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Machine learning approach 
for quantitative biodosimetry 
of partial‑body or total‑body 
radiation exposures by combining 
radiation‑responsive biomarkers
Igor Shuryak 1*, Leah Nemzow 1,3, Bezalel A. Bacon 1,3, Maria Taveras 1, Xuefeng Wu 1, 
Naresh Deoli 2, Brian Ponnaiya 2, Guy Garty 2, David J. Brenner 1 & Helen C. Turner 1

During a large‑scale radiological event such as an improvised nuclear device detonation, many 
survivors will be shielded from radiation by environmental objects, and experience only partial‑body 
irradiation (PBI), which has different consequences, compared with total‑body irradiation (TBI). In 
this study, we tested the hypothesis that applying machine learning to a combination of radiation‑
responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish 
between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.0–2.5 or 5.0 Gy 
of half‑body PBI or TBI. The random forest (RF) algorithm trained on ½ of the data reconstructed the 
radiation dose on the remaining testing portion of the data with mean absolute error of 0.749 Gy and 
reconstructed the product of dose and exposure status (defined as 1.0 × Dose for TBI and 0.5 × Dose for 
PBI) with MAE of 0.472 Gy. Among irradiated samples, PBI could be distinguished from TBI: ROC curve 
AUC = 0.944 (95% CI: 0.844–1.0). Mouse sex did not significantly affect dose reconstruction. These 
results support the hypothesis that combinations of protein biomarkers and blood cell counts can 
complement existing methods for biodosimetry of PBI and TBI exposures.

A large-scale radiological event such as improvised nuclear device detonation during a conflict between countries 
or terrorist activities can expose vast numbers of people to ionizing radiation. Since physical dosimeters are not 
available to the general population, reconstruction of radiation doses based on easily accessible biofluids (e.g. 
blood) from exposed individuals is important for making appropriate treatment decisions, and for providing 
information to the affected  persons1,2. This forms the rationale for the field of radiation biodosimetry.

Due to partial shielding of radiation by objects like vehicles, building materials or equipment, many exposed 
survivors will be irradiated non-homogeneously. This situation applies mainly to the extremely high dose rate 
“prompt” exposures which occur within the first fraction of a second after a nuclear device  detonation3. Such 
partial body irradiation (PBI) has important consequences for medical treatment and radiation-induced disease 
 progression4–6. For example, hematopoietic system recovery after high-dose irradiation is facilitated by shielding 
a portion of the bone marrow (e.g. one or more limbs)6–8. Animal experiments show that even 5% bone marrow 
shielding improves survival from hematopoietic acute radiation syndrome (H-ARS)9 and affects the gastroin-
testinal (GI) syndrome. Erroneous misclassification of partial body exposure as total body exposure to a lower 
dose could overestimate the risk of H-ARS and underestimate late complication risks (e.g., carcinogenesis) in 
the irradiated organs.

Consequently, it is important to search for reliable and high-throughput biodosimetry methods for PBI as 
well as for TBI  scenarios10–20. Published literature suggests that blood cell counts and protein biomarkers provide 
promising opportunities for detecting and quantifying partial body exposures in  animals20,21 and in human can-
cer patients treated with  radiotherapy13,14. For example, heterogeneous exposures could be distinguished from 
homogeneous ones 24 h post irradiation by elevated dispersion of γ-H2AX  foci14. In our group at the Center for 
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Radiological Research (CRR) at Columbia University, we have developed the FAST-DOSE (Fluorescent Auto-
mated Screening Tool for Dosimetry) assay device, based on novel imaging flow cytometry (IFC)22. It uses a 
panel of radio-responsive intracellular biomarkers to rapidly quantify the upregulation of biomarker expression in 
blood leukocytes using fluorescent imaging and algorithms for the estimation of absorbed dose. The biomarkers 
have shown robust and persistent radiation dose responses after acute radiation exposure of humanized  mice22,23. 
The advantage of the FAST-DOSE biomarker platform is that it provides rapid time to result by utilizing high 
throughput sample preparation, image capture and  analysis22–24.

Previous studies have made notable progress for the detection and quantification of PBI exposures using 
biodosimetry assays including γ-H2AX, chromosome aberrations, gene expression, as well as several promising 
methods developed for automated, high-throughput scoring of cytogenetic  endpoints10,13–15,17,25–31. Large-scale 
studies such as inter-laboratory comparisons reveal that the accuracy of biodosimetry for PBI scenarios still 
remains  limited29, and PBI detection methods need to be tested and validated against TBI. Therefore, there is a 
need for development of new methods to complement existing (e.g., cytogenetic)  techniques32,33.

