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Abstract

With this review, we aimed to provide a synopsis of recently proposed applications of machine learning (ML) in

radiology focusing on prostate magnetic resonance imaging (MRI). After defining the difference between ML and

classical rule-based algorithms and the distinction among supervised, unsupervised and reinforcement learning,

we explain the characteristic of deep learning (DL), a particular new type of ML, including its structure mimicking

human neural networks and its ‘black box’ nature. Differences in the pipeline for applying ML and DL to prostate

MRI are highlighted. The following potential clinical applications in different settings are outlined, many of them

based only on MRI-unenhanced sequences: gland segmentation; assessment of lesion aggressiveness to distinguish

between clinically significant and indolent cancers, allowing for active surveillance; cancer detection/diagnosis and

localisation (transition versus peripheral zone, use of prostate imaging reporting and data system (PI-RADS) version

2), reading reproducibility, differentiation of cancers from prostatitis benign hyperplasia; local staging and pre-

treatment assessment (detection of extraprostatic disease extension, planning of radiation therapy); and prediction

of biochemical recurrence. Results are promising, but clinical applicability still requires more robust validation across

scanner vendors, field strengths and institutions.
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Key points

� Machine/deep learning is a powerful tool to analyse

large amounts of data, also applied to prostate

magnetic resonance imaging (MRI).

� Differences in the pipelines for applying machine

and deep learning to prostate MRI exist.

� Applications of machine/deep learning to prostate

MRI regarding gland segmentation, cancer detection

and localisation, assessment of lesion aggressiveness,

local staging and pre-treatment assessment, and pre-

diction of biochemical recurrence.

� Many of these applications are based only on MRI-

unenhanced sequences.

Background
Prostate cancer (PCa) represents the most common can-

cer in the male population, and its early detection is

fundamental to reduce mortality [1]. Since only a part of

PCa cases are clinically significant (csPCa), risk stratifi-

cation is of crucial importance in order to avoid overdi-

agnosis and overtreatment. While for biopsy-naïve

patients this has been performed employing clinical and

laboratory parameters, imaging, especially magnetic res-

onance imaging (MRI), has acquired an increasingly im-

portant role in this task [2].

In the past, transrectal ultrasound was the main im-

aging technique for assessment of patients with sus-

pected PCa, but it presents numerous limitations, with

both low sensitivity and specificity rates, especially for

transition zone lesions [2]. More recently, multipara-

metric MRI (mpMRI) has demonstrated a better diag-

nostic accuracy and is becoming a clinical routine

examination for patients at risk of having csPCa [3–5].

The second version of the Prostate Imaging Reporting

and Data System (PI-RADS) was recently updated both

in regard to minimum technical acquisition parameters

and image interpretation [6]. It describes a standard

prostate mpMRI protocol that combines anatomical T2-
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weighted images with one or more functional sequences,

i.e., diffusion-weighted imaging (DWI) and/or dynamic

contrast-enhanced (DCE) sequences (Fig. 1). In short,

DWI, together with apparent diffusion coefficient (ADC)

maps, is the dominant sequence to detect and establish

the aggressiveness of peripheral zone (PZ) lesions. On

the other hand, T2-weighted images are the most useful

tool for diagnosing tumours of the transition zone. DCE

has a relatively minor role as it is mainly used for the

characterisation of PZ lesions in conjunction with DWI

and ADC maps [7–9]. It has also been found that the

use of mpMRI-targeted biopsies increases the accuracy

of diagnosing csPCa and reduces the number of patients

requiring repeat biopsies when compared to transrectal

ultrasound-guided biopsies [4, 10].

Nonetheless, mpMRI still presents some limitations.

In particular, variability is reported in terms of inter-

reader agreement and diagnostic accuracy, mainly

dependent on reader experience [11–14].

