatic cancer has a high mortality rate with an
estimated 47,050 cancer deaths occurred in 57,600 new
cancer cases [4]. Pheochromocytoma and paraganglioma are
important causes of secondary hypertension and may lead to
severe cardiovascular and cerebrovascular diseases [5].
+erefore, it is extremely important to make a clear diag-
nosis and timely treatment of endocrine tumors.

Imaging is widely accepted as an important and useful
tool in oncologic research because of its noninvasiveness,
convenience, and repeatability, which is used not only for
the diagnosis and staging of tumors but also for tumor
anatomical characteristics assessment and cancer
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management evaluation [6]. On the other hand, imaging can
provide information about the overall tumor phenotype,
including the heterogeneity within the tumor [7]. However,
considering that imaging features are often visually observed
and qualitatively described by radiologists, these visual as-
sessments are not always consistent within and between
observers [8]. +erefore, it is necessary to objectively and
repeatedly quantify various imaging features that may have
the potential to reveal the underlying biological mechanisms
of tumors [6]. Radiomics refers to the extraction of valuable
predictive information by analyzing a large amount of high-
throughput medical images [9]. With subsequent data
analysis and model building, radiomics can reflect specific
underlying characteristics of a disease that otherwise could
not be evaluated visually, which may supplement traditional
imaging analysis and assist in providing precision medicine
for patients.

More and more promising results of radiomics in en-
docrine neoplasms have emerged in recent years. In this
review, we would introduce the general workflow of
radiomics and summarize the applications and develop-
ments of radiomics in endocrine neoplasms. +e limitations
of current radiomic research and future development di-
rections would also be discussed.

2. The Basic Principle and
Workflow of Radiomics

Radiomics is based on the hypothesis that quantitative
analysis of tumors by numerous radiomic features can
obtain valuable predictive information [10, 11]. +ese
radiomic features, including the shape, size or volume, in-
tensity, and texture of the tumor phenotype, are different
from or complementary to that provided by clinical reports,
laboratory tests, genomics, or proteomics analyses [12]. +e
purpose of radiomics is to explore and employ these
radiomic features combined with other useful information

to design models for the overall management of the disease
and help implement clinical decisions and improving
treatment choices [13].

+e practice of radiomics involves four main steps: (1)
imaging collection; (2) segmentation of the region of interest
(ROI); (3) radiomic features extraction, screening, and
quantitative analysis; and (4) model designing and validating
(Figure 1).

2.1. ImageCollection. Images include CT/PET/MRI/US, and
tumor specificity imaging exams could be used for radiomic
analysis. It is normal that imaging protocols and scanners
vary between medical centers. It may not be a problem when
it comes to the traditional assessment of imaging features.
However, in radiomics, these differences may introduce
changes unrelated to underlying biological effects [13].+us,
preprocessing of original images is usually required before
feature extraction.

2.2. Segmentation of ROI. ROI segmentation is a key step in
radiomics as it defines the area of the image from which
radiomic features are extracted. In mostly radiomic studies,
ROI was manually identified by experienced radiologists
[14]. However, this method may introduce high interob-
server variability, which can produce unstable radiomic
features [15]. Two or more segmentations can be conducted
on the same lesion, and correlation analysis could be used to
identify feature stability [16]. Methods of automatic and
semiautomatic segmentation were also reported in a number
of studies, which might potentially reduce the influence of
interobserver variability.

2.3. RadiomicFeaturesExtraction, Screening, andQuantitativeAnalysis.
By extracting, screening, and quantitatively analyzing radiomic
features, also known as quantitative imaging biomarkers, we
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can acquire a wealth of predictive information including di-
agnosis, prognosis, or tumor microenvironment. Among these
features, deep features are suitable to map nonlinear repre-
sentations when there are sufficient training data cases.
However, the applications of deep features are still under
debate due to their low interpretability and difficulty in con-
ceptualizing [15].

2.4.RadiomicModelDesigningandValidating. +ree aspects
are usually involved in radiomic model building: feature
selection, modelling methods, and model validation. A huge
number of radiomic features would be generated in the
process of radiomic analysis. +us, it is of great importance
to select features to avoid overfitting. +e selection of
methods for analysis depends on several factors, including
sample size and the applications of radiomic measurements.
+ere exist many statistical methods and machine learning
(ML) algorithms for radiomic analysis. Model validation is
used to evaluate the performance and applicability of the
radiomic model. Internal and/or external validation should
be performed to ensure the generalizability of the model to
all of the targeted patients. +e receiver operating charac-
teristic (ROC) curve and the area under the ROC curve
(AUC) are usually used to calculate the performance of the
model.

3. Radiomics in Endocrine Neoplasms

3.1. Pituitary Adenomas

3.1.1. Diagnosis and Tumor Subtypes Classification.
Pituitary adenomas (PAs) are common types of intracranial
tumors with a prevalence of 80 to 100 cases/100,000 persons
and an annual incidence of 4 cases/100,000 persons [17–19].
Early and accurate diagnosis is important for patients with
PAs. Based onMRI, Zhang et al. conducted a study aiming to
differentiate pituitary adenoma from the Rathke cleft cyst,
and the results showed that two radiomic features had
promising and practical values in distinguishing those two
tumors, with an AUC of more than 0.75 [20]. +e subtype of
PAs plays a major role in determining subsequent treatment.
Traditionally, the subtype can only be determined by im-
munohistochemical staining after surgery. A recent study by
Peng et al. revealed that anMRI-based radiomicmodel could
be used to predict immunohistochemical results of pituitary
adenoma preoperatively (with an accuracy of 0.89 and an
AUC of 0.9549) [21]. Besides, MRI-based radiomic features
had a great potential to differentiate between nonfunctional
subtypes and other subtypes of pituitary adenomas preop-
eratively [22].