In this study, we investigated the hypothesis that state of the art ensemble machine learning (ML) methods 
such as random forest (RF) can be useful for combining the dose responses of radiation-responsive biomarkers 
(ACTN1, DDB2, FDXR) and blood cell counts (B and T cells) to perform quantitative biodosimetry under PBI 
or TBI conditions. We used male and female C57BL/6 mice, exposed to TBI or half-body PBI, as the model 
system for this investigation.

The selected biomarkers are known to be involved in mechanisms of radiation-induced damage response 
and/or repair, and cellular  homeostasis22,23. Ferredoxin reductase (FDXR) is a mitochondrial flavoprotein that 
initiates electron transport for cytochromes P450 receiving electrons from  NADPH34. Damage specific DNA 
binding protein 2 (DDB2) is the smaller subunit of a heterodimeric protein complex that participates in nucleo-
tide excision repair, and this complex mediates the ubiquitylation of histones H3 and H4, which facilitates the 
cellular response to DNA  damage35. Actinin Alpha 1 (ACTN1) is a cytoskeletal protein with multiple roles, 
including radiation responses, in different cell  types36.

We present data compiled from TBI and PBI exposed mice, and sham-exposed controls. The total exposure 
dose  (Gy) was represented by the Dose variable. The distinction between TBI and PBI was represented by the 
Interaction variable, which was set to 1.0 × Dose for TBI and 0.5 × Dose for PBI. The Dose and Interaction vari-
ables were treated as outcome (target) variables which had to be predicted by ML as biodosimetry tasks. We 
also used ML to classify irradiated samples into PBI or TBI categories. The main predictor variables in these 
analyses were log-transformed B and T blood cell counts, normalized fluorescence values for the top-performing 
biomarkers, and cell surface markers (percentages of B and T cells among all cells). We also considered mouse 
sex and radiation type (electrons or x rays) as additional potential predictors, which could influence the results. 
We believe that this study provides a useful contribution to the field of biodosimetry of partial-body exposures 
by integrating hematological parameters with radiation-responsive protein biomarkers in an ML framework.

Materials and methods
Experimental procedures. The mouse experiments were approved by the Columbia University Institu-
tional Animal Care and Use Committee (IACUC, approved protocol #AABA9506) and were conducted under 
all relevant federal and state guidelines. Male and female C57BL/6 mice aged (aged 12–14 weeks) were pur-
chased from Charles River Laboratories (Frederick, MD) and randomly assigned to the sham (0 Gy) and irradi-
ated (2.0–2.5 and 5 Gy) study groups. A summary of the numbers of mice in each exposure group is provided 
in Table 1, and the full data are provided in Supplementary_table_S1 online. All methods were performed in 
accordance with ARRIVE guidelines (https:// arriv eguid elines. org) and with other relevant guidelines and regu-
lations.

Irradiation and dosimetry. Clinac. PBI and TBI exposures were performed at the Radiological Research 
Accelerator Facility (RARAF), using 9 MeV electrons generated by our modified Clinac  2100C37. Batches of mice 
were irradiated on different dates, with random assignment of the mice to exposure type and dose. Mice were 
anesthetized using isofluorane and placed into a custom irradiation jig with a movable ¼ inch thick lead shield of 
the lower half of the body (for PBI exposures), or no shielding for TBI. The jig was placed at a source to surface 
distance of 90 cm and dose was delivered at a dose rate of 5–10 Gy/sec, which ensured that the circulation time 
of blood in the mouse, ~ 15  s38, was much longer than the dose delivery time (≤ 1 s).

Dose rate was evaluated prior to the experiment using a NIST-traceable advanced Markus ion chamber and 
Unidos E electrometer (PTW, Germany). The jig was placed at a source to surface distance of 90 cm and dose was 
delivered at a dose rate of 7 Gy/sec (~ 0.4 Gy/pulse @ 180 Hz). The number of Clinac pulses required to deliver 
2.5 or 5 Gy was evaluated prior to the experiment using a NIST-traceable advanced Markus ion chamber and 
Unidos E electrometer (PTW, Germany). 2.5 Gy irradiations required 65 pulses and 5 Gy irradiations required 
130 pulses, each after 20 s warm up time in which the electron gun was active but no dose was  delivered37. To 
verify dose on a per-mouse basis, EBT3 film (Ashland, Bridgewater, NJ) was irradiated with each mouse. The 
film was scanned using an V700 photo scanner (Epson, Suwa Japan)39 and dose was reconstructed from the red 
channel data using the previously determined calibration curve:D

[

Gy
]

=
7.404OD
0.818−OD , where the optical density, 

OD, is the negative log transformed ratio of the pixel values (red channel only) of exposed and unexposed film, 
scanned simultaneously. Dose variation through the mouse thickness was previously measured to be about 10% 
in this irradiation geometry.

