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Abstract

Objectives. Systemic lupus erythematosus (SLE) is a heterogeneous

autoimmune disease that is difficult to treat. There is currently no

optimal stratification of patients with SLE, and thus, responses to

available treatments are unpredictable. Here, we developed a new

stratification scheme for patients with SLE, based on the

computational analysis of patients’ whole-blood transcriptomes.

Methods. We applied machine learning approaches to RNA-

sequencing (RNA-seq) data sets to stratify patients with SLE into four

distinct clusters based on their gene expression profiles. A meta-

analysis on three recently published whole-blood RNA-seq data sets

was carried out, and an additional similar data set of 30 patients with

SLE and 29 healthy donors was incorporated in this study; a total of 161

patients with SLE and 57 healthy donors were analysed. Results.

Examination of SLE clusters, as opposed to unstratified SLE patients,

revealed underappreciated differences in the pattern of expression

of disease-related genes relative to clinical presentation. Moreover,

gene signatures correlated with flare activity were successfully

identified. Conclusion. Given that SLE disease heterogeneity is a key

challenge hindering the design of optimal clinical trials and the

adequate management of patients, our approach opens a new

possible avenue addressing this limitation via a greater understanding

of SLE heterogeneity in humans. Stratification of patients based on

gene expression signatures may be a valuable strategy allowing the

identification of separate molecular mechanisms underpinning disease

in SLE. Further, this approach may have a use in understanding the

variability in responsiveness to therapeutics, thereby improving the

design of clinical trials and advancing personalised therapy.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a debilitating

chronic autoimmune condition characterised by the

activation of inflammatory immune cells and the

production of proinflammatory autoantibodies

responsible for pathology in multiple organs.1 SLE is

highly heterogeneous and can be seen as a

syndrome rather than a single disease.2 The

responsiveness of patients to available treatments is

variable and difficult to predict. Rather than a small

number of highly associated loci, over 60 SLE low-

association loci have been identified by genome-

wide association studies.3–7 SLE has been studied

using numerous useful mouse models, each of

which manifests SLE-like symptoms underpinned by

different molecular mechanisms. Two examples are

mice overexpressing B-cell-activating factor of the

TNF family (BAFF, also known as TNFSF13B), that is

BAFF-transgenic mice, in which low-affinity self-

reactive B cells aberrantly survive,8,9 and

glucocorticoid-induced leucine zipper (GILZ)-

deficient mice10 with impaired regulation of

activated B cells. These and various other mouse

models of SLE replicate some aspects of disease

relevant to some patients with SLE, but most likely

do not individually account for all the disease

symptoms and pathogenesis mechanisms in humans.

Numerous large-scale clinical trials for SLE

treatments have been carried out, with an

improvement over standard of care as the

expected outcome of these studies.

Disappointingly, the vast majority of tested

therapies failed their primary endpoints,11 except

belimumab, an inhibitor of the cytokine BAFF,

showing modest efficacy in a subset of patients

with SLE.12 Highly variable responses to

treatments could be explained by the fact that

recruitment of patients into clinical trials is based

on a limited set of clinical manifestations and/or

clinical scores, unlikely to fully capture the

differences between patients. Therefore, there is

an unmet need for more meaningful patient

stratification and recruitment criteria, not just

limited to clinical manifestations. Indeed, this can

potentially be better achieved using biomarkers

reflecting the specific underlying mechanism of

disease, allowing for a more mechanism-targeted

and personalised approach to therapy.

Here, we have applied machine learning

approaches to stratify patients with SLE based on

gene expression patterns derived from whole-

blood transcriptomic data. We demonstrated that

this approach identified disease-linked gene

expression patterns not previously visible through

conventional data analysis of unstratified patients.