3.1.2. Aggressiveness. Predicting pituitary tumor behavior
preoperatively remains a clinical challenge because no
valid factor has been determined. PAs with a high Ki-67
proliferative index have been considered to be a high risk
of aggressiveness [23]. Ugga et al.’s study found that MRI-
based radiomics could indirectly predict tumor aggres-
siveness by predicting Ki-67 proliferative index in

pituitary macroadenomas, with excellent accuracy of
more than 91% [24].

3.1.3. Treatment Strategies and Response. Surgery is the first-
line therapy for most pituitary macroadenomas, but once the
tumor invades the cavernous sinus, it becomes a clinical
concern due to different surgical strategies. On the other
hand, preoperative assessment of PAs consistency and
vascularity is of equal significance for surgical strategies and
risk evaluation. Predicting the cavernous sinus invasion
preoperatively using MRI-based radiomic methods was
proved to be an effective method with an AUC of 0.899,
which contributes to surgical strategies decisions [25]. +e
prediction of treatment response before surgery is important
for making personalized treatment strategies for patients
with invasive functional pituitary adenoma (IFPA). Fan et al.
conducted a study based on preoperative MRI, aiming at
predicting the treatment response of patients with IFPA.+e
result showed that both primary and validation models both
achieved good results with an AUC of more than 0.8.

3.1.4. Prognosis. Using traditional scoring systems to predict
postoperative outcomes is challenging because of the exis-
tence of heterogeneity, which means an individual patient
has different risk factors of prognosis. Hollon et al. used a
machine learning approach to predict early outcomes after
surgery, and the result based on MRI radiomics showed a
specificity of 93.3% and an accuracy of 87.0%, indicating that
early postoperative outcomes of PAs could be assessed by a
radiomic approach [26].

In this section, we summarized the applications of
radiomics in PAs, including diagnosis and classification of
tumor subtypes, evaluation of tumor aggressiveness, selec-
tion of treatment strategies, response to treatment, and
prognosis. It is not strange that the applications of radiomics
in PAs are mainly based on MRI as it remains the most
important imaging modality in the management of PA.
Although most studies proposed promising clinical appli-
cations, reproducibility, robustness, and generalizability
were the major limitations of current research [27] (Table 1).

3.2. +yroid Cancer

3.2.1. Diagnosis. It is important to make an early diagnosis
of thyroid cancer in order to avoid overtreatment in patients
with low-risk diseases. +yroid incidentalomas are difficult
to diagnose due to the lack of matching symptoms in the
patients. A previous study had demonstrated that 18F-FDG-
PET/CT texture analysis seemed to be a promising method
to predict the final diagnosis of thyroid incidentalomas (with
an unsatisfied AUC of 0.66) [29]. But it still needs further
validation in larger subsequent studies.

3.2.2. Metastasis. Papillary thyroid carcinoma (PTC) is the
most common histology type of thyroid malignancy
[30–32], which has a high incidence rate and is often
overdiagnosed and overtreated clinically. Lymph node
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metastasis is the most important risk factor associated with
recurrence and low survival in PTC patients [33]. Preop-
erative prediction of lymph node metastasis or aggressive-
ness in patients with PTC can improve surgical planning and
reduce the risk of surgery. Liu et al. constructed radiomic
models using US images to predict the lymph node me-
tastasis of PTC preoperatively, and the result achieved an
AUC of 0.782 and an accuracy of 0.712 [34]. Similarly, Wang
et al. showed that the accuracy of the US-based radiomic
method was much higher than that of the US examination in
the prediction of metastasis of PTC [35]. According to Song
et al.’s study, DWI-based radiomics may have the potential
to differentiate benign from malignant thyroid nodules with
an outstanding AUC of 0.97 [36]. On the other hand, Yoon
et al. used US radiomic methods to predict the BRAFV600E

mutation status that was associated with aggressive clinical
behavior, demonstrating that radiomic features limitedly
predicted clinical aggressive behaviors values as noninvasive
biomarkers [37].

Radiomics had been widely applied in the metastasis
prediction in thyroid cancer. Many studies had shown that
preoperative noninvasive radiomics could be used to assess
the risk of PTC lymph nodemetastasis and guide surgeons to
make clinical decisions [38–40].

3.2.3. Treatment Strategies. In terms of selecting suitable
surgical strategies, it is important to determine the occur-
rences of extrathyroidal extension (ETE) in patients with
PTC. Chen et al. designed a CT radiomic model to predict
ETE preoperatively in patients with PTC. +e result had an
adaptive AUC of 0.837 [41].

3.2.4. Prognosis. Most thyroid cancers are treatable and have
a relatively favorable survival rate, but a small portion of
PTC have aggressive clinical behavior and patients with PTC
may recur or die due to this disease. +us, the prediction of
the prognosis should not be ignored. Park et al. explored the
connection between radiomic features and disease-free
survival (DFS) based on US radiomics, and the result

demonstrated that radiomic features were significantly as-
sociated with DFS [42] (Table 2).

Imaging examinations for applications of radiomics in
thyroid cancers consist of 18F-FDG-PET/CT, US, CT, and
MRI. +ese models were used in multiple aspects of on-
cologic practice in thyroid cancers. Notably, the reliability of
the predictive performance and clinical applications may be
decreased because of discussing the predictive value of
radiomics itself without considering the influence of clinical
information, such as therapy strategies and tumor stages. In
addition, the ethical issues regarding the use of radiomics in
patient stratification and treatment response-based prog-
nosis should also be treated with caution [43].