Machine learning (ML) is a branch of data science,

and in particular of artificial intelligence, based on the

development and training of algorithms, by which com-

puters may learn from data and perform predictions

without previous specific programming. The main differ-

ence with classical rule-based algorithms is represented

by their ability to take advantage of increased exposure

to large and new data as well as to improve and learn

over time. We can identify three different types of ML

algorithms [15]:

1) Supervised learning, the most used in radiology,

which depends on train data labelling prior to the

learning process

2) Unsupervised learning, characterised by the

absence of preliminary human division of data in

categories

3) Reinforcement learning, in which the algorithm

learns from both its mistakes and successes, thanks

to a continuous feedback

The main strength of ML is its ability to analyse

and employ an enormous quantity of data, much

more efficiently than possible for humans through

classical statistical analyses. Therefore, it is not sur-

prising that its increased role in radiology has

followed the growing role and potential shown in re-

search by radiomics. This is another expanding field

that allows the extraction of great volumes of quanti-

tative data from medical images [16]. These large

datasets have been analysed to obtain useful clinical

information such as correlation to other biomarkers,

patient prognosis or treatment outcome [17–19].

Fig. 1 Prostate multiparametric magnetic resonance imaging showing a neoplastic lesion of the right peripheral zone (arrows). The lesion is

hypointense on axial (a) and coronal (l) T2-weighted images and demonstrates diffusion restriction on diffusion-weighted images (b values 0, 100,

500, 1000, and 1400 s/mm2, from b to f, respectively), confirmed by the apparent diffusion coefficient map (g). Lesion enhancement is also

evident on dynamic contrast-enhanced perfusion-weighted imaging (from h to k). PI-RADSv2 diagnostic category: 5
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A particular application in the field of ML is that of

deep learning. This method exploits algorithms, also

called networks, that are structured in order to some-

what mimic human neural structure [20]. Briefly, for its

application in the field of medical imaging analysis, data

is transformed in feature vectors, derived from its voxels,

which then constitute the input neurons of the network.

Between the input and output strata of the algorithm, a

variable number of hidden layers, also made up by

neural nodes, with various structures can be imple-

mented. Each node, represented by a numerical value, is

connected to those in other layers with different

strengths (or weights), leading to the output neurons

that encode the final outcome [21].

In recent years, ML has been proposed for a wide

range of applications in medical imaging. The most

common are the detection and characterisation of neo-

plastic lesions in different anatomical regions [22–25].

On the other hand, it also has many other possible uses

including for example acquisition time reduction, organ

and lesion automated segmentation and early detection

of neurodegenerative disorders [26–30]. Unfortunately,

ML algorithms are still far from a widespread applica-

tion in clinical practice, mainly due to the current un-

availability of the large quantity of data that would be

necessary for their validation. Some solutions to this

issue have already been proposed. For example, Pinto

dos Santos et al. [31] focused on the essential need to

create structured reports which could greatly improve

the quality and the reproducibility of data available to re-

fine artificial intelligence algorithms.

There is a broad interest in the applications of ML to

prostate imaging. The purpose of this article is to review

the various approaches proposed in the recent literature

for gland segmentation, PCa detection, lesion aggressive-

ness assessment, local staging, pre-treatment assessment

and follow-up.

Machine learning pipelines for prostate MRI
A typical ML post-processing pipeline applied to pros-

tate MRI for radiomic analysis may be constituted by:

1. mpMRI examination: T2-weighted sequences,

diffusion-weighted imaging (DWI) with apparent

diffusion coefficient (ADC) maps and dynamic

contrast-enhanced (DCE) sequences

2. Image segmentation through the delineation of

regions of interest (ROIs), which can include whole

gland volume, a specific zone or one or multiple

lesions

3. Image pre-processing: voxel grey value normalisa-

tion (when using non-quantitative images, i.e., T2-

weighted, DWI, or DCE sequences), decomposition

filtering for the creation of additional mineable data

(e.g., Laplacian of Gaussian)

4. Feature extraction from the ROI: shape, histogram,

and texture (second-order features) parameters

5. Integration of radiomic data with clinical,

laboratory, prognostic, and/or genomic data

6. Feature selection in relation to the class of interest

7. Algorithm training and testing

8. Validation on an external population

Alternatively, a deep learning approach would only

require:

1. mpMRI examination: T2-weighted sequences, DWI

with ADC maps, and DCE sequences

2. Annotation of the ROI or of the whole image,

according to the desired classification output

3. Algorithm training and testing

4. Validation on an external population

An overview of both approaches is shown in Fig. 2.

