
HEMATOLOGY AND HEMOSTASIS

Received 10 April 2019; revised 30 June 2019 and 22 August 2019; accepted 25 August 2019.
Date of publication 4 October 2019; date of current version 4 October 2019.

Digital Object Identifier 10.1109/JTEHM.2019.2938951

Machine Learning Approach for Prediction of
Hematic Parameters in Hemodialysis Patients

CRISTOFORO DECARO 1, GIOVANNI BATTISTA MONTANARI2, RICCARDO MOLINARI3,
ALESSIO GILBERTI2, DAVIDE BAGNOLI4, MARCO BIANCONI2,5,

AND GAETANO BELLANCA1

1Department of Engineering, Ferrara University, 44122 Ferrara, Italy
2MIST E-R, 40129 Bologna, Italy

3Tecnoideal s.r.l., 41037 Mirandola, Italy
4Medica s.p.a, 41036 Medolla, Italy

5CNR-IMM-UOS di Bologna, 40129 Bologna, Italy

CORRESPONDING AUTHOR: C. DECARO (cristoforo.decaro@unife.it)

The work of C. Decaro was supported in part by the Emilia Romagna Region in the framework of the PO Fse 2014/2020 Alte competenze
per la ricerca, il trasferimento tecnologico e l’imprenditorialita’.

ABSTRACT Objective: This paper shows the application of machine learning techniques to predict hematic

parameters using blood visible spectra during ex-vivo treatments. Methods: A spectroscopic setup was

prepared for acquisition of blood absorbance spectrum and tested in an operational environment. This setup

is non invasive and can be applied during dialysis sessions. A support vector machine and an artificial neural

network, trained with a dataset of spectra, have been implemented for the prediction of hematocrit and oxygen

saturation. Results & Conclusion: Results of different machine learning algorithms are compared, showing

that support vector machine is the best technique for the prediction of hematocrit and oxygen saturation.

INDEX TERMS Artificial neural network, hematocrit, hemodialisys, machine learning, non-invasive,

oxygen saturation, SVM, visible spectroscopy.

I. INTRODUCTION

The aim of this paper is to present a machine learn-

ing approach for estimation of hematic parameters using

spectroscopic techniques. There are several applications of

opto-electronic sensors for monitoring blood [1], [2], exam-

ples of systems for monitoring blood levels during ex-vivo

treatments, such as dialysis [3], [4] or modern cardiac

surgery [5], are widely reported. A common non invasive

technique exploits photo-diode arrays for evaluation of blood

parameters, but it provides a limited amount of information,

such as oxygen saturation and hematocrit.

Spectroscopy has different applications in biomedical

fields, but it is mostly used in diagnostics [6] and therapy [7].

The use of visible spectroscopy for hematic analysis is how-

ever a promising approach, because absorbance spectra of

blood contain a lot of information such as hematocrit, oxygen

saturation, but also platelets [8] and glucose [9] concentra-

tions, allowing the possibility to significantly increase the

amount of parameters to be monitored.

Moreover, mini-spectrometers are already available on the

market and thanks to their portability, reliability and size it

becomes possible to realize a low cost setup for collecting

spectra, which forms the database for machine learning

implementation. Once machine learning models are trained

(e.g. fitted on training data), then they can be used for predic-

tions during dialysis treatment or surgical operations.

Periodic dialysis is commonly performed on patients with

end stage kidney failure; this treatment filters wastes and

extra water, restoring safe levels of chemicals such as potas-

sium and sodium; it also helps in controlling blood pressure.

Hemodialysis is the most common dialysis treatment; it

is an extra corporal (ex-vivo) technique whose main disad-

vantage is the length of the treatment, which should be also

repeated about 4 time a week per patient [10]. The level of

hematic parameters, such as hematocrit and oxygen satura-

tion, need to be continuously monitored during the treatment,

because patients may suffer hypotension, muscle cramps and

lightheadedness.

Moreover, monitoring hematocrit and oxygen saturation is

time-saving for patients and significantly improves dialysis

efficiency [11].

Hematocrit (Hct) is the ratio between corpuscular part of

blood volume and its total volume. It has been already proved

that standard values of hematocrit improve the quality of life
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and reduce risk of mortality in hemodialysis patients [12].

Standard values of hematocrit range from 47 up to 52 in male

and from 42 up to 47 in female.