3.3. Breast Cancer

3.3.1. Tumor Risk Assessment. Previous studies had proved
that the risk of breast cancer was strongly related to
mammographic parenchymal patterns, especially when it is
assessed by percent mammographic density. In order to
establish personalized screening recommendations and
preventive strategies, the assessment of the risk of devel-
oping breast cancer has become more and more important
today [44]. Yan et al. built a new bilateral mammographic
density segmentation method based on mammography to
improve the accuracy of breast cancer prediction, and the
results showed an adaptive AUC of 0.83 and an accuracy of
81% [45]. Similarly, the study by Kontos et al. achieved an
AUC of 0.84, demonstrating that radiomics had the potential
to predict breast cancer risk factors [46]. Pinker et al. de-
clared that radiomic phenotypes could assess mammo-
graphic parenchymal complexity and could provide
additional useful information for risk assessment beyond
breast density [47].

3.3.2. Diagnosis. Early diagnosis and timely treatment are
critical to reducing cancer mortality in patients with breast
cancer. Although previous reviews had summarized the
applications of radiomics in the diagnosis of breast cancer
[48], various studies were investigated for further

Table 1: Different clinical applications of radiomic models (features) in PAs.

References
Case

numbers
Radiomic
method

Results

[20] 133 MRI
Radiomic features had promising and practical values in distinguishing pituitary adenoma

from Rathke cleft cyst

[21] 235 MRI
MRI-based radiomic model could be used to predict immunohistochemical results of pituitary

adenoma preoperatively

[22] 112 MRI
MRI-based radiomic features had a great potential to differentiate between nonfunctional

subtypes and other subtypes pituitary adenomas preoperatively

[24] 89 MRI
Radiomics could indirectly predict tumor aggressiveness by predicting high proliferative index

Ki-67 in pituitary macroadenomas

[25] 194 MRI
MRI-based radiomicmethod was proved to be an effective method for predicting the cavernous

sinus invasion preoperatively

[28] 163 MRI
Radiomics models may help neurosurgeons predict the treatment response preoperatively and

make personalized treatment strategies

[26] 400 MRI
+e result indicated that early postoperative outcomes of PAs could be assessed by a radiomic

approach
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exploration and validation. Ji et al. used an MRI-based
radiomic method to explore its potential in distinguishing
between malignant and benign breast lesions; the results
achieved an AUC of 0.88 and a sensitivity of 99.5% [49].
According toWang et al.’s study, triple-negative (TN) breast
cancers were identified using MRI-based radiomics,
achieving an excellent AUC of 0.878 [50]. In Lee et al.’s
study, US texture features showed potential application in
differentiating TN breast cancer from fibroadenoma [51].

Studies with MRI-based radiomics had shown that
different radiomic parameter values were displayed in dif-
ferent breast tissues, and malignant tissues were obviously
different from other tissues [52, 53]. In a study of US-based
radiomics, some radiomic features may help distinguish
benign breast tumors from malignant ones [54]. According
to Luo et al., US radiomics was potentially useful for pre-
dicting breast malignancy (with an AUC of 0.928) [55].
Researchers had also utilized the characteristic digital breast
tomosynthesis to assess its relationship with malignancy; the
result had limited values [56]. Yu et al. proved that mam-
mography features could aid in diagnosis in patients with
TN breast cancer [57]. All of the above studies indicated that
radiomic approaches had the potential to predict malig-
nancy, which was helpful in the detection and diagnosis of
breast cancer [58].

3.3.3. Molecular Typing Classification. Breast cancer pa-
tients with different immunohistochemical (IHC) subtypes
have diverse clinical outcomes and responses to therapy. It is
critical to identify the subtypes in terms of selecting ap-
propriate personalized therapy and predicting therapeutic
response [59, 60]. Xie et al. developed MRI-based radiomic
methods to classify the subtype of breast cancer, finding that
the radiomic model had an accuracy of 91.0% in dis-
tinguishing between triple-negative tumors and nontriple-
negative tumors [61]. Fan et al. combined clinical infor-
mation with MRI-based radiomics to predict the molecular

subtypes of breast cancer. +e results showed that radiomic
models had excellent performance in discriminating sub-
types of breast cancer [62]. Wu et al. got a similar conclusion
by usingMRI radiomics [63]. BEng et al. found that anMRI-
based radiomic model combining peritumoral and intra-
tumoral radiomic features had the potential to identify the
HER2-E subtype (AUC, 0.89) [64]. Results of several similar
studies also indicated that radiomic features were potential
biomarkers to distinguish four molecular subtypes of breast
cancer [65–67].

3.3.4. Metastasis. An accurate assessment of axillary lymph
node (ALN) metastasis is important for choosing therapy
strategies and predicting prognosis in early-stage breast
cancer [68]. Zheng et al. developed a US-based radiomic
model to predict ALN metastasis in early-stage breast
cancer. +e model showed an excellent AUC of 0.902 in
distinguishing disease-free axilla and any axillary metastasis
[69]. Other US-based radiomic methods achieved an ap-
proving AUC of more than 0.9 in predicting the ALN
metastasis of breast cancer [70]. A mammography-based
radiomic model designed by Yang et al. predicted the ALN
metastasis preoperatively with an AUC of 0.895 in the
training cohort and an AUC of 0.875 in the validation cohort
[71]. Dong et al. conducted an MRI radiomic study to
predict the metastasis of sentinel lymph nodes in patients
with breast cancer. A maximum AUC of 0.863 was achieved,
providing a potential noninvasive approach in clinical
practice [72]. All these studies indicated that radiomic
models were reliable for predicting ALN metastasis in pa-
tients with early-stage breast cancer preoperatively.