The experimental plan was to irradiate 4 batches of mice, where each batch included irradiated mice and 
corresponding controls which were sham-irradiated with the corresponding TBI or PBI procedures. The samples 
from 2 female mice exposed to 2.5 Gy TBI were excluded from analysis due to very low levels of B and T cells, 
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insufficient for scoring (Table 1). Consequently, the analyzed data set (Supplementary_table_S1 online) included 
42 animals exposed to Clinac PBI and 36 animals exposed to TBI.

X‑RAD. For comparison, 25 mice (15 male; 10 female) were irradiated with 0, 2 or 5 Gy of TBI exposures using 
320 kVp x-rays, a current of 12.5 mA, and dose rate of 1 Gy/min, using the X-RAD 320 biological irradiator 
(Precision X-Ray Inc, North Branford, CT) at the Center for Radiological Research. This additional data set ena-
bled us to increase the sample size of the study, and to compare the effects of different types of radiations. Mouse 
irradiations were performed according to previous  protocols22,40. For in-vivo irradiations, mice were placed in a 
specifically designed mouse irradiation holder (Precision X-ray). Control mice were sham irradiated. All doses 
were validated using a Radcal ion chamber (Monrovia, CA) placed in the mouse holder. During the actual 
irradiations, the delivered dose was measured by placing the ion chamber at the same position into the mouse 
holder. These x-ray exposures were performed to compare TBI exposures to high dose rate Clinac electrons at 
5–10 Gy/sec with TBI exposures to lower dose rate x-rays at 1 Gy/min.

Blood sample collection and cell counts. All irradiated and sham-control mice were euthanized by  CO2 asphyxi-
ation at 24 h after radiation exposure to mimic realistic scenarios of biodosimetry measurements following a 
mass radiological event. Peripheral whole blood (WB) samples were collected from each mouse by cardiac punc-
ture using a heparin-coated syringe prepared by adding 500 µl DPBS to BD Vacutainer containing 158 USP units 
of sodium heparin (#366,480). Similar to our earlier  work22, leukocyte, T and B cell counts were determined 
by flow cytometry (CytoFLEX, Beckman Coulter, Pasedena, CA) using 20 μL of heparinized blood, using the 
following antibodies purchased from Biolegend (San Diego, CA): APC-CD45 (catalog #103,112), FITC-CD3e 
(#100,306), PE-CD19 (#115,508). Blood counts were determined using CytExpert software (Beckman Coulter).

Table 1.  Summary of the number of mice in each exposed group. As described in the main text, detailed 
dosimetry was performed on each mouse and dose variations around the nominally assigned values were 
accounted for in the analysis, and two mouse samples in the TBI females batch 3 group were excluded from 
analysis due to insufficient number of B and T cells for scoring. In total, 42 mice were assigned to PBI (16 of 
them sham-exposed) and 36 mice to TBI exposures (13 of them sham-exposed) using CLINAC electrons, and 
25 mice were assigned to x-ray exposures (9 of them sham-exposed).

Experiment Date of the experiment Radiation type Assigned doses (Gy) Number of mice