RESULTS

We examined a cohort of 30 patients with SLE

and 29 healthy donors for differentially expressed

genes by RNA-seq, alongside three publicly

available independent data sets (161 SLE and 57

healthy donor whole-blood transcriptomes in

total) (Table 1 and Supplementary figure 1).13–15

Batch effects from combining multiple data sets

were taken into account in the differential

expression analyses when using limma/edgeR

software or otherwise applying ComBat with data

set source as a known covariate and verifying a

minimal influence of batch effect compared to

condition effect using BatchQC (Supplementary

figures 1 and 2). Principal components analysis

(PCA), which looks at all gene expression and

visualises the overall variance between individuals,

suggests a higher gene expression heterogeneity

in SLE samples than healthy controls, which

projected more closely together (Figure 1a). Gene

expression in some SLE samples was similar to that

of healthy controls. Supervised clustering (to draw

apart the groups) was performed using partial

least squares discriminant analysis (PLSDA). The

PLSDA method assigns greater weighting values

to genes that are more useful for separating

healthy and SLE patients (Figure 1b). An

expression heatmap using the top-ranking

discriminating genes shows heterogeneity across

patients with SLE (Figure 1c), but visually

demonstrates the possibility of organising SLE

patients into several discrete clusters.

We applied unsupervised k-means clustering to

group patients into four clusters, C1-C4; clusters

were visualised with a PCA plot (Figure 2a). The

choice of four clusters was based on Gap and

Davies–Bouldin clustering evaluations

(Supplementary figure 3). The k-means clustering

algorithm uses a chosen number of cluster

centroids, which are repositioned among the

samples until convergence.16 We applied PLSDA

separately to the two largest Data sets (1 and 2),

resulting in similar gene-weighting values being

assigned to draw apart the four clusters,

suggesting that this clustering scheme reproduces

well in independent study populations

(Supplementary figure 4). Supervised machine

learning was applied, confirming that
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Figure 1. Differential gene expression in SLE. 161 SLE (orange symbols) and 57 healthy donor (blue symbols) transcriptomes from four data sets

(see Table 1, shown with different symbol shapes) were examined using multivariate statistics methods. (a) Principal components analysis (PCA)

was applied to visualise the overall variance between individuals. The same data points are coloured by data set source (left plots) or disease state

(right plots) as indicated. (b) Partial least squares discriminant analysis (PLSDA), a supervised clustering method, applies weighting to genes, which

separate healthy donors and unstratified SLE patients. Ovals indicate the 80% prediction interval. (c) Standardised expression levels of top-

weighted genes from the PLSDA model were plotted as a heatmap. Each row is an individual, and each column is a gene.
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Figure 2. Patient clustering. (a) PCA visualisation of 161 SLE whole-blood transcriptomes after clustering using the k-means algorithm. Four

clusters of patients were segregated and displayed with different symbols. Three data sets were combined (see Table 1). (b) Venn diagram

displaying selected top-ranking disturbed gene sets (from MSigDB hallmark gene sets) in each SLE cluster C1-C4 compared to the healthy control

group; highest ranking gene sets are bolded. (c) Percentage of anti-Ro autoantibody levels in 99 patients from Data set 1, rated as ‘none’,

‘medium’ or ‘high’, derived from Data set 1 metadata.13 The odds ratio of anti-Ro positivity and Fisher’s exact test P-values were calculated for

each cluster compared to other patients.
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classification software can be trained to learn the

transcriptomic signatures of each cluster and

accurately classify new patients (88% accuracy,

Supplementary figures 5 and 6, using two

different classifier algorithms).

Cluster 1 (C1) is transcriptionally the most

similar to healthy donors, compared to C2-C4

(Figure 2a). Gene set enrichment analysis was

performed to summarise the predominant

transcriptomic differences between the clusters

(Figure 2b). The top-ranking disturbed pathways,

which differentiate the clusters, include immune

activation pathways (e.g. antiviral interferon

response), metabolic pathways (e.g. citrate cycle)

and DNA repair gene sets. Some of the pathways

are likely attributable to particular medications,

such as reactive oxygen species (ROS) generation

gene sets, which are expressed in response to

hydroxychloroquine treatment.17

Interestingly, anti-Ro autoantibody positivity was

increased in C2 and C4; C1 had a significantly

decreased anti-Ro positivity compared to other

subsets, whereas C4 had significantly increased anti-

Ro positivity (Figure 2c graph and table with

statistics). Ascending levels of overall disease severity

were observed from clusters 1 to 4, as suggested by

the SLEDAI-2k (Figure 3a) and Physician Global

Assessment (PGA) scores (Figure 3b). Anti-dsDNA

autoantibody ratio was significantly increased in C4

compared to the other clusters (Figure 3c).