3.3.5. Treatment Response. In the field of precision medicine
for breast cancer, the prediction of treatment response is the
focus of disease management [73]. Neoadjuvant chemo-
therapy (NAC) is the first-line treatment for advanced local
breast cancer as it reduces tumor volume and the risk of

Table 2: Different clinical applications of radiomic models (features) in thyroid cancer.

References
Case

numbers
Radiomic
method

Results

[29] 55
18F-FDG-PET/

CT
Radiomic features had the potential to diagnose malignant thyroid cancer

[39] 44 MRI
+e textural analysis classifies thyroid nodules with high sensitivity and specificity on multi-

institutional DW-MRI data sets

[34] 450 US
US-based radiomics had the potential to predict the lymph node metastasis of PTC

preoperatively

[35] 189 US
+e accuracy of the US-based radiomic method was much higher than that of US examination

in the prediction of metastasis of PTC
[36] 43 MRI Radiomic models may have the potential to differentiate benign from malignant nodules

[37] 527 US
Radiomic features had limited values as a noninvasive biomarker for predicting clinical

aggressive behaviors

[38] 400 US
US radiomic features of the primary tumor were associated with lateral cervical lymph node

status

[40] 1576 US
A CADx system using CNN-combinations may help radiologists make decisions by

overcoming interobserver variability when assessing thyroid nodules on US
[41] 624 CT Radiomic model had the potential to predict ETE preoperatively in patients with PTC
[42] 768 US Radiomic features were significantly associated with disease-free survival
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distant metastasis before surgery [74]. Tahmassebi et al.
constructed an MRI radiomic model to predict the response
of patients with breast cancer to NAC and achieved a stable
performance with high accuracy (with an AUC of 0.92) [75].
BEng et al. explored to determine whether MRI-based
radiomic features could estimate responses to NAC in
HER2-positive breast cancer patients. +e result demon-
strated that radiomic features were significantly associated
with response to NAC, indicating that radiomics had the
potential to predict the response to HER2-targeted therapy
[64]. According to Braman et al.’s study, textual analysis of
peritumoral and intratumoral regions achieved a maximum
AUC of 0.78 in predicting pathological complete response to
NAC [76]. Based on mammographic radiomic features, Yu
et al. aimed to investigate the level of tumor-
infiltrating lymphocytes in TN breast cancer. +e result
revealed that mammographic features had the potential to be
an imaging biomarker in predicting response to NAC [57].

Henderson et al. revealed that MRI-based interim het-
erogeneity changes were particularly associated with path-
ologic complete response to NAC with an AUC of 0.845
[77]. Similarly, Sutton et al. proposed to classify pathologic
complete response in breast cancer patients after NAC. +e
result achieved a maximum AUC of 0.83, indicating that
MRI radiomic models had the potential to assess pathologic
complete response to NAC [78].

3.3.6. Prognosis and Recurrence. Breast cancer is widely
known as a heterogeneous disease. +e current major
prognostic factors of breast cancer include lymph node
metastasis, obesity, Ki-67 index, pathologic complete re-
sponse, and tumor volume [79, 80]. Obeid et al. aimed to
assess the correlations between peritumoral fat and MRI-
based radiomic features. +e results indicated that peritu-
moral fat and BMI >30 were significantly correlated with
radiomic features [81]. Studies also revealed that MRI-based
radiomic approaches could predict the expression of Ki-67
[82, 83]. Drukker et al. showed that MRI radiomic features
contributed to the prediction of recurrence-free survival
(RFS) in NAC treatment of breast cancer [84]. Basing on
MRI radiomics, Wu et al. found that radiomic features were
independent prognostic factors beyond traditional risk
predictors [85]. Dietzel et al.’s study demonstrated that
radiomic models based on MRI improved the survival
prediction in primary breast cancer [86]. What’s more,
HER2 protein overexpression was defined as an aggressive
subtype associated with poor clinical outcomes [87]. In a
study by Yang et al., radiomics could assess prognosis
through predicting HER2 status [88].

According to Li et al., there was a significant association
between MRI radiomic features and multi-gene assay re-
currence score (P< 0.001), proving that radiomics was
useful to assess the risk of breast cancer recurrence [89].
Tokuda et al. conducted a study to examine the correlation
between MRI radiomic features with a 95-gene classifier for
recurrence prediction in patients with estrogen receptor
(ER) positive breast cancer. +e study showed promising
results [90]. Nam et al. investigated the correlations between

MRI radiomic features and Oncotype DX recurrence scores
in patients with ER-positive breast cancer. An AUC of 0.759
was achieved in discriminating low from non-low OD risk
groups in ER-positive invasive breast cancers [91].

Radiomics has been applied in almost every aspect of
breast cancer management. Other “omics” studies, including
genomics, transcriptomics, proteomics, and metabolomics,
are also utilized to characterize the molecular biology of
tumors in recent years. However, the association between
these “omics” technologies and radiomics in breast cancer is
not very clear and needs to be explored in further researches.
Better precision medicine for breast cancer may be achieved
by integrating quantitative information of clinical, histo-
logical, and these omics data.

3.4. Pancreatic Neuroendocrine Tumors

3.4.1. Tumor Subtypes Classification. Pancreatic cystic
neoplasms include serous cystic neoplasms, intraductal
papillary mucinous neoplasms (IPMNs), mucinous cystic
neoplasms (MCNs), and solid pseudopapillary neoplasms.
Most pancreas serous cystic neoplasms are benign with a low
risk of metastasis and do not require surgical treatment
[92, 93]. However, the other three types of pancreatic cystic
neoplasms have a distinct ability to become malignant and
are recommended for surgical treatment [94].+erefore, it is
important to correctly diagnose serous cystic neoplasms
preoperatively in order to avoid unnecessary surgeries.
However, the previous study had shown that the diagnostic
accuracy of cyst fluid analysis and imaging in serous cystic
neoplasms was low and unsatisfactory [95]. A newmethod is
of an urgent need to determine the nature of pancreatic
cystic neoplasms before surgery.