PBI, males, batch 1 7/14/2021 Electrons

0.0 4

2.5 3

5.0 4

PBI, males, batch 2 9/08/2021 Electrons

0.0 3

2.5 3

5.0 4

PBI, females, batch 3 02/01/2022 Electrons

0.0 5

2.5 3

5.0 3

PBI, females, batch 4 06/09/2022 Electrons

0.0 4

2.5 3

5.0 3

TBI, males, batch 1 7/14/2021 Electrons

0.0 3

2.5 3

5.0 3

TBI, males, batch 2 9/08/2021 Electrons

0.0 3

2.5 4

5.0 3

TBI, females, batch 3 02/01/2022 Electrons

0.0 3

2.5 1

5.0 3

TBI, females, batch 4 06/09/2022 Electrons

0.0 4

2.5 3

5.0 3

TBI, males 03/23/2022 X-rays

0.0 5

2.0 5

5.0 5

TBI, females 02/01/2022 X-rays

0.0 4

2.0 3

5.0 3
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Imaging flow cytometry (IFC) analysis. Peripheral WB samples (100 µl) from each mouse were aliquoted into 
matrix tubes (Thermo Scientific; #3740TS) for sample staining and fixing as follows: Erythrocytes in mock and 
x-irradiated mouse peripheral blood were lysed with RBC Lysis Buffer (eBioscience #00–4333-57), and remain-
ing leukocytes were surface stained for 15  min, in the dark, at room temperature with anti-mouse CD3 PE 
(eBioscience; #12–0031-82) and anti-mouse CD19 PE/Dazzle (Biolegend; #115,554) T-cell and B-cell markers, 
respectively. Surface-stained leukocytes were washed in 1% BSA, then fixed and permeabilized for 20 min at 
4 °C (BD Biosciences; Cytofix/Cytoperm; #554,714) and washed per manufacturer instructions, and intracel-
lularly stained overnight, at 4 °C, with one of the following antibodies: FDXR (Sigma; #HPA044393), ACTN1 
(Cell Signaling Technology; #3134 s). DDB2-FITC (Cusabio; #CSB-PA846067LC01HU) antibody incubation 
occurred in the dark for 1 h at room temperature. Except for DDB2 (which is a FITC conjugated antibody), all 
other samples stained with primary intracellular antibodies were then stained for 1 h, in the dark at room tem-
perature, with goat anti-rabbit Alexa Fluor 488 secondary antibody (Life Technologies; #A11034). The antibody 
dilutions were: ACTN 1:100, DDB2 1:100, FDXR 1:100, CD3 1:800, CD19 1:800, AF488 goat anti-rabbit 1:1000. 
Cells were then washed with and stored in DPBS at 4 °C until scanning.

Single, focused cells (approximately 3000) per sample were acquired on the ImageStream MkII Imaging Flow 
Cytometer (Luminex, Austin, TX) with the 488 nm at 200 mW laser power at 40 × magnification. To compensate 
for spectral spillover, cells stained with single fluorescence only were acquired using the compensation wizard on 
INSPIRE software (488 nm laser on with the brightfield and side scatter inactivated). The compensation coeffi-
cients were determined automatically by the IDEAS software (Luminex ver. 6.2) to create a compensation matrix.

Analysis imaging flow cytometry images and spectral data were performed on IDEAS software (version 6.2), 
similar to previous work done in our  laboratory22. As seen in Fig. 1, we developed a uniform analysis template 
to quantify the Mean Fluorescence Intensity (MFI) of each biomarker in non-apoptotic mouse leukocytes, 
CD19 + (B cell) and CD3 + (T cell) populations. Figure 1A illustrates our cell gating methods, as follows: To select 
only focused cells for analysis, images of cells were visually inspected, and a region with X coordinate begin-
ning at 57.87 was set on the brightfield (BF) Gradient root mean square (RMS) feature (Fig. 1 Ai). Single cells 
were selected by creating a gate in a bivariate plot of BF Aspect Ratio versus BF Area (Fig. 1 Aii). Healthy cells 
were selected by creating a gate in bivariate plot of BF Circularity versus BF Contrast, thus excluding apoptotic 
cells (Fig. 1 Aiii). Regions CD19 + and CD3 + were created to select for B and T cells, respectively (Fig. 1 Aiv). 
The Mean of Fluorescence Intensity (MFI) value of each biomarker within all healthy leukocytes, CD3 + , and 
CD19 + cell populations was then computed by the IDEAS software (Fig. 1B). This analysis template was applied 
to all data files and automatically batch processed within IDEAS.