Flow cytometry revealed that circulating

neutrophil numbers were significantly increased in

C3 (Figure 3d). Neutrophils are potentially drivers of

nephritis,18 but we did not find a significant

difference in neutrophil numbers in patients with or

without renal disorder in our study population

(data not shown). ‘xCell’ (a software tool looking at

cell-specific genes)19 calculated enrichment scores,

suggesting several significant differences in the

representation of some immune cell types in specific

clusters (Supplementary figure 7). In particular, the

plasma cell gene signature was reduced in C3,

whereas B-cell and CD8+ T-cell gene signatures were

reduced in C3 and C4; NKT cell gene signature was

increased in C4, while conventional dendritic cell

(cDC) gene signature was reduced in C4. M1 and M2

macrophage gene signatures were not significantly

altered (Supplementary figure 7).

The 30 patients in Data set 2 all presented with

a similar total number of American College of

Rheumatology (ACR) criteria (Figure 3e), although

there are significant differences in each cluster.

For instance, C4 has significantly greater

occurrence of renal disorder and discoid rash,

whereas C2 has significantly more serositis and

less oral ulcers (Figure 3f). C1 has significantly

increased occurrence of photosensitivity

(Figure 3f). C3 and C4 had significantly more flare

activity than C1 and C2 (Figure 3f).

To further investigate the association of gene

expression patterns with clinical features, we

trained an error-correcting output codes (ECOC)

classifier using the three independent Data sets

(1 + 3 + 4), which we then used to classify the

patients in Data set 2 (Supplementary figure 8).

The predicted clusters reproduced the same clinical

distinctions (i.e. increased neutrophils in C3, more

disease severity in C4 and more flares in C3 and

C4), demonstrating that machine learning may be

used as a reliable method detecting differences in

clinical features in independent patient cohorts.

In comparing the expression levels of several well-

established SLE-associated genes in SLE clusters, we

found evidence that different pathogenesis

pathways may be associated with each cluster of

patients (Figure 4), providing more information

compared to unstratified analysis (Supplementary

figure 9). BAFF (TNFSF13B) overexpression is well

established as a driver of autoimmunity,8 targeted

by belimumab. Interestingly, high BAFF expression

was a very significant feature of C4 and to a lesser

magnitude C2 and C3, but not C1 (Figure 4a).

TNFSF10 mRNA (encoding TNF-Related Apoptosis-

Inducing Ligand, TRAIL) expression is also

upregulated in SLE,20 and this mirrored elevated

BAFF expression (Figure 4b). Defective apoptosis has

been implicated in autoinflammatory settings,

including SLE.21 Efficient apoptosis can be impaired

by upregulation of anti-apoptotic factors such as

cellular FLICE-inhibitory protein (encoded by

CFLAR), previously reported to be upregulated in

blood B cells of patients with SLE, and correlating

with disease severity.21 This likely prevents

apoptosis signalling in response to ligands such as

TRAIL and Fas ligand, to allow aberrant survival of

autoreactive cells.21 Our stratification found

substantial CFLAR overexpression in C3 and C4

(Figure 4c).

Excessive TLR receptor signalling is implicated in

autoimmunity, with TLR2, TLR7 and TLR9 pursued

as potential therapeutic targets in SLE.22

Abnormal excessive TLR signalling is thought to

exacerbate unspecific immune cell activation.23

Interestingly, TLR7 expression was significantly

upregulated in C2 and downregulated in C3

(Figure 4d). PELI1 (encoding Pellino1) is a TLR3-
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Figure 3. Disease severity and clinical features in SLE subtypes. SLE clusters C1-C4 in Data set 2 were compared by clinical features. Blue bars

represent the mean, and symbols represent patients. Red + symbols represent patients experiencing flares (temporary period of worsened

symptoms) at the time of sampling. (a) SLE disease activity index 2000 (SLEDAI-2k). (b) Physician Global Assessment (PGA). (c) Ratio of anti-

dsDNA autoantibodies, in C4 vs the other clusters combined. (d) Circulating neutrophil numbers. (e) Total number of ACR criteria each patient

was positive for. (f) Percentage map of patients in each cluster, who are positive for particular disease features as detailed (ACR criteria) and flare

activity.
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Figure 4. Relative expression levels of known SLE-associated genes. Expression levels (log2 fold-change relative to the mean of the healthy

controls) of (a) TNFSF13B (BAFF), (b) TNFSF10 (TRAIL), (c) CFLAR, (d) TLR7, (e) PELI1, (f) TSC22D3 (GILZ), (g) CD40LG, (h) IFNAR1 and (i) CTLA4.