Oxygen saturation (sO2) of blood is the ratio between the

concentration of hemoglobins which have formed a chemical

compound with oxygen, called oxy hemoglobin, and the total

concentration of hemoglobin. In human blood, standard val-

ues of oxygen saturation are above 96%; patients with level

of sO2 lower than 90% are affected by hypoxia, which could

be symptom of diseases like asthma or lungs tumor [13].

This study shows the results of two different machine

learning techniques, support vector machine and artificial

neural networks, for prediction of Hct and sO2. The dataset,

needed for training the two algorithms, is realized by repro-

ducing a real hemodialysis treatment. In this phase, inputs are

stored and then preprocessed to create a large dataset.

II. MACHINE LEARNING

Machine learning [14] is a field of artificial intelligence,

which exploits statistical techniques, to give a computer

system the ability to learn. Fundamental steps of machine

learning algorithms are:
1) Learning from a large dataset

2) Generalizing the problem

3) Making predictions on new data
In this paper, two different machine learning techniques,

support vector machine (SVM) and artificial neural network

(ANN), have been implemented. In literature, there are a lot

of examples of support vector machine [15] and artificial

neural networks applied for biomedics [16]. On this field,

research is mostly focused on automatic diagnosis of different

diseases, for example heart activity [17], diabetic retinopa-

thy [18] and sleep apnoea [19]. In the next parts of this

section, the two investigated approaches (SVM and ANN)

are briefly described and some parameters, commonly used to

evaluate their performances, are introduced. SVM and ANN

were trained with the same dataset and compared in terms

of performance and prediction accuracy. Since both inputs

and outputs are provided to the algorithms, the prediction

of hematic characteristics is a typical supervised regression

task. Dataset must represent different possible combinations

of inputs and outputs. It is therefore very important to collect

a large dataset with significant measures to train accurate

models.

Machine Learning algorithms have many parameters;

some are learned during the training phase, while others are

initialized before training: these are called hyperparameters.

The optimization of hyperparameters has a significant impact

on the performance of the model.

A. SUPPORT VECTOR MACHINE

Support vector machine (SVM) [20] is one of the most

common machine learning technique thanks to its versatility.

SVM is a supervised statistical technique which supports

both classification and regression problems, with linear or

non-linear approach via kernel methods. It finds the best

hyperplane which maximizes the inter-distance among the

points belonging to the different classes. These hyperplanes

represent the decision boundaries allowing categorization of

new inputs into one category. Even if SVM algorithm is

commonly used for classification, it can also be used for

regression. SVM regression tries to fit as many inputs as

possible on each hyperplane avoiding misclassification.

The generalization of the hyperplane separation imple-

mented with SVM can be regularized by the C parameter. C is

the penalty factor assigned to misclassify data points. When

C is small, the algorithm is more tolerant to misclassification,

whenC is large, the algorithm heavily penalizedmisclassified

data. In this work, Radial Basis Function (RBF) was selected

as kernel algorithm to predict hematic parameters, instead of

linear kernel which did not provide high accuracy. RBF is the

most common non linear SVM kernel and it is characterized

by the hyperparameter γ [21].

RBF kernel function is equal to:

k(x, x ′) = exp

(
−

||x − x ′||2

2σ 2

)
(1)

which is often rewritten as:

k(x, x ′) = exp(−γ ||x − x ′||2) (2)

where γ = 1
2σ 2 .

||x − x ′||2 is the squared Euclidean distance between two

data points x and x ′.

When γ is high, the decision boundary is more affected

by individual data points and could lead to overfitting. The

optimization of C and γ can improve the accuracy of the algo-

rithm, but tuning them is a trade-off. In fact, larger values of

C determine smaller-margin hyperplanes; conversely, a very

small value of C will cause a larger-margin separating hyper-

plane. At the same time, when γ is very small, the model is

too constrained and cannot capture the complexity of data; on

the other hand, system will not be able to prevent over-fitting

if γ is too large [21].

B. ARTIFICIAL NEURAL NETWORKS

Artificial neural network (ANN) [22] is a particular class

of machine learning techniques. The name is inspired by

biological connections of neuron in human brain. Artificial

neural networks are data driven algorithms which learn from

a dataset of examples and tries to find out hidden functional

relations, even if physics is not explicitly provided.