Combining conventional flow cytometry and IFC data. As described above, we quantified the leukocyte sub-
types, using two samples from the same mouse: From the first sample, we obtained raw concentration values 
from interrogating surface labeled fresh whole blood via conventional flow cytometry (“ln_Bcells / ln_T_cells”, 
as described in the methods). Later, a second sample was prepared involving fixing, permeabilizing, and mul-
tiple washes, from which we obtained percentages of surface labeled subtypes present in the total number cells 
analyzed on the IFC (“Percent_T cells / Percent_B cells”, as described in the methods). Due to the inherent 
differences in the preparation methods for these pre- and post- processed samples and the capabilities of the 
instrument they were interrogated with, each sample generated data with different metrics: The pre-processed 
raw (non-fixed) counts measured by conventional flow cytometry are likely to provide values that more closely 
reflect absolute cell numbers in the sample. These numbers represent exponential cell killing by radiation and 
are therefore log-transformed. In contrast, the IFC-prepared samples undergo several processing steps towards 
the measurement of intracellular and surface biomarker labeling of the B and T cell subtypes, all of which are 
based on brightfield morphology and refined by several image gating steps (as seen in Fig. 1). Therefore, it is of 
interest to look at both methods of quantifying blood counts in determining correlation with radiation dose and 
exposure type (Interaction).

Data set for machine learning analyses. Biomarker signals and conventional flow cytometry blood 
counts were natural log (ln) transformed to bring their distributions closer to the normal distribution. The main 
variables in the resulting data set were: The radiation dose (Dose, in Gy). The exposure type (Exposure), with 
1.0 for TBI and 0.5 for PBI. The product of dose and exposure type (Interaction), with 1.0 × Dose for TBI and 
0.5 × Dose for PBI. Sex, with 0 = females and 1 = males. Radiation type (Radiation_type), with 0 for electrons 
and 1 for x-rays. Ln-transformed B and T cell counts (ln_B_cells and ln_T_cells, respectively) from CytoFLEX 
measurements are given in events/µl. Percentages of cells displaying CD3 or CD19 surface markers (Percent_T 
cells and Percent_B cells, respectively) from IFC measurements are given as a percentage of all healthy, single 
cells which were analyzed. Ln-transformed signals (from the Intensity_MC_Ch02, Mean, healthy & single & 
focused channel) for the radiation-responsive biomarkers. This data set is provided in Supplementary_table_S1 
online. Dose and Interaction were treated as the target variables to be predicted by the ML models, using the 
other variables (except Exposure) as predictors.

Machine learning analysis procedure. We imported the data into the R 4.2.041 programming language. 
We used the geometric mean of unstained blood samples from each batch to normalize biomarker fluorescence 
intensities and reduce potential differences in signal intensities between experimental batches (i.e., groups of 
mice irradiated on the same day). Analyses and visualizations of the data were performed in R and in Microsoft 
Excel software.

We split the data set randomly into halves for training and testing. We used the Boruta feature selection algo-
rithm (implemented by the Boruta R package)42 to identify and discard any weak predictor variables, which would 
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not be useful for reconstructing the Dose or Interaction variables. Boruta iteratively compares the importance 
score of each predictor with the importance score of its randomly shuffled “shadow”, in the context of a random 
forest  model42. It duplicates the data set and randomly shuffles the values in each column. These shuffled values 
are called shadow features, and they are re-created in each iteration. Those predictors that had significantly 
(p-value < 0.05 with Bonferroni correction) worse importance than shadow features during Boruta implementa-
tion on a randomly selected training half of the data were discarded from further analysis.

We trained the random forest (RF) ML  algorithm43 on the training portion of the data set, using all predictor 
variables retained by Boruta, to predict Dose or Interaction. Each of these RF models was refined by grid search 
hyperparameter tuning, using the caret and ranger R packages, separately for each of the two target variables. In 
addition, we trained a separate RF model in classification mode to distinguish between exposed and unexposed 
samples (i.e. those with radiation Dose > 0 versus 0).

The strengths of the RF algorithm include its ability to model non-linear relationships and interactions 
between variables, and its low sensitivity to correlations between predictor variables and to outlier  observations43. 
RF generates many uncorrelated decision trees by bootstrap aggregation, or “bagging” (randomly selecting 
samples from training data with replacement) and feature randomness (selecting a random subset of predictor 
variables for each tree). Predictions from all trees are then averaged for regression problems such as the one here.

To counteract the problem of overfitting, we trained each RF model using repeated k-fold cross validation 
(threefold, repeated 100 times) on the training data, and evaluated its performance on the testing data. Three 
performance metrics were used for evaluation on each of the target variables (Dose or Interaction): mean absolute 
error (MAE), root mean square root error (RMSE) and coefficient of determination  (R2).