Expression of interferon signature metric (ISM) genes: (j) HERC5, (k) CMPK2 and (l) EPSTI1. Therapeutics are indicated in red text above genes

coding for the relevant target protein. Three data sets were combined (see Table 1) with batch effects modelled using limma. Significant

differences between healthy and SLE samples, using Benjamini–Hochberg-adjusted P-values, are indicated (*P < 0.05, **P < 0.01, ***P < 0.001

and ****P < 0.0001). Gene expression in unstratified patients is provided in Supplementary figure 9.
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inducible negative regulator of noncanonical NF-

jB, and the expression of PELI1 was negatively

correlated with disease severity.24,25 In our

stratification, PELI1 was not significantly

underexpressed in any SLE clusters, but was

upregulated in C3 and C4, possibly induced for

NF-jB regulation (Figure 4e). TSC22D3 (also

known as GILZ) was identified as a negative

regulator of B cells, and lack of GILZ drives

autoimmune disease (Figure 4e).10 GILZ expression

was markedly diminished in C2, suggesting

possible loss of B-cell regulation. GILZ was

upregulated in C3 and C4, possibly as an effect of

glucocorticoid induction (Figure 4e).

CD40L, encoded by CD40LG, mediates T-cell

help driving T-dependent B-cell activation and has

been unsuccessfully targeted in clinical trials for

SLE.11 CD40LG expression was significantly

diminished in clusters C2, C3 and C4, possibly

questioning the usefulness of CD40L blockade in

those patients (Figure 4g).

IFNAR1 expression was significantly increased in

clusters C3 and C4, suggesting increased interferon

signalling sensitivity (Figure 4h). CTLA4 expression

was significantly reduced in C3 and C4, suggesting

impaired regulation of effector T cells (Figure 4i).

The interferon signature metric (ISM) is a

composite score of mRNA expression from three

interferon-regulated genes (HERC5, CMPK2 and

EPSTI1).26 Expression of these genes was

consistently upregulated in C2 and C4, whereas C3

levels were comparable to those of healthy donors.

Some patients in C1 and some healthy donors had

increased levels of ISM genes (Figure 4j–l).

We examined numerous SLE-associated genes

previously identified by GWAS.3–7 These genes

were significantly differentially expressed in

certain clusters, most frequently C4, but also C3

and C2, but not C1 (Supplementary figure 10).

In Data set 2, 6 of the 30 patients with SLE had

flares, who diverged further from healthy donors

when visualised by PCA (Figure 5a). While

numbers are limited, using PLSDA to select flare-

discriminating genes (Figure 5b), we were able to

observe differential gene expression during flares

consistent with increased innate activation and

altered immune cell regulation (Figure 5c–f).

Indeed, the RETN gene, encoding the

proinflammatory adipokine resistin, was

upregulated in patients with active flares only

(Figure 5c). Resistin is linked to the induction of

proinflammatory cytokines.27 Significant

downregulation of TCL1A and PAX5 (Figure 5d and

e) during flares suggests alterations in T- and B-cell

homeostasis, respectively.28,29 LCN2 expression was

increased in patients with flares (Figure 5f). LCN2

encodes neutrophil gelatinase-associated lipocalin

(NGAL), which suggests increased neutrophil-

mediated antibacterial activity; NGAL is also a

biomarker of kidney injury.30 Gene set enrichment

analysis of patients with flares suggested increased

inflammatory signalling (e.g. IL-6 and TNF-a),

increased proliferation signalling (KRAS) and

haematological disturbances (haem metabolism,

coagulation, complement and platelet-related gene

sets) (Supplementary figure 11). These data suggest

that our method can be used to look at discrete

subpopulations of patients and identify significant

differences that can be later validated with larger

cohorts.