They have many different topologies, but all of them are

based on their basic block: the neuron. Neurons are process-

ing elements arranged together with different connections.

In every neuron, input is associated with a weight and a

bias: data passes to structure next level through an activation

function. This working principle is schematically represented

in figure 1. An artificial neural network is composed by many

neurons which are connected together in complex intercon-

nections to solve linear or non-linear problems.

Feedforward neural network topology was chosen to pre-

dict hematic parameters. In a feedforward network, neurons
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FIGURE 1. Working principle of an artificial neuron.

FIGURE 2. Schematic structure of feedforward propagation.

are arranged in layers, with the first layer taking in inputs,

one or more middle layers called hidden layers, because they

have no connection with external world and the last layer

which produces outputs. The information always moves in

one direction, there is no loops between neurons and the data

never goes backwards. The outputs provided each epochs are

compared with the desired values, the error is then fed back

through the network during a procedure called backpropa-

gation. Weights are adjusted iteratively to reduce error until

some stop criterion is satisfied.

Most of the high computational cost of this method is spent

during the training steps. Once artificial neural network is

trained for a particular task, then it can be quickly employed

to solve similar problems with new data.

In general, there are neither standard steps to determine

the best topology of a neural network, nor the best param-

eters. Basic approach is trial and error starting from the

simplest structure and increasing complexity when results

are not satisfactory. When the model is reliable and accurate,

then it is possible to optimize through modification of some

parameters.

The aim is to obtain the most accurate model reducing

errors between predicted and target values.

C. PERFORMANCE PARAMETERS

In machine learning field, there are different parameters for

the evaluation of model’s accuracy.

They all compute the error between desired and predicted

values.

The most used performance parameters are:
• Mean Squared Error (MSE) estimated over n samples.

It is defined as:

MSE(y, ŷ) =

∑n−1
i=1 (yj − ŷi)

2

n
(3)

• Mean Absolute Error (MAE) estimated over n samples.

It is defined as:

MAE(y, ŷ) =

∑n−1
i=1 |yi − ŷi|

n
(4)

• Coefficient of determination (r2). The coefficient of

determination is mathematically defined as:

r2(y, ŷ) = 1 −

∑n−1
i=1 (yi − ŷi)

2

∑n−1
i=1 (yi − ỹ)2

(5)

where ỹ is equal to:

ỹ =
1

n

n−1∑

i=0

yi (6)

It provides a measure of how well future samples are

likely to be predicted by the model. r2 equals to 1 means

the model can predict exactly every solution.
In (3) (4) and (5) y1, y2 · · · yn are n observed targets and ŷ1,

ŷ2 · · · ŷn are the corresponding predicted values.

Calculation of MSE, MAE and r2 allows a statistic evalu-

ation of model’s performance, giving a comparison between

them.

III. METHODS

A. EXPERIMENTAL SETUP

The development of the dataset for the two proposed machine

learning algorithms was carried out with spectral acquisition

of blood. The hemoglobin absorption and the scattering prop-

erties of red blood cells determine a visible spectrum used

to be as input for machine learning algorithms, to determine

hematic properties. A sketch of the setup for spectra collec-

tion is represented in figure 3. It was optimized to record

blood transmittance spectra during hemodialysis and it was

used, in our study, for developing a large and reliably dataset.

FIGURE 3. Working principle of experimental setup.

Experimental setup for spectroscopic measurements was

composed by:

• a Hamamatsu mini spectrometer, a low cost opto-

electronic sensor which collects transmission spectra in
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FIGURE 4. Operational environment for tests.

the wavelength range from 320 nm to 885 nm and with

a resolution of 15 nm [23];

• an halogen lamp used as light source going through the

sample;

• multimode fiber optics to connect lamp source and

spectrometer;

• a cuvette, which was inserted along the path of blood as

the measure point for spectrum acquisition;

• a laptop, which collects and stores data.

The described setup was inserted along blood circulation in

an operational environment which accurately replicates a real

treatment for purification of blood. Setup for experimental

tests, as sketched in figure 4, was composed by:

• blood line tubes, where the blood is flowing;

• a blood pump to maintain circulation of blood;

• a dialyzer filter, used to vary hematocrit during blood

circulation;

• a cuvette as optical window for spectroscopic

measurement;

• an oxygen inlet for introducing oxygen along the path.