Figure 1.  Representative example of our approach for analysis of imaging flow cytometry images and spectral 
data using IDEAS software. (A) Population Refinement. The template first gates for focused, single, healthy 
cells in T and B populations as follows: (Ai) to select only focused cells for analysis, images of cells were visually 
inspected, and a relevant region was set on the brightfield (BF) Gradient root mean square (RMS) feature. 
(Aii) Single cells (singlets) were selected by creating a gate in a bivariate plot of BF Aspect Ratio versus BF 
Area. (Aiii) Healthy cells were selected by creating a gate in bivariate plot of BF Circularity versus BF Contrast, 
thus excluding apoptotic cells. (Aiv) B and T cell populations were selected using regions for CD19 + and 
CD3 + signals, respectively. (B) Quantifying Biomarker Expression in Leukocyte Subtypes. The mean 
fluorescence intensity (MFI) of each biomarker signal within all healthy leukocytes, CD3 + , and CD19 + cell 
populations was then computed by the IDEAS software. This analysis template was applied to all data files and 
automatically batch processed within IDEAS.
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Results
Biomarker and blood cell count dose responses for PBI and TBI. The dose responses for B and T 
cell counts obtained by conventional flow cytometry after TBI or PBI exposures are shown in Fig. 2. Overall, 
these results show that despite some variability between different mice, it is clear that the dose response slopes 
were markedly different for TBI (red) and PBI (blue) exposures. The linear regression analysis which generated 
the fitted lines in Fig. 2 showed that the PBI slopes were roughly twofold lower than TBI slopes, reflecting that 
PBI was half-body in this case and that the differences in slopes between TBI and PBI were statistically signifi-
cant: p-value = 6.13 ×  10−7 for B cells and 2.65 ×  10−8 for T cells. In each case, the null hypothesis was that the 
regression slopes are equivalent for PBI versus TBI. Coefficient of determination  (R2) values are also shown in 
Fig. 2. These values (especially for TBI, 0.66 and 0.75 for B and T cells, respectively) suggested that most of the 
data variability was explained by the linear regression.

The TBI and PBI dose responses of the percentages of T and B cells that met the sequential gating criteria by 
IFC shown in Fig. 3. As described in the Methods section, these percentages represent a different metric, than 
the raw B and T cell counts shown in Fig. 2. The difference in the shapes of the curves in Figs. 2 and 3 may be 
due to the different methods in sample preparation: the raw counts (non-fixed) measured by conventional flow 
cytometry are more representative of a total population of healthy and dying cells, whereas the IFC-processed 
fixed/permeabilized samples gated for healthy T and B leukocyte subtypes were used to estimate in more detail 
how the percentages of different cell populations with different surface markers changed as a function of radiation 
dose and type. Importantly, for both types of metrics the dose responses looked considerably different for PBI 
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Figure 2.  Radiation dose responses (ln-transformed fold changes relative to unexposed mice) for B and T cells. 
In this and the following figures, scatter along the x-axis represents the spread of individual mouse dosimetry 
estimates, which varied somewhat around the nominally prescribed doses. The data are “raw” counts from flow 
cytometry. The black dotted line represents zero ln fold change and indicates the baseline.
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all single, focused, and non-apoptotic cells that were acquired. The data shown are "post-processed" counts from 
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versus TBI exposures. Consequently, both the raw B and T cell counts and the percentages of B and T leukocyte 
subtypes from IFC were incorporated as predictor variables into the dose reconstruction ML modeling.

The measured radiation dose responses for the protein biomarkers DDB2, FDXR and ACTN1 are shown in 
Fig. 4. Here the ln-transformed fold changes are increasing with dose instead of decreasing, but also there is a 
clear and statistically significant difference in dose response slopes between TBI and PBI: p-value = 1.20 ×  10−3 
for DDB2, 5.09 ×  10−4 for FDXR, and 3.02 ×  10−4 for ACTN1. The dose response slopes for PBI are approximately 
twofold lower than the corresponding TBI values, which supports the expectation that approximately half of the 
body was irradiated in the PBI scenario. The DDB2 and FDXR biomarkers showed the most reproducible dose 
response patterns among experimental batches, and therefore we focused on measuring these two biomarkers 
in the subsequent ML analyses.

Selection of strong predictors of radiation dose and exposure type. As described in Materials and 
Methods, the data set was split randomly into training and testing halves. The training part was used for feature 
selection (i.e., identifying the most important predictors of Dose and Interaction), tuning and fitting of the RF 
model or each target variable. The testing part was used to evaluate model performance. A visualization of the 
matrix of Spearman’s correlation coefficients between all variables (e.g., blood cell counts, biomarkers) in the 
training data is displayed in Fig. 5. It shows that many of the predictor variables were strongly correlated with the 
outcome variables, Dose and/or Interaction. The B and T cell counts were very strongly correlated with the out-
come variables, and the selected protein biomarkers (especially DDB2) showed significant correlations as well.