DISCUSSION

A universally effective and safe treatment for SLE

remains an unmet need because of the

heterogeneity of clinical presentations, associated

with unpredictable responses to current

treatments.31 SLE remains a condition with poor

long-term outcome. Over six decades of clinical

trials in SLE have only yielded one new therapy,

belimumab, an inhibitor of the cytokine BAFF,

with mixed efficacy in patients.11 Major failures of

targeted therapy in the clinic for SLE11,32,33

suggest that breakthrough treatments may

remain years away. This situation has obligated

clinical experts and the pharmaceutical sector to

more rigorously understand the reasons for this

high failure rate. Suggested factors include issues

with the design of clinical trials, difficulty in

defining robust endpoints, suboptimal drug

targets and biomarkers, study populations that

are not broadly representative and high

heterogeneity within the study populations.11

Large-scale clinical trials invariably fail to

demonstrate efficacy when enrolling patients

selected on a limited number of clinical criteria,

which do not capture the underlying molecular

mechanism likely underpinning disease, which our

work showed may vary greatly in patients (Figures

2 and 3). Enrolment of some patients with low

disease propensity (C1) further weakens

comparisons between placebo and experimental

treatment groups.

Our stratification method differentiates patient

subgroups with four different gene expression

profiles (C1–C4), using whole-blood transcriptomics
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to obtain a snapshot of the immune system, and

we examined three study populations. This

stratification may possibly have a use in improving

the design of clinical trials, by more appropriately

targeting specific clusters of patients with SLE who

possibly express pathology-relevant genes more

homogeneously, suggesting a more consistent

mechanism of action underpinning disease in each

cluster (Figures 2b and 4). Retrospective analysis of

previous failed trials could potentially reveal high

efficacy in specific clusters of patients, a possible

significant outcome in efficacy currently hidden in

unstratified analysis. Successful off-label usage of

rituximab in some patients with SLE further

suggests that therapies unsuccessful in clinical trials

with SLE may yet have efficacy in selected

patients.34,35 Indeed, the expression levels of key

drug-targeted molecules such as BAFF and CD40L

suggest that certain clusters of patients might be

more suitable for the rationale of certain targeted

biologics than other clusters (Figure 4). Further

studies using RNA samples from patients who

participated in clinical trials with differing

responses to treatment is the important next step

to validate the utility of our method of

stratification.

Similar to us, previous studies using microarrays

have described distinct clusters of SLE patients in

whole-blood transcriptomic data.36,37 Banchereau

et al.38 conducted the largest microarray study in

SLE, which longitudinally monitored 158 patients

with juvenile SLE and uncovered markers

associated with disease activity. Recently, Panousis

et al.39 examined 142 patients with SLE and 58

Figure 5. Gene signature for SLE flare activity. Whole-blood RNA-seq data from 30 SLE patients (24 without flares and six with flares) and 29

healthy donors were compared (Data set 2, see Table 1). (a) Principal components analysis (PCA) to visualise the variation between samples (in all

genes); different symbols represent individuals in each group as shown. (b) Partial least squares discriminant analysis (PLSDA) was used to select

genes that distinguish the groups. (c–f) Relative expression of flare-associated genes, shown as the log2 fold-change relative to the mean of the

healthy donor group (‘H’). BH-adjusted P-values for differential expression (on count data) were calculated using limma (*P < 0.05, **P < 0.01).

Gene set enrichment analysis is provided in Supplementary figure 11.
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healthy donors by whole-blood RNA-seq, and

derived additional signals related to global

disease activity scores. In this study, we also used

RNA-seq data, which has the advantages of

capturing additional genes (not solely restricted

to probe sets) and improved dynamic range

compared to microarrays. Our study contributes a

new stratification scheme derived from the

convergence of four RNA-seq data sets, resolving

patients into four main subtypes with machine-

learned gene expression signatures. Additional

systems biology approaches (such as microbial

metagenomics and metabolomics) are becoming

available in SLE, and combining matching data

from additional profiling methods may allow for

improved sets of clinically useful biomarkers.40–43

Transient flare activity in SLE patients causes a

significant surge in inflammation requiring

increased medical attention, but much remains to

be understood about the underlying molecular

mechanism triggering flare activity. We identified

several genes that were differentially expressed in

patients with flare activity, including the RETN

gene, encoding the proinflammatory adipokine

resistin (Figure 5c). Interestingly, serum resistin

levels were elevated in patients with rheumatoid

arthritis and/or SLE, although the differences were

reported not significant in unstratified patients

with SLE, where high heterogeneity was noted.44

The specificity of elevated resistin levels to flare-

active patients may explain these results. However,

longitudinal studies monitoring successive flares

are needed to validate these observations, to

identify new flare-predicting transcriptional

signatures and to harness this information for

better management of patients with SLE.