While the deep learning approach may appear simpler

and more flexible, it does require much larger quantities

of data for algorithm training and its structure is usually

more complex and less transparent. These latter charac-

teristics contribute to the ‘black box’ nature of deep

learning algorithms, one of the main limitations prevent-

ing their widespread adoption. Finally, the two ap-

proaches can be variously mixed and matched

combining for example radiomic data with deep learning

algorithms.

Applications
Segmentation

The segmentation of the prostate gland is often a neces-

sary step in clinical settings as well as for further image

analysis. Therefore, the possibility of automating whole

prostate as well as lesion segmentation is of great inter-

est for the potential time-saving and increased reprodu-

cibility. A robust automated segmentation could in turn

lead to a fully automated post-processing pipeline.

There are interesting studies in the literature that de-

scribe the potentials of deep learning to achieve this

goal. For example, Wang et al. [32] compared manual

segmentation to a novel deep learning-based one. They

were able to demonstrate the feasibility of three-

dimensional fully convolutional networks and subse-

quently validate their findings on a public dataset.

Another research group [33] proposed a model based on

a propagation deep neuronal network by which data

from different levels of complexity were extracted and

combined so as to obtain a more trustworthy segmenta-

tion of the gland and its boundaries. The propagation

deep neuronal network was able to outperform baseline
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deep neural networks, resulting competitive with the ref-

erence standard.

Finally, Alkadi et al. [34] applied a unimodal deep

learning-based system using only T2-weighted images

for the automated segmentation of both the prostate

and PCa lesions. Their algorithm was able to achieve an

area under the receiver operating characteristic curve

(AUC) of 0.995, comparable to that of other multimodal

systems in lesion detection while outperforming other

proposed two-dimensional and three-dimensional pros-

tate segmentation approaches.

Cancer detection

There is a high interest in analysing the usefulness of ML-

based computer-assisted diagnosis (CAD) software in the

field of PCa, as it could improve radiologists’ diagnostic

performances and reproducibility. For example, already in

2012, PZ maps created by a decision support system

model based on endorectal mpMRI appeared to be a

promising tool in correctly localising PZ tumours [35].

More recently, Kwak et al. [36] have demonstrated

that it is possible to employ radiomics and ML for the

analysis of different tissues and cellular densities in the

prostate gland to aid in PCa detection. In order to do so,

they developed an MRI-based patient-specific prostate

mould in order to ensure correspondence of prostatec-

tomy specimens to the images. A significant difference

was found in ML-determined prostatic tissue compos-

ition between benign and malignant areas. In 2018,

McGarry et al. [37] found that the data derived from ten

patients was sufficient to obtain a stable fit for ML MRI

detection of increased epithelium and decreased lumen

density areas, indicative of high-grade PCa. These au-

thors were therefore able to generate lesion detection

maps, also validated against whole-mount histopatho-

logical specimens oriented with three-dimensional

printed slicing moulds.

Another proposal has been based on volumetric ROI

analysis of index lesions on mpMRI [38]. These authors

evaluated the usefulness of histogram parameters ob-

tained from T2-weighted, DWI and DCE images in com-

bination with a support vector machine (SVM) ML

approach for the improvement of PI-RADSv2 scores,

significantly increasing the radiologist’s performance. In

a recent study [39], comparing the analysis of ADC

radiomics with ML analysis and the performance of

mean ADC values alone for differential diagnosis of be-

nign and malignant prostate lesions, the resulting accur-

acy was similar without a statistically significant

difference between approaches.

Ginsburg et al. [40] have suggested that different ML

predictive models should be developed for the transition

zone and PZ, as lesions and normal prostatic tissue have

different imaging characteristics in these zones. In par-

ticular, they compared two zone-specific algorithms,

trained on different radiomic feature datasets, with a

zone-ignorant one. Interestingly, they found that while a

significant difference in performance was found between

Fig. 2 Radiomic workflow pipeline for both machine learning and deep learning approaches for prostate magnetic resonance imaging. See the

text for details
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the PZ-specific algorithm and the zone-ignorant one, no

differences were found for the transition zone-specific

algorithm.