To determine which predictor variables are most important and need to be retained for ML analysis, we imple-
mented the Boruta feature selection  algorithm42. Each predictor is retained only if it outperforms its “shadow” 
with a specified level of statistical significance (here set to 0.05 with Bonferroni correction). In this case, the Sex 
and Radiation_type variables did not pass the Boruta screening, suggesting that they are not very important 
for reconstruction of Dose or Interaction (where Interaction = Dose for TBI, and Interaction = Dose/2 for PBI). 
Specifically, Sex and Radiation_type outperformed noise in only 0—16.7% of Boruta iterations, whereas the 
other predictor variables (ln_B_cells, ln_T_cells, Percent_T cells, Percent_B cells, DDB2 and FDXR) did so in 
87.5–100% of iterations. Therefore, the data from mice irradiated with TBI x-rays were not distinguished by 
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Boruta screening from those data that came from electron-exposed TBI mice, which is biologically plausible 
since low-LET photons and electrons tend to have similar biological effectiveness per unit  dose44.

This finding of similarity between electron and x-ray effects in this study is supported by calculation of dose 
reconstruction performance metrics for testing TBI samples, separately for electron and x-ray irradiations. 
For electrons,  R2 = 0.949, RMSE = 0.539 Gy, and MAE = 0.413 Gy. For x-rays, the numbers were quite similar: 
 R2 = 0.962, RMSE = 0.501 Gy, and MAE = 0.403 Gy.

Machine learning results for dose and exposure type reconstructions. In this analysis, Interac-
tion = Dose for TBI exposures, and Interaction = Dose/2 for PBI exposures. Two separate random forest mod-
els were fitted to the data. The set of predictor variables was the same for each model (ln_B_cells, ln_T_cells, 
Percent_T cells, Percent_B cells, DDB2, DXR), but the target variable to be predicted was different: Dose in one 
model, and Interaction in the other. The rationale for this approach was that in a hypothetical realistic situation 
where samples with unknown exposures are analyzed, both models will be used and predictions for both Dose 
and Interaction will be generated for each sample. This dual prediction is intended to be informative about the 
type and magnitude of exposure for the sample.

The tuned RF models based on the 6 retained predictors used all 6 (mtry = 6), with a minimum number of 
samples in a node of 1 (min.node.size = 1), for each outcome variable (Dose or Interaction). For predicting Dose, 
the predictor rankings (from most to least important) were: ln_T_cells, Percent_B cells, ln_B_cells, Percent_T 
cells, DDB2, FDXR. For predicting Interaction, the predictor rankings (from most to least important) were: 
Percent_B cells, ln_T_cells, ln_B_cells, Percent_T cells, DDB2, FDXR. The results of RF performance, which com-
pare actual with reconstructed values of Dose and Interaction, are shown in Fig. 6. For Dose (Fig. 6A),  R2 = 0.738, 
RMSE = 1.060 Gy, MAE = 0.749 Gy. For Interaction (Fig. 6B),  R2 = 0.868, RMSE = 0.663 Gy, MAE = 0.472 Gy. 
Notably, these reconstructions were reasonably accurate (Fig. 6) despite inter-individual variability between 
mice. All RF predictions on testing data are provided in Supplementary_table_2 online.