The IFN gene signature is a known feature of

human SLE, although it does not correlate well

with overall disease severity.26 Stratification of

ISM-high patients is possible using qPCR assays to

monitor expression of three genes in peripheral

blood,26 which in our stratification corresponded

to C2 and C4 (Figures 2b and 4h–l). ISM genes

have specificity limitations, shown by a proportion

of healthy individuals with elevated levels of these

genes, similar to a proportion of C1 patients (who

have low disease activity) (Figure 4h–l). Several

new treatments related to type I interferon are

under investigation, for example anti-IL-3Ra (i.e.

anti-CD123 and CSL362 mAb), which depletes

basophils and plasmacytoid dendritic cells, cell

types that produce type I IFN.45 While this

treatment may also have therapeutic effects other

than that related to limiting type I IFN production,

our patient stratification may provide clues as to

patients more likely to respond.

In conclusion, our study provides new insights

into the heterogeneity of patients with SLE with

respect to gene expression in circulating immune

cells, which are the messengers of overall immune

activity in individual patients. Our novel approach

using whole-blood transcriptomic data combined

with machine learning is powerful at segregating

and recognising new patient clusters, as well as

uncovering cluster-specific gene expression

patterns. Our work is an important first step,

examining the underlying genetic heterogeneity

of SLE, and our results provide a number of

compelling clinically relevant observations,

strongly encouraging further validation of our

method using future cohorts of patients

responding or not to treatments or having or not

flares over an extended period of time. Future

post hoc analysis of failed clinical trials for SLE

using our method may also provide useful

information that can help better understand the

outcome and refine the design of future clinical

trials. As RNA-seq for each patient is expensive

with large cohorts, our work also provides

information on cluster-specific genes, which may

be useful when included in new high-throughput

pathology qPCR gene panels identifying clusters,

to be further validated. Finally, our in-depth

stratification is potentially the first new

opportunity that might put an end to decades of

a grim history, plagued with many failures in the

clinic in providing patients with SLE with a much-

needed treatment appropriate for the particular

subtype of the disease they are suffering from.

METHODS

Human subjects

Human subjects in Data sets 1 and 3 are previously

described (Table 1).13,14 Patients with SLE and in Data set 2

were recruited from the Monash Medical Centre.46 Healthy

donor blood for Data set 2 was collected by the Skin and

Cancer Foundation Carlton Victoria after informed consent.

Patients with SLE fulfilled the ACR classification criteria.47 The

SLE disease activity index 2000 (SLEDAI-2k)48 and the

Physician Global Assessment (PGA, range: 0–3)49 scores were

recorded. Blood was collected into PAXgene Blood RNA

tubes (BD Biosciences, San Jose, CA, USA), which were frozen

at �20°C for later RNA extraction (see below). The titre of

anti-dsDNA autoantibody ratio was calculated using different

assays according to the patients’ pathology providers (using

Farr assay, ELISA and Luminex assay). We have expressed the
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level of anti-dsDNA according to the ratio of measured anti-

dsDNA level to the upper limit of normal, and ratio ≤ 1

means normal and not positive for anti-dsDNA antibodies.

Patients did not participate in the analysis.

RNA extraction and RNA-sequencing

RNA was extracted using PAXgene Blood RNA Kits

(Qiagen). RNA libraries were prepared for sequencing using

standard Illumina protocols. RNA-sequencing (RNA-seq) was

performed on an Illumina HiSeq 2500 platform (all of the

samples in cohort 2 were sequenced together); 100-bp

single-end, stranded reads were analysed with the bcl2fastq

1.8.4 pipeline. Sequence read data are available on Gene

Expression Omnibus (GSE112087). Sequencing of the same

sample in two lanes showed comparable results

(Supplementary figure 10).

Bioinformatics analysis

Read quality, trimming, mapping and

summarisation

Publicly available data sets used in this study are listed in

Table 1.13,14 RNA-seq data were processed using a consistent

workflow (Supplementary figure 1). All software is listed in

Supplementary table 1. Read ends were trimmed with

Trimmomatic (v0.38) using a sliding window quality filter.50

Data sets 2 and 3 were truncated to 50-bp single-end format

to be consistent with Data set 1, before read mapping.