Radiomics had been used to diagnose pancreas serous
cystic neoplasms preoperatively. According to Shen et al.,
CT-based radiomic classifiers had the potential to differ-
entiate serous cystadenoma from IPMN and MCN preop-
eratively [96]. Two previous CT-based radiomic studies had
shown that radiomics could predict the malignant potential
of IPMNs and had important application values in making a
clinical decision [97, 98]. Clinicians correctly diagnosed only
31 of 102 cases of serous cystic neoplasms, while CT-based
radiomic methods achieved a sensitivity over 65% and a
specificity over 70% in a recent study, which had improved
diagnostic accuracy and helped clinicians making better
decisions [99]. However, it would lead to misdiagnosis in-
evitably, which may limit the applications of radiomics in
this field. Another similar study also provided preliminary
evidence that CT radiomics may aid in the differentiation of
pancreatic serous cystadenomas from mucinous cys-
tadenomas, but multicenter studies with larger samples
validation were still needed [100].

3.4.2. Metastasis. More than 80% of patients have metas-
tases due to the lack of proper early diagnostic methods.
Preoperative identification of lymph node involvement is
important to evaluate prognosis and decide individualized
treatment strategies. However, pathological specimens are
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usually obtained after surgery. For this reason, two recent
studies were conducted to explore whether radiomics could
predict lymph node metastasis preoperatively. +e results
showed that preoperative CT-based radiomics was signifi-
cantly associated with the risk of lymph node metastasis
[101, 102].

3.4.3. Treatment Response. Chemoradiotherapy has been
widely used in locally advanced pancreatic cancer (LAPC)
[103]. It will play a critical role in the management of LAPC
patients in the future [104]. For this reason, prediction of
posttreatment response could help select patients who would
benefit most from chemoradiotherapy. Two recent studies
had found important changes in CT radiomic features that

could be used to assess the posttreatment response to ra-
diotherapy for pancreatic cancer [105, 106]. According to
Parr et al., CT-based radiomic models were better to predict
treatment outcomes (survival or recurrence) than those of
clinical features [107]. What’s more, Nasief et al.’s study
showed that combining CT radiomics with CA19-9 (which
was widely accepted as a clinical biomarker for pancreatic
cancer) could improve the ability to predict posttreatment
response [108].

Pancreatic ductal adenocarcinoma (PDAC) accounts for
the majority of pancreatic cancer [109]. Immunotherapy has
become one of themain treatments for PDAC in recent years
[110]. Studies had shown that the dendritic cell (DC) based
cancer vaccines could effectively reduce tumor-specific
T-cell effector in PDAC patients [111]. An MRI-based

Table 3: Different clinical applications of radiomic models (features) in pancreatic neuroendocrine tumors.

References
Case

numbers
Radiomic
method

Results

[96] 164 CT
CT-based radiomic classifiers had the potential to differentiate serous cystadenoma from

IPMN and MCN

[97] 38 CT
Radiomic method may more accurately predict IPMNs pathology than radiologic features

considered in consensus guidelines

[98] 53 CT
Radiomics could predict the malignant potential of intraductal papillary mucinous neoplasms

and had important application values in clinical decision making

[99] 260 CT
+e proposed radiomic-based computer-aided diagnosis scheme could increase preoperative

diagnostic accuracy and assist clinicians in making accurate management decisions

[100] 78 CT
Radiomics made a contribution to the differentiation of pancreatic serous cystadenomas and

mucinous cystadenomas

[101] 225 CT
Radiomic features were independently and positively associated with the risk of LNmetastasis

in PDAC

[102] 159 CT
CTradiomic signature could be conveniently used for preoperative prediction of lymph node

metastasis in patients with PDAC

[105] 20 CT
CTradiomic features may be potentially used for early assessment of treatment response and

stratification for therapeutic intensification
[106] 90 CT Radiomics may develop into a biomarker for early prediction of treatment response

[107] 74 CT
Overall survival and recurrence could be better predicted with models based on radiomic

features than with those based on clinical features for pancreatic cancer

[108] 24 CT
Combining radiomics with CA19-9 could improve the ability to predict posttreatment

responses

[112]
Not

mentioned
MRI

Radiomics could be used as an imaging biomarker for early immunotherapy response
assessment in a KPC transgenic mouse model of PDAC

[114] 301 CT
CT radiomic signature showed moderate predictive accuracy for differentiating low-grade
from high-grade PDAC and should become a new noninvasive method for the preoperative

prediction of histological grades of PDAC

[115] 86 CT
Radiomics was rewarding for the aided diagnosis of R0 and R1. Texture features could

potentially enhance physicians’ diagnostic ability

[116] 88 CT
CTradiomics could be used for predicting the prognosis in pancreas head cancer patients who

underwent curative resection

[117] 63 MRI
MRI-based radiomic features were associated with overall survival in patients with pancreatic

cancer
[118] 132 MRI Radiomic models had the potential to predict tumor subtypes and overall survival in PDAC

[119] 100 CT
A CT-based radiomic signature was correlated with overall survival and local control after
stereotactic body radiation therapy and allowed to identify low and high-risk groups of

patients

[120] 98 CT
+e proposed survival model outperforms Cox proportional hazard model-based radiomic

pipeline in PDAC prognosis

[121] 106 CT
Radiomics was assisted in selecting an appropriate candidate for irradiation stents in patients

with unresectable pancreatic cancer

[122] 117 CT
Radiomics had the potential to predict pancreatic fistula operatively in patients who would

receive pancreaticoduodenectomy
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radiomic study showed that radiomics could serve as an
imaging biomarker for early immunotherapy response
assessment in a KPC transgenic mouse model of PDAC
[112]. All of these demonstrated the potential ability of
radiomics to predict treatment response in pancreatic
cancer.