A further use case for ML is the differentiation of stro-

mal benign prostatic hyperplasia from PCa in the transi-

tion zone. This diagnosis can be quite challenging,

especially with small lesions. Statistical analysis of previ-

ously established quantitative features (ADC maps,

shape, and image texture) demonstrated a high accuracy

in the differentiation of small neoplastic lesions from be-

nign ones using either linear regression and SVM classi-

fiers [41].

Another potential advantage of ML CAD-assisted

mpMRI is the improvement of inter-reader agreement.

Greer et al. [42] compared index lesion sensitivity, speci-

ficity and agreement between eight radiologists from dif-

ferent institutions and with various levels of experience.

The readers, after a first qualitative examination, reana-

lysed the same images using CAD: agreement and sensi-

tivity were higher in the CAD-assisted mpMRI, but

specificity worsened. Furthermore, the system was more

useful for PZ lesions.

Another CAD system was developed by Ishioka et al.

[43], although their proposal was based on a convolu-

tional neural network deep learning algorithm. While

the accuracy reported in two validation sets was not very

high, with AUC respectively of 0.645 and 0.636, further

development could lead to a reproducible, automated

CAD system. On the other hand, the research unit lead

by Wang [44] has shown better results for a deep

learning-based fully automated segmentation when com-

pared to a non-deep learning model. The authors

assessed their ability to distinguish PCa from benign

pathologies such as prostatitis or prostate benign hyper-

plasia. Their results showed a better accuracy and reli-

ability of deep learning, with a statistically significantly

higher AUC than that of the non-deep learning model

(0.84 vs. 0.70). Interestingly, their approach was con-

ducted without any need for segmentation of the train-

ing set, potentially easing further evolution of their

software with added data.

Assessment of lesion aggressiveness

As PCa is frequently indolent, it is of great importance to

assess the aggressiveness of detected lesions, and therefore

their clinical significance, for patient management [2]. The

standard approach of MRI and subsequent targeted biopsy

have improved identification of csPCa foci, but significant

disease is still missed, as shown in a recent meta-analysis

[45]. Texture features have shown in the past potential as

biomarkers of PCa aggressiveness [46, 47].

An interesting study was performed on 56 PCa pa-

tients in active surveillance who underwent MRI-guided

biopsies [48]. The authors assessed differences between

patients who were biopsy- and MRI-negative and pa-

tients who were biopsy- and MRI-positive, in radiomic

features extracted from T2-weighted and ADC images.

They subsequently employed the ten selected parameters

to construct models to identify subjects who were

biopsy-positive while MRI-negative and those biopsy-

negative and MRI-positive. Quadratic discriminant ana-

lysis enabled to obtain the best accuracy improving,

compared to PI-RADS alone, by 80% for the first classifi-

cation and 60% in the second. While focusing only on

the central gland, Li et al. [49] have shown that an SVM

approach, trained on six features extracted from mpMRI

exams depicting 152 prostate lesions, was able to con-

sistently predict Gleason score. This is especially import-

ant as it is one of the main determinants of PCa clinical

significance.

For the task of distinguishing indolent PCas and

csPCas, deep learning methods have shown some poten-

tial for future applications. Zhong et al. [50] compared

both a deep learning and a deep transfer-learning algo-

rithm to the performance of PI-RADSv2. In their valid-

ation cohort of 30 patients with 47 lesions, it was

comparable to the radiologist’s assessment (AUC 0.73

and 0.71, respectively), while outperforming deep learn-

ing alone (AUC 0.69). Similarly, Yuan et al. [51] have

shown that transfer-learning, in their case applied to the

AlexNet neural network, was able to achieve an overall

accuracy of 87% for the prediction of lesion Gleason

score.