B. DATA COLLECTION

In our measurements, 5 simulated dialysis sessions were

performed, resulting in a dataset composed by 160 different

spectra of animal blood. Every spectrum consists of 287 val-

ues, which represent transmittance levels at specific wave-

lengths. Each spectrum is the average of 100 scans at the

highest sensor resolution. All these spectra make the dataset.

A reference spectrum of each cuvette was acquired and

subtracted frommeasurements, to remove the signature of the

cuvette from the measured spectra.

The input data for machine learning is represented by

absorbance. Spectrometer provides the transmittance value of

light, Lambert-Beer law was used to evaluate absorbance:

T =
I

I0
(7)

where:

• I is the light intensity after it passes through the sample

• I0 is the reference or initial light intensity

According to Lambert-Beer law, absorption is equal to:

A = −logT = −log
I

I0
(8)

Standard techniques were used to get the hematocrit and oxy-

gen saturation references; these measures were then collected

to build both train and validation sets as targets for machine

learning models. Thus, Hct was evaluated through centrifuge

to perform blood fractionation, while saturation has been

measured through GEM Premiere 3000, a blood gas analyzer

of human blood [24]. This is an electrochemical sensor that

measures pH, electrolytes and other parameters of blood such

as oxygen saturation. GEM Premiere 3000 has a resolution

of 1% for sO2 in the range between 0 and 100% [24].

Different combination, of sO2 and hematocrit were tested,

to provide several possible scenarios. All tested combina-

tions are plotted in figure 5. Samples ranging from 5 up to

100% for the sO2, and from 9 up to 70 for hematocrit, have

been considered. This is a full exhaustive range, because it
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FIGURE 5. Hct and sO2 combinations of tested samples.

covers all the possible common situations. However database

is not uniform, as most of spectra have sO2 over 90% and

Hct> 20, because this is the most frequent range in hemodial-

ysis patients.

C. PREPROCESSING

Support vector machine, artificial neural network algo-

rithms and all other preprocessing operations have been

developed in Python 3.7. The targets were considered

independently and two different models for SVM and neural

network were implemented. The dataset was pre-processed

in order to enhance the predictive power of neural networks.

Savitzky-Golay’s filter [25] was applied on dataset. This

is a digital filter, commonly used in spectroscopy, which

removes noise while preserving the characteristics of a signal

spectrum [26]. Many machine learning estimators require

normalized data to enhance accuracy. Scikit-learn provides

different standardization techniques. Robust scaler was cho-

sen for this task. This scaler removes the median and scales

the data according to the quantile range, these operations are

performed independently on each feature using statistics that

are robust to outliers. Normalized dataset was then randomly

splitted into two parts: the training set and the test set. The

training set, a fraction representing 85% of whole data, was

used to fit the models, while the remaining 15% of the data,

the test set, was used to evaluate the model’s performances.

The split was performed pseudo-randomly because a seed

was used to obtain always the same sequence of training and

test sets. This is important to compare different models with

the same training and test samples.

D. TRAINING MACHINE LEARNING MODELS

The following Python libraries were used for machine

learning:

• Scikit-learn [21] is the package for implementation of

support vector machine.

• Keras [27] was used to implement neural network under

Tensorflow framework. This is a high level neural net-

works API, written in Python code.

SVM was fitted with the following hyperparameters:

C = 103

γ = 10−3

k-fold cross validation [21] was used to avoid overfitting in

SVM. For each setting of parameter, the k-fold algorithm

follows these steps:
• inputs are splitted in k parts (in this case k = 3);

• fitting the algorithm for k-1 parts of inputs (training set);

• evaluation of score for the remaining part (validation

set);

• iteration of algorithm for the others k-1 parts;

• evaluation ofmean score error for training and validation

sets.
k value is an important parameter to fix. Different values of

k were tested, but the best result was achieved with k = 3.

Artificial neural network is highly penalized by imbalanced

dataset. Database is not uniform, because most of spectra

have sO2 over 90% and Hct > 20, that is the most fre-

quent range of observation. Oversampling techniques were

used to overcame this problem; these technique synthesizes

new minority instances between existing minority instances.
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FIGURE 6. Linear regression model fit on test set for hematocit.

This approach was applied on training set before fitting pro-

cess, while the test set remained immutable. The influence

of this approach on the final result is under investigation.