3.4.4. Prognosis. Detection combined with treatment at the
precursor lesions stage contributes significantly to the re-
duction of morbidity and mortality. Lymph node metastasis
and histological grade are independent prognostic factors in
PDACs patients [113]. Radiomics was used to discriminate
between histological grades in patients with pancreatic
cancer. A recent study showed that CT-based radiomics may
become a new noninvasive method to predict the histo-
logical grades of PDAC preoperatively, with an excellent
AUC of 0.961 and 0.910 in the training and test data sets,
respectively [114]. Besides, the CT radiomics could help
differentiate R0 from R1 (a resection margin without cancer
cells in 1mm is recognized as R0; a resection margin with
cancer cells in 1mm is recognized as R1) before surgery,
which was of importance for making surgical decisions and
predicting prognosis [115].

Studies regarding the application of radiomics in
predicting pancreatic cancer survival models were also
reported [116–120]. In addition, CT-based radiomic
methods were used to select an appropriate candidate for
irradiation stents in patients with unresectable pancreatic
cancer or predict pancreatic fistula operatively in patients
who would receive pancreaticoduodenectomy [121, 122]
(Table 3).

We reviewed these studies of radiomics in patients
with pancreatic neuroendocrine tumors in this part. +e
applications of radiomics included the prediction of tu-
mor subtypes, metastasis, treatment response, and
prognosis. Although these explorations are still at the
preliminary level, their future developments are expected
to path the way for more robust studies, which could one
day eventually find their applications in clinical practice
[123].

3.5. Adrenal Tumors. Pheochromocytoma (PHEO) is a type
of rare neuroendocrine tumor that originated from chro-
maffin cells of the adrenal medulla. Patients with PHEOmay
suffer from severe cardiovascular and cerebrovascular dis-
eases. +erefore, early diagnosis and treatment are of vital
importance in PHEO patients. It is easy to diagnose PHEO if
there exist definite diagnostic features. However, for
asymptomatic pheochromocytoma, it is still difficult for
radiologists and surgeons to distinguish some pheochro-
mocytoma from lipid-poor adenomas (LPAs, those with CT
attenuation values over 10 HU on unenhanced CT) because
their imaging features are highly overlapping. CT-based
radiomic methods had been shown to be effective in dif-
ferentiating between asymptomatic pheochromocytoma and
LPAs [124, 125].

Radiomics was also used to assess the localization of
primary aldosteronism [126]. Although the applications of

radiomics in the adrenal gland are rarely reported, it may be
widely used not only in the diagnosis of tumors but also in
the prediction of metastasis and prognosis in the future due
to its noninvasiveness and repeatability.

3.6. Ovarian Tumors

3.6.1. Tumor Subtypes Classification. Radiomics is widely
applied in the classification of ovarian tumors. According to
the American Cancer Society 2017, ovarian cancer was the
deadliest of all gynecologic tumors. +e reason for the poor
prognosis is the lack of technology for early screening and
diagnosis [127, 128]. Ultrasound has become the main ex-
amination for assessing ovarian pathology and has an ex-
cellent performance in preoperatively distinguishing benign
and malignant ovarian tumors [129]. Mart́ınez-Más et al.
evaluated the classification of ovarian tumors by using ul-
trasound radiomics, achieving an excellent accuracy of more
than 85% [130]. Nougaret et al.’s study showed that CT
radiomic features of serous borderline tumors were distinct
from low-grade serous carcinomas [131]. Optical coherence
tomography (OCT) showed great potential in diagnosing
diseases and classifying tissues [132]. Sawyer et al. developed
a three-dimensional (3D) texture analysis of OCT images in
mouse ovarian tissues. +e results showed that the 3D
texture analysis of OCT was mostly effective for differen-
tiating tissue types with an accuracy of 78.6% [132]. Simi-
larly, St-Pierre et al. performed a study basing on OCT and
showed an accuracy of more than 70% in the detection of
high-grade serous, endometroid, and clear cells cancers
[133]. Wen et al. explored texture analysis basing on second
harmonic generation (SHG) images in the application of
classifying ovarian cancer, achieving high accuracy on
distinguishing normal ovarian tissue from high-grade cancer
tissue [134, 135].

3.6.2. Metastasis and Treatment Response. It is important to
differentiate localized from metastatic ovarian cancer be-
cause the tumor staging determines patient management.
Pouli et al. used SHG radiomic methods to identify ovarian
cancer peritoneal metastases, revealing that metastatic tissue
image features were distinct to that of healthy tissues with
excellent accuracy, sensitivity, and specificity of 97.5%,
100%, and 96.6%, respectively [136].

Effective chemotherapy after operation helps improve
the survival rate of metastatic ovarian cancer patients, but
the response to chemotherapy is variable in individual pa-
tients and how to choose candidates for chemotherapy at an
early-stage remains critical. Danala et al. used CT-based
radiomic methods to predict responses of ovarian cancer
patients to chemotherapy. +e result found that the model’s
AUC was higher than 0.8 when using two corresponding
image markers. It also revealed that radiomic features dif-
ference computed between pre- and post-therapy CT images
performed higher prediction accuracy [137]. Basing on CT
radiomics, Zargari et al. evaluated a similar study and
generated an AUC of 0.86 [138].
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3.6.3. Prognosis. After treatments, most patients with early-
stage ovarian cancer have a favorable prognosis, but ap-
proximately 20% of them will finally recur and die due to
this disease. It is important to evaluate the prognosis
preoperatively because it is related to personalized treat-
ment and management. Lu et al. declared that CT radiomic
prognostic vector (RPV) could be exploited to personalize
therapy of epithelial ovarian cancer (EOC) and had the
potential to apply in other cancer types [139]. According to
a study by Vargas et al., CT radiomic features may predict
prognosis in patients with high-grade serous ovarian
cancer (HGSOC) [140]. Another recent multicenter study
based on CT radiomic analysis established a radiomics
signature preoperatively and validated its effectiveness to
be a novel recurrence risk prognostic factor for advanced
HGSOC, and the accuracy of predicting 18-month and 3-
year recurrent risk were 84.1% and 88.9%, respectively
[141] (Table 4).

