
 
 

 

 

 
Carrillo-Nunez, H., Dimitrova, N., Asenov, A. and Georgiev, V. (2019) 

Machine Learning Approach for Predicting the Effect of Statistical 

Variability in Si Junctionless Nanowire Transistors. IEEE Electron Device 

Letters, (doi:10.1109/LED.2019.2931839). 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 
http://eprints.gla.ac.uk/191552/    

                    
 

 

 

 

 

 

Deposited on: 31 July 2019 

 

 

 

 

 

 

 

 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  
 

http://dx.doi.org/10.1109/LED.2019.2931839
http://dx.doi.org/10.1109/LED.2019.2931839
http://eprints.gla.ac.uk/191552/
http://eprints.gla.ac.uk/191552/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  

Abstract— This work investigates the possibility to replace 

numerical TCAD device simulations with a multi-layer neural 

network (NN). We explore if it is possible to train the NN with the 

required accuracy in order to predict device characteristics of 

thousands of transistors without executing TCAD simulations. In 

order to answer this question, here we present a hierarchical 

multi-scale simulation study of a silicon junctionless nanowire 

field-effect transistor (JL-NWT) with a gate length of 150 nm and 

diameter of an Si channel of 8 nm. All device simulations are based 

on the Drift-Diffusion (DD) formalism with activated density 

gradient (DG) quantum corrections. For the purpose of this work, 

we perform statistical numerical experiments of a set of 1380 

automictically different JL-NWTs. Each device has a unique 

random distribution of discrete dopants (RDD) within the silicon 

body. From those statistical simulations, we extract important 

figures of merit (FoM), such as OFF-current (IOFF) and ON-

current (ION), subthreshold slope (SS) and voltage threshold (VTH). 

Based on those statistical simulations, we train a multi-layer NN 

and we compare the obtained results with a general linear model 

(GLM). Our work shows the potential of using NN in the field of 

device modelling and simulation with a potential application to 

significantly reduce the computational cost.  

 
Index Terms—nanowires, TCAD simulations, statistical 

variability, deep learning, neural networks.   

I. INTRODUCTION 

ILICON nanowires have a wide spectrum of promising 

applications, such as current field-effect transistors  [1] [2], 

photovoltaics [3], energy conversion and storage [4] and 

qubits [5]. In our previous work, we have shown an extensive 

comparison between simulations and experimental results for 

JL-NWTs with Ω-gated region and with a channel length of 150 

nm [6]. In another study, we have discussed statistical 

simulation results based on an ensemble of 500 JL-NWTs, 

where each device is atomistically unique with random 

distribution of discreet dopants in the channels [7].  Results 

obtained from those previously reported works have allowed us 

to suggest an improvement of the device design, predict the 

device performance and to extract important Figures of Merit 
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Fig. 2 ID-VG characteristics of 1380 JL-NWTs devices used in this work 

considering unique random dopant distribution for each device (green 

curves). The uniform device (blue curve) is continuously doped with a 

doping concertation of ND = 1019 cm-3.     

 
Fig. 1 a) Sketch of the JL-NWT, with cuts along and perpendicular to the 

transport direction.  The Si channel shows the potential where fingerprints 

from the randomly distributed dopants (RDD) are visible. b) shows the 2D 

potential and c) the current density in the Si channel along the transport 

direction of wire. The white dots are the discrete random dopants.  
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(FoM), such as OFF-current (IOFF) and ON-current (ION), 

subthreshold slope (SS) and voltage threshold (VTH).   

In this letter, we would like to extend our previous works [6] 

[7] further and explore the opportunity to include multi-layer 

neural network (NN) in our analysis in order to predict device 

characteristics without running numerical TCAD device 

simulations. To the best of our knowledge this is the first paper 

that establishes a direct link between NN and TCAD 

simulations.  

This paper is organised as follows. The simulation 

methodology is presented in Section II. Then we report the main 

findings obtained from the numerical TCAD simulations and 

NN results in Section III. The final Section IV describes the 

conclusions.  

II. SIMULATION METHODOLOGY AND RESULTS 

Fig. 1 shows the device geometry. In all devices, the channel 

length is kept constant at LCH = 150 nm, the Si cross-section is 

8 nm and the oxide thickness is fixed at 16 nm. The only 

parameter that differs for each device is the position and the 

number of RDD in the Si region. Performing statistical 

numerical simulations of the current-voltage (ID-VG) 

characteristics (see Fig. 2) allows us to extract FoM (IOFF, ION, 

SS, VTH). 

In this work, JL-NWTs are simulated using the commercial 

TCAD simulator—GARAND, which is now part of the 

Synopsys TCAD Sentaurus Simulator. All device simulations 

are based on the Drift-Diffusion (DD) formalism with activated 

Density Gradient (DG) quantum correction [8]. The DD+DG 

methodology is necessary in order to take into account quantum 

confinement effects in ultra-scaled JLNWs as shown in Fig. 1. 

Also, the inverse sombrero shape of the Coulomb potentials, 

associated with individual discrete charges created by the 

randomly distributed dopants, is accurately captured by the DG 

correction [8], [16]. In our simulations the DD+DG formalism 

is coupled with the Poisson equation in a self-consistent loop 

[9] that gives us the opportunity to calculate current-voltage 

characteristics of the devices (see Fig. 2).  

Fig. 2 shows the impact of the random dopant distribution 

(RDD) on current–voltage (ID − VG) characteristics. For the 

purpose of this analysis, 1380 JL-NWTs with different RDDs 

are simulated. Based on those ID − VG curves we extract FoM, 

such as IOFF, ION, SS and VTH.  