Finally, a novel approach for the detection of csPCa, as

defined in the National Comprehensive Cancer Network

guidelines, using radiomics in combination with ML,

was recently performed by Varghese et al. [52]. A frame-

work for the robust testing of seven ML algorithms with

fivefold cross-validation showed that the best classifier

was a quadratic kernel-based SVM with an overall ac-

curacy of 0.92 in the validation cohort.

Local staging and pre-treatment assessment

mpMRI also gives important information for pre-

treatment local staging. In this setting, proposals for arti-

ficial intelligence applications have been more limited. A

recent preliminary report has shown that a radiomics-

based Bayesian network achieved a high accuracy (AUC

0.88) in the detection of extraprostatic extension of dis-

ease in preoperative MRI, using radical prostatectomy as

the reference standard [53]. This finding is promising for

further development of ML in PCa local staging.

Some novel applications of ML to prostate MRI have

been proposed in the setting of treatment planning. In

particular, Sun et al. [3] have developed a new type of

focal radiotherapy (bio-focused therapy) that requires

prior evaluation of some biological features of the

tumour, such as cell density and aggressiveness, which
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relate to therapy response. These have been assessed by

the authors non-invasively, with a voxel-wise approach:

patients underwent mpMRI before radical prostatec-

tomy, and imaging data were combined with histopatho-

logical information to extract tissue features (cell

density). They were then able to create models of pros-

tate tissue cell density, used for the targeting of bio-

focused therapy in order to achieve better response and

lower toxicity. Shafai-Erfani et al. [54] trained a ML al-

gorithm with paired CT and MRI datasets in order to

generate synthetic CT images to be used for patient ra-

diation therapy setup and dose calculation. ML proved

capable of producing reliable CT images, comparable to

the ground truth for both tasks.

Biochemical recurrence

About 30% of PCa relapse after radical prostatectomy

[55]. Also, radiation therapy-resistant PCa or recurrent

PCa is not uncommon. The elevation of serum levels of

prostate-specific antigen after treatment is currently the

most employed biomarker of this condition and is

known as ‘biochemical recurrence’ [56]. Very complex

altered molecular networks lie behind it and, more ex-

tensively, PCa recurrence [55]. ML applied to mpMRI

has been proposed as a viable tool for early detection of

recurrence or prediction of treatment outcome.

Abdollahi et al. [57] investigated how mpMRI ML

models could predict the response to an intensity-

modulated radiation therapy. Their findings suggest that

both pre- and post-treatment radiomic features can give

a reliable prediction of therapeutic success, especially if

compared to prostate-specific antigen dosage. A recent

study [58] has shown that a SVM could accurately pre-

dict biochemical recurrence within 3 years of radical

prostatectomy, outperforming a linear regression model

based on both MRI and the D’Amico patient risk classifi-

cation. In fact, ML showed an overall accuracy of 92.2%

compared to the 79% achieved by linear regression. The

potential of ML for this task was confirmed in 2018 by

another study [59] that employed SVM, linear discrimin-

ant analysis and random forest on radiomic features ex-

tracted from T2-weighted and ADC images.

Conclusions
A number of studies showed that ML, with or without

radiomic feature extraction, has a great potential to im-

prove the diagnostic performance and to expand the

clinical role of prostate MRI. Its applications range from

segmentation, lesion detection and aggressiveness pre-

diction to local staging and assessment prior to and fol-

lowing treatment. It is interesting to note that many of

the cited studies do not employ DCE images. Thus, ML

could help in avoiding the systematic use of contrast

agents for prostate imaging, as suggested by current

guidelines, a development to monitor as gadolinium ad-

ministration has come under scrutiny for the growing

evidences of its accumulation in the body [60].

Clinical applicability still requires more robust valid-

ation across scanner vendors, field strengths and institu-

tions, as for ML in all fields of medical imaging. As

highlighted in a recent letter by Peter L. Choyke, the

current limitations of ML also prevent them from gain-

ing the trust of the ideal end-users, radiologists [61]. On

the other hand, the growth in quantity and quality of re-

search in the years is also undeniable, and as ML software

obtain approval for clinical use in other settings, it is diffi-

cult to imagine a future for prostate MRI without it.
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