Among irradiated mouse samples in the testing data set, it was possible to discriminate between PBI and 
TBI by predicting the Dose – Interaction difference (Fig. 7). Here, only irradiated animal data was used, and un-
irradiated controls were excluded. Predicted values of Dose and Interaction, which were calculated by RF models 
as described above, were used to calculate the predicted Dose-Interaction difference for each irradiated sample. 
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This difference was used to classify samples into the TBI or PBI classes, and classification results were compared 
with true known values of TBI or PBI for each sample to generate the ROC curve shown in Fig. 7. These results 
suggest that ML-based methods can be useful for detecting PBI exposures based on protein biomarker and blood 
cell count data as inputs. In addition, despite the variability in responses between individual mice, since the RF 
algorithm integrates information from several predictors (B and T cell counts and percentages, FDXR and DDB2 
biomarkers), it was able to accurately classify samples as exposed or unexposed: classification accuracy on the 
testing data set was 92.2% and ROC curve AUC = 0.982 (95% CI: 0.953, 1.0). The comparisons of data with RF 
predictions are provided in Supplementary_table_S3 online.
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Discussion
The objective of this study was to investigate the usefulness of radiation responsive protein biomarkers, in com-
bination with blood cell counts, as potential rapid and high-throughput biodosimeters for PBI as well as TBI 
exposure situations. Enhancing the number of available tools for PBI biodosimetry is important because currently 
available techniques have limitations in terms of time-to-result, throughput and/or accuracy. We hypothesized 
that combining radiation-responsive protein biomarkers and blood cell counts in an ML model context can be 
used to generate quantitative reconstructions of the radiation dose for PBI as well as for TBI exposures. The 
results suggest that the top two intracellular protein biomarker expression (DDB2, FDXR), and immunophe-
notyping through either traditional flow (cell counts) or IFC (cell percentages after gating) correlated strongly 
with radiation exposure (Fig. 5), and showed consistent and reproducible dose-dependent radiation responses 
(Figs. 2, 3, 4). The slopes of these responses for biomarkers and blood cell counts were significantly different for 
TBI versus PBI irradiated mice. These findings support the expectation that PBI exposures “spare” a large frac-
tion of blood cells from radiation damage. Based on these differences, an ML analysis using the RF algorithm 
was able to generate accurate reconstructions of PBI exposures, as well as TBI. The RF algorithm was also able 
to distinguish between unirradiated and irradiated samples. Consequently, it may be possible in the future to 
use separate RF models in a two-stage process to first classify each unknown sample as either irradiated or unir-
radiated, and then to distinguish TBI from PBI on those samples classified as irradiated.

It is important to emphasize that quantification of radiation dose, as well as classification of the exposure 
type as TBI versus PBI, are important first steps, but ultimately they need to be followed by much more detailed 
assessment of the possible acute and long-term health effects of the exposure. In other words, predicting the 
likely symptoms of irradiation and taking the correct actions to prevent and/or mitigate them is the ultimate 
goal, where dose and exposure type reconstruction are the initial steps.

We believe that the results of this study are the first use of intracellular protein and cell surface biomarkers 
for biodosimetry in an ML context and support the potential usefulness of the proposed approach for biodo-
simetry in practical mass-exposure situations, such as improvised nuclear device explosion scenarios, for time 
points soon after the event (e.g., 24 h), as well as for longer time points. However, limitations of the current study 
include selection of one age group only (young adult), a single (half-body) PBI shielding setup, and only two 
non-zero dose levels. Other limitations include the use of a single ML method (RF) and, ultimately, the challenges 
of translatability from the mouse system to humans. Also, the classification of exposures into TBI versus PBI 
categories, as performed here, is a simple “extreme” representation of a more complex picture of inhomogeneous 
radiation exposures, which was used here mainly as a proof of principle to develop/refine biodosimetry methods.

We are planning to address the first three of these limitations by acquiring young (4 week old) mice, using 
a hind leg shielding set up (which shields only a small percentage of the bone marrow), and investigating the 
performances of other state of the art ML methods, such as extreme gradient boosting (XGBoost)45, to improve 
the dose and exposure reconstructions. The age issue is particularly important since radiosensitivity, for example 
carcinogenesis, can be higher in pediatric populations than in  adults46,47. We plan to assess whether or not the 
same exposure reconstruction approaches and choice of predictors are applicable to young mice as well as to 
adults, or whether different approaches and biomarkers are needed for different age groups.

In summary, we are developing a biomarker-based FAST-DOSE biodosimetry assay that can be used to rapidly 
quantify intracellular and surface protein markers to accurately estimate absorbed dose after exposure to TBI and 
PBI. The current study shows that this approach can distinguish between PBI and TBI exposures and quantify 
them, but this was only a first step, which used a limited number of dose levels and a single – half-body – PBI 
exposure condition. The development of an in-the-field FAST-DOSE biodosimeter for estimation of absorbed 
radiation dose in potentially exposed individuals shortly after radiation exposure would allow for rapid triage 
and treatment decisions prior to sending blood samples for more accurate cytogenetic  testing32,33. In future 
work, we plan to further validate this system using more doses and PBI exposure scenarios, and to optimize its 
performance for time points up to a week after radiation exposure and to transition the top biomarker candidates 
to an in-the-field deployable device.

Data availability
All datasets analyzed during the current study are available in Supplementary_table_S1 online and also available 
from corresponding author on reasonable request.
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