Radiomic methods were mainly utilized for the assess-
ment of tumor subtypes classification, metastasis, and
treatment response and prognosis in patients with ovarian
cancer. Although many problems need to be solved,
radiomics is a potential game-changer that shifts radiology
from the traditional visual analysis to more objective and
automated analysis. Radiomics raises particular hope in
ovarian cancer to better capture the whole disease hetero-
geneity and offer a new useful tool to predict tumor ag-
gressiveness and response to therapy [142]. Future work
needs to focus on the development of complete automated
postprocessing methods that enable the extraction of
maximal information from the images with the added
challenge to demonstrate a clinical benefit in the assessment
of tumor response [143].

3.7. Prostate Cancer

3.7.1. Diagnosis and Tumor Localization. Prostate cancer
(PCa) is one of the most prevalent male malignant tumors
worldwide, of which the incidence is rising annually in China
[144–146]. PCa has become amajor health concern in families
and society. +us, early diagnosis is of important significance
to patients with PCa. In a recent MRI-based study, Gleason
scores >6 were considered as clinically significant (CS) PCa,
and the results showed that the phenotype of CS peripheral
zone PCa lesions could be predicted by using radiomic fea-
tures with a maximum AUC of 0.870 [147]. Li et al. dem-
onstrated that the MRI radiomic prediction model (with an
AUC of 0.98) had a better diagnostic ability when compared
with the clinical model (with an AUC of 0.79) [148].

Bagher-Ebadian et al. proposed a study to identify
dominant intraprostatic lesions (DILs) in patients with PCa
and declared that MRI radiomic model was adaptive to
detect DILs (with an excellent AUC of 0.94) [149]. Radiomic
methods including MRI and US had also been used to
predict the localization of PCa, and the results demonstrated
that quantitative radiomic features could be utilized to
predict localization [150, 151].

3.7.2. Tumor Risk Stratification and Treatment Strategies.
Risk stratification for patients with PCa is critical because it is
tightly associated with patients’ treatment, management, and
long-term survival. Chen et al. found that the MRI radiomic
model had a perfect AUC of more than 0.98 to distinguish PCa
fromnon-PCa patients and had an excellent AUCofmore than
0.86 to assess the tumor aggressiveness [144]. Several similar
studies had also proved that radiomic features had the potential
to predict risk stratification of PCa [152–155].

Table 4: Different clinical applications of radiomics in ovarian tumors.

References
Case

numbers
Radiomic
method

Results

[130] 187 US
US-based radiomics could be efficiently used for developing the classification stage in ovarian

tumor
[131] 59 CT CT features of serous borderline tumors were distinct from low-grade serous carcinomas

[132]
Not

mentioned
OCT 3D texture analysis of OCT was useful for quantitatively characterizing ovarian tissue

[133] 38 OCT OCT-based radiomics had the potential to classify different subtypes of ovarian tissue
[134] 10 SHG SHG texture analysis had the potential for ovarian cancer classification

[135] 10 SHG
3D SHG texture analysis achieved high accuracy for classifying high-grade cancer tissue and

normal ovarian tissue
[136] 8 SHG Metastatic tissue images features were distinct from that of healthy tissues

[137] 91 CT
CT-based radiomics had the potential to predict responses of ovarian cancer patients to

chemotherapy

[138] 120 CT
CT-based radiomic features computed from both spatial and frequency domains had a

reliable prediction ability of tumor response to postsurgical chemotherapy

[139] 364 CT
Radiomic prognostic vector (RPV) could be exploited to personalized therapy of epithelial

ovarian cancer (EOC) and had the potential to apply in other cancer types

[140] 38 CT
Quantitative metrics noninvasively capturing spatial intersite heterogeneity may predict

outcomes in patients with HGSOC

[141] 142 CT
Radiomic signature was potential prognostic markers that may allow for individualized

evaluation of patients with advanced HGSOC
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Radiation therapy (RT) is one of the major treatments
for patients with localized PCa. Basing on MRI radiomics,
Shiradkar et al. designed a study aiming to make person-
alized targeted focal treatment plans, and the results found
that the focal treatment plans were decreased in dose to the
organs at risk and an increased dose to the cancerous lesions
[156].

3.7.3. Prognosis. +e Gleason score is commonly used in
clinical both as a prognostic factor and to determine patient
treatment in patients with PCa [157]. Toivonen et al. tried to
explore whether MRI radiomic features can improve non-
invasive PCa characterization and found that radiomic
features had a good classification performance for Gleason
score of PCa patients with a maximum AUC of 0.88 [158].
Basing on MRI radiomic features, Penzias et al. conducted a
similar study and aimed to distinguish different Gleason
grades of PCa, achieving an AUC of 0.69 in Gabor texture
features and 0.75 in quantitative histomorphometry features
[159]. +ese two research studies indicated that radiomic
features had the potential to predict the prognosis of PCa.