Reads were mapped using HISAT251 (v2.1.0) to the human

reference genome GRCh38/hg38, and the GENCODE release

v27 of the human genome GRCh38.p10 was used to

annotate genes. Read counts were summarised using the

featureCounts function of the Subread software package

(v1.6.1);52 nonuniquely mapped reads (i.e. reads that map to

more than one gene ambiguously) were excluded from

analysis. Males (5% of subjects) were included, but Y

chromosome genes were excluded from the analyses. Lowly

expressed genes were filtered out using a threshold

requiring at least 1 count per million (cpm) in healthy donor

samples across all data sets. In total, 9952 genes with unique

Entrez accession numbers were retained.

Normalisation, standardisation and batch analysis

Read counts were normalised by the upper-quartile

method, to correct for differences in sequencing depth

between samples, using edgeR.53,54 Counts were log2-

transformed with an offset of 1, and samples in each data

set were computed as the log2 fold-change (log2fc) against

the matching healthy control group mean. These processing

steps were useful to reduce the distracting effects of

extreme values and skewness typically found in RNA-seq

data.55 Batch effects (expected when combining data sets)

were taken into account in the statistical models using

limma/edgeR for differential gene expression testing (see

below), or reduced using data set source as a known

covariate using ComBat and verified using BatchQC

(Supplementary figure 2).

Gene selection, clustering and machine learning

Principal components analysis and PLSDA were performed

using the mixOmics R package (using Lasso penalisation to

rank predictive genes)56 and the MUVR R package

(v.0.0.971).57 Cross-validation was used to protect against

overfitting: in mixOmics, using M-fold cross-validation (10-

fold averaged 50 times); and in MUVR, using 15 repetitions

of repeated double cross-validation. A repeated-measures

design was used when combining data sets.58

Unsupervised clustering was performed with MATLAB

(MathWorks, Natick, MA, USA), using the k-means function

(using 100 repetitions to optimise initial centroid

positions). The number of clusters was chosen based on

unsupervised hierarchical clustering with MATLAB. ECOC

classifiers, which contain several support vector machines

for multiclass identification, were generated using

MATLAB. Random forest classifiers were generated using

MUVR.57

Differential gene expression and gene set

enrichment analysis

Count-based expression analyses

The limma/edgeR workflow was used for differential

expression analysis, considering each data set as a batch.54

The EGSEA (v1.10.1) R package was used to statistically test

for enrichment of gene expression sets, using a consensus

of several gene set enrichment analysis tools.59 EGSEA uses

count data transformed with voom (a function of the

limma package).60 Collections of predefined gene sets were

from KEGG Pathways and the Molecular Signatures

Database (MSigDB: ‘h’ hallmark and ‘c2’ curated

collections).61

Circulating immune cell composition

analysis

Flow cytometry

Whole-blood samples collected into lithium heparin tubes

(BD) were examined for frequency of circulating

neutrophils (SSChigh CD11b+, CD49d�) by flow cytometry.

Whole-blood samples were stained for 15 min at room

temperature before being fixed with BD lysing solution

(BD) and acquired on a MACSQuant 10 (Miltenyi Biotec,

Bergisch Gladbach, Germany) with subsequent analysis

done with FlowJo software (Tree Star, Ashland, OR, USA).

Transcript-length-adjusted expression and cell-

type enrichment analysis

Transcript-length-adjusted expression estimates (FPKM,

Fragments Per Kilobase of transcript per Million mapped

reads) were obtained using StringTie (v1.3.4) and Ballgown

(v2.12.0) R packages.51 Whole-blood RNA-seq results (FPKM

format) were analysed for immune cell-type signature

enrichment using the xCell R package (v1.1.0).19
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Statistical analysis

The mixOmics and MUVR R packages were used for multivariate

analysis using count data.62 The limma R package was used to

test for significantly differentially expressed genes while

modelling batch effects (expected from combining data sets)

and correcting for multiple comparisons (i.e. testing thousands

of genes) using the Benjamini–Hochberg procedure. R version

3.5.2 was used. Fisher’s exact tests and odds ratio calculations on

contingency table data were performed using Prism software

(v8.0.2; GraphPad Software, San Diego, CA, USA). Statistically

significant differences are shown for P < 0.05 (*), P < 0.01 (**),

P < 0.001 (***), P < 0.0001 (****) or not significant (n.s.).
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