Using three of those FoM (IOFF, ION, SS) as an input to a 

multi-layer NN, we train the NN by applying a back-

propagation algorithm [10] to predict the values for the fourth 

FoM – VTH. Fig. 3 shows the NN produced as a result of testing 

various configurations of NN by changing the number of hidden 

layers. Single input layer (a row vector of dimension of 3 × 1), 

four hidden layers (with 32, 15, 8, 3 neurons respectively) and 
an output layer form the final structure. Fig. 3 also shows the 

Wi and bi for a given layer i. The NN is implemented in Python 

making use of the TensorFlow and Keraus package [11]. The 

gradient descent technique [12] which minimises the MSE of 

the final result is used to determine the values of Wi and bi. In 

the NN, each function (f) except f 5 corresponds to a logistic 

function used at each layer.   
More specifically in this work, we use the data obtained from 

the device simulations to train the NN. The aim is to use three 

of the FoMs: SS, IOFF and ION, to predict the fourth one – VTH. 

In order to achieve that, the data for all 1380 devices is split into 

two sets. The first set has 700 devices that are split 70% to 30% 

for training and testing sets of the NN, correspondingly. Once 

the NN is trained, we use the second (validation) set of 680 

devices in order to evaluate the accuracy of the trained NN. 

The main descriptors that are used to validate the accuracy of 

the trained NN are the mean square error (MSE) and the mean 

absolute error (MAE). Fig. 4 shows the MSE and MAE for the 

training and validation sets as a function of the training steps 

(Epoch). As expected, the values of both errors quickly 

decrease and reach a constant value before the defined accuracy 

of the NN is reached.  

To help to analyse the results, two plots are presented in Fig. 

5 and Fig. 6. Fig. 5 shows the predicted VTH from the NN and 

general linear model (GLM) versus the true value of the VTH 

taken from the numerical device simulations. GLMs are 

powerful statistical tools as they accommodate response 

variables of non-normal distributions thus allowing for multiple 

statistical models such as Poisson regression, Linear Regression 

and Logistic regression to come together [14] [15]. 

 
Fig. 3 Schematic representation of the multi-layer neural network (NN) used in this work. Weight, bias and logistic function are depicted by Wi, bi and f i 

respectively. A liner function is annotated by f 4 and the output of each neuron is illustrated by ai. 
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The GLM is set up to train and test on the exact same data as 

the NN, ensuring that their results can be compared effectively. 

In general, if the predicted value of VTH is a 100% match with 

the true value of VTH, each blue or grey dot should be on the top 

of the red line.  In our case, both NN and GLM are in agreement 

with the low values of the VTH and larger variability for devices 

with VTH below the value of -300 mV.  

However, in order to establish if the NN performs better than 

the GLM, in Fig. 6 we plot the MAE and MSE for both 

methods. Fig. 6 shows that the MSE obtained by the NN equals 

4.32 mV2 and GLM gives a higher value of 10.33 mV2. MAE 

is also smaller for the NN in comparison to the GLM, 53.34 mV 

and 64.06 mV, correspondingly. This is somehow surprising 

because the NN requires more parameters (782 parameters in 

this case) if compared to the GLM and it still gives the lowest 

MSE and MAE values. Those results show that our NN is 
trained well and performs better than the GLM.  

Another useful method for displaying the results is by using 

a bar chart diagram that shows the error for the predicted values 

of VTH for the testing data (see Fig. 7). The error histogram 

follows closely a Gaussian distribution which is another 

indicator of the success of the training procedure in the NN. 

III. CONCLUSIONS 

In this work, we have reported a statistical analysis of the 

RDD variability is the Si n-type JL-NWT. A statistical sample 

of 1380 microscopically different transistors has been 

simulated. The simulated current-voltage characteristics 

allowed us to extract key Figures of Merit (IOFF, ION, SS) which 

we used to train the NN in order to predict the VTH.   

Results obtained from the NN can lead to the following 

conclusion. Using the NN instead of the TCAD simulations in 

principle could significantly decrease the computational time and 

shorten the research and development process. For example, each 

ID-VG curve takes on average 4 hours to simulate 25 VG points. 

Hence, for 1380 devices this makes 5520 hours (331,20min) total 

simulations time. However, the computational time for the NN is 

less than 2 min (1.26 min). This includes running the NN and 

producing the figures reported here. 

Since the NN shows stable training process with the Gaussian 

distribution of the error histogram, a better performance in 

comparison to the GLM and ability to predict new and unknown 

set of data, which is used only for testing and not training, we 
are confident that the presented NN is well trained. Also, 

similar NNs can be used to describe material properties, such 

resistance in metal nanowires [13], that cannot be described by 

nonparametric methods, such as a general linear model. 

However, it needs to be noted that predictivity of the NN can 

be improved even further by providing more data, using 

different pre-processing schemes and attempting alternative 

network architectures. Indeed, all of these options are currently 

under investigation. 

 
Fig. 4 Mean square error (MSE) and mean absolute error (MAE) function 

for the neural network (NN). The blue line represents the error on the 

training set as a function of each epoch and the red line corresponds to the 

error on the validation set as a function of each epoch. 

 
Fig. 5 True vs predicted values for the voltage threshold (VTH) evaluated 

of the validation data set containing 680 devices which are used only for 

testing the NN (left hand side) and GLM (right hand side).  

 
Fig. 6 MAE and MSE error bars for the NN and the GLM. 

 
Fig. 7 Error histogram distribution plot for the predicted value of the VTH. 

The error is evaluated on the second data set containing 680 devices which 

are used only for testing the NN. 
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