As previously stated, the neural network was developed by

Keras under Tensorflow framework. Artificial neural net-

works have a set of hyperparameters, as a consequence the

optimization process can be long time consuming. Talos [28]

library was used in order to fine tune hyperparameters of

neural network. Talos is compatible with Keras and it trains

neural networks with different hyperparameters finding the

best model solution implementing a Grid Search algorithm.

In this article, the hyperparameters list has been including:

number of hidden layers, learning rate, epochs, activation

function and number of neurons. The best solutionwas finally

re-trained by Keras and the final results are here presented.

In artificial neural networks, the problem of overfitting was

overtaken with early stopping criterion. This method stops

the training when the error increases, this is a form of reg-

ularization used to prevent overfitting. Keras also provides

‘‘reduce learning rate on plateau’’ technique, it simply adjusts

the learning rate while monitoring the loss each epoch.

IV. RESULTS

As explained in the previous section, the algorithms were

trained by supervised learning: targets were provided by

centrifuge for Hct and hemo-gas analyzer for sO2. All the

training set of absorbance spectra, measured by spectrometer

during dialysis tests, have formed the input data. Hematocrit

and oxygen saturation levels of blood samples were predicted

bymodels based on support vector machine and artificial neu-

ral networks techniques. Finally, the support vector machine

and the artificial neural network were compared through

evaluation parameters, to verify the accuracy of both models.

Table 1 shows the overall performance of support vector

machine and neural networks for hematocrit prediction on test

set.

SVM and ANN show similar accuracy performances as

reported in table 1.

TABLE 1. Performance for hematocrit.

Figure 6 shows the regression plot on the considered test

set.

Regression plot analysis function compares actual out-

puts of two algorithms with the corresponding desired ones

(targets).

In this figure, x-axis represents the target values, y-axis

represents the predicted values, line represents the perfect

fitting between target and predicted values, while scatter

points represent test samples. These results show that SVM

and ANN are able to implement a model which predicts with

good accuracy hematocrit levels using absorbance spectrum

inputs. A good prediction accuracy of Hct was achieved by

both models (r2 = 95%). The same analysis was performed

for oxygen saturation.

The accuracy of these methods is higher for oxygen sat-

uration than for hematocrit prediction. Results are excellent

for both the machine learning-based algorithms, they provide

very accurate predictions. For both algorithms, the coefficient

of determination is equal to 99%, so models report very high
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FIGURE 7. Linear regression model fit on test set for oxygen saturation.

TABLE 2. Performance for oxygen saturation.

performance. Figure 7 shows accuracy of the models with test

data.

Both methods provide efficient predictions, but SVM is,

again, the best machine learning algorithm, becauseMSE and

MAE are lower than the ones of ANN.

These results show that both SVM and ANN tech-

niques are able to predict accurately hematocrit and oxy-

gen saturation. The setup here proposed, consisting in the

use of mini spectrometer and machine learning techniques,

allows results which are comparable with other non-invasive

sensors [29], [30] for prediction of hematocrit and oxygen

saturation.

V. CONCLUSION

This paper shows the application of a machine learn-

ing approach combined with a simple and low cost

spectroscopic-based setup for monitoring hematic parameters

of blood, such as hct and sO2, during dialysis and other

extra corporeal treatments. A support vector machine and an

artificial neural network have been implemented and applied

to data obtained through spectrometry in the visible and near

infrared of different blood samples. Results demonstrate that

SVM and ANNmodels achieved good learning performances

and both show the ability to learn relationship between input

and targets. In term of accuracy, themost promising algorithm

is SVM, but both machine learning methods are able to

elaborate accurate predictive models. With respect to other

non-invasive techniques which use only few punctual data

of the spectrum and which perform the measurements with

linear calibration techniques, the advantages of the proposed

approach are: high robustness to external light noise due

to the optimization of the setup and to the electrical noise

thanks to the post processing operations. Machine learning

provides general models which does not require calibration.

General models mean to have wider range of measurements

for hct and sO2 than other similar sensors. The availability

of data belonging to the whole spectrum, will provide more

information than other sensors at comparable cost. The com-

bination of spectrometer and machine learning algorithms

shows accurate measurements for hct and sO2, but further

studies are conducting indeed to use the same setup along

with machine learning in order to measure other different

blood analytes. This could represent a decisive improvement

than other similar sensor in market at comparable costs.
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