3.7.4. Recurrence. Biochemical recurrence (BCR) occurs in a
significant number of patients who received radical pros-
tatectomy or radiation therapy. +erefore, it is important to
predict which man will develop BCR for the early identi-
fication of personalized adjuvant therapy. In a recent study,
MRI radiomic features were proved to be predictive in BCR
after prostatectomy, which may help guide postoperative
management [160]. Shiradkar et al. designed a preliminary
study to predict BCR in patients with PCa by using pre-
treatment MRI radiomic features, demonstrating that
radiomic features can predict PCa BCR (with a maximum

AUC of 0.84) and may help identify men who would benefit
from adjuvant therapy [161]. Zhong et al.’s study successfully
evaluated BCR of localized PCa after radiation therapy by
using MRI radiomics [162]. Bourbonne et al.’s study vali-
dated the potential of MRI radiomic models to predict BCR
of high-risk PCa with an accuracy of 78% [163] (Table 5).

+e applications of radiomics in PCa mainly included
the prediction of diagnosis and tumor localization, tumor
risk stratification and treatment strategies, recurrence, and
prognosis. Radiomics is a promising new field, which allows
for high-throughput analysis of imaging features extracted
from existing data for PCa detection and evaluation.
+erefore, the potential of radiomics for future study is
immense [164].

4. Discussion

In this review, we briefly introduced the basic principle and
workflow of radiomics and then summarized the clinical
applications of radiomics in endocrine tumors, which
mainly included the prediction of diagnosis, tumor subtype
classification, metastasis prediction, treatment response,
prognosis and recurrence, and other aspects.

Due to tumor heterogeneity, different parts of tumor
have different molecular characteristics in cancer patients,
and these differences are changing all the time. In order to
better characterize the tumor, performing multiple tumor
biopsies on the patients will cause more damage as well as
more cost and psychological burden to the patients.
Radiomics is expected to become a “virtual biopsy” instead
of biopsy as a new golden indicator in the future because of
its noninvasive properties [165].

Radiomics has brought a lot of unprecedented help to
the personalized and precise medicine and patient

Table 5: Different clinical applications of radiomic models (features) in prostate cancer.

References
Case

numbers
Radiomic
method

Results

[147] 206 MRI
+e phenotype of clinically significant peripheral zone PCa lesions could be predicted by using

radiomic features

[148] 381 MRI
Radiomic prediction model had an improved diagnostic ability when compared with the

clinical model
[149] 117 MRI Radiomic model was adaptive to detect dominant intraprostatic lesions in patients with PCa

[150] 30 MRI
Quantitative radiomic features based on MRI radiomics could be utilized to predict the

localization of PCa

[151] 50 US
Quantitative radiomic features based on US radiomics could be utilized to predict the

localization of PCa

[144] 381 MRI
MRI-based radiomic models had a reliable ability to distinguish PCa with non-PCa patients as

well as assess the tumor aggressiveness
[153] 73 MRI Radiomic features had the potential to predict risk stratification of PCa

[156] 23 MRI
+e focal treatment plans formed by using the framework were decreased in dosage to the

organs at risk and a boosted dose delivered to the cancerous lesions
[158] 62 MRI Radiomic features had good classification performance for Gleason score of patients in PCa
[159] 71 MRI Radiomic features had the potential to predict the prognosis of PCa
[160] 107 MRI Radiomic features were predictive of biochemical recurrence after prostatectomy in PCa

[161] 120 MRI
Radiomic features can be predictive of PCa BCR and may help identify men who would benefit

from adjuvant therapy
[162] 91 MRI MRI-based radiomics could predict BCR of localized PCa after radiation therapy
[163] 195 MRI MRI-based radiomic models had the potential to predict BCR of high-risk PCa
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management of the endocrine tumor in the clinic. How-
ever, there are still deficiencies, which limit the develop-
ment of radiomics.

Generally, conducting radiomic research studies re-
quires a large number of standard medical images. But the
collection of imaging data is a time-consuming task, which
may bring a great burden to clinicians or radiologists. In
order to better apply radiomics to clinical practice in the
future, these image data should be more digitized and
standardized. +is requires the continuous efforts of re-
searchers around the world for a long time. Radiomics relies
on the use of specialized software, which may lead to ad-
ditional costs and personnel training. Few patients may
result in false positives [6]. +e clinical data are private in
different hospitals and research institutes, which may limit
the generalizability of radiomics. +us, big data and data
sharing will provide a larger platform and space for the
development of radiomics, which makes radiomics better
clinically applicable [166].

In current radiomic research studies, not all radiomic
features can be applied to clinical prediction. For example,
textures sensitive to acquisition patterns and reconstruction
parameters are not recommended for malignant and benign
tissue differentiation [167]. In addition, different methods of
radiomic features calculation may lead to different results;
tumor heterogeneity with small tumor volume cannot be
accurately quantified; many radiomic features are unstable
within weeks or even minutes, all of which are the current
problems of radiomics [6]. Considering that the types of
image acquisition, postprocessing and segmentation can
affect the quality of extracted features; the correlation be-
tween features and clinical data as well as the model derived
from them could also be affected. +erefore, the repro-
ducibility and quality control of radiomic features will be an
important direction in the future. Clinicians and radiologists
should strive for standardization as appropriate statistical
methods will minimize spurious relationships and lead to
more accurate and repeatable results [168].

In the future, studies should focus on the combination
of radiomics with other nonimaging biomarkers as com-
bining different biomarkers is the most promising ap-
proach that may change clinical management.
Radiogenomics, which combines radiomics with genomics,
may have the potential to waive the need for invasive di-
agnostic procedures such as biopsy. +is could be a
breakthrough for future research.

Living in the present and looking forward to the future,
radiomics is an emerging and rapidly developing discipline
and plays an increasingly important role in precision
medicine and oncology.
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