
 
This is a preprint of a paper published in the Journal of Modern Optics.  The paper should be cited as “Sopharak, 
Akara, Dailey, Matthew N., Uyyanonvara, Bunyarit, Barman, Sarah, Williamson, Tom, Nwe, Khine Thet and 
Moe, Yin Aye (2010) ‘Machine learning approach to automatic exudate detection in retinal images from diabetic 
patients’, Journal of Modern Optics, 57(2):124-135” 
 

 
Machine learning approach to automatic exudate detection in retinal images 

from diabetic patients 
 
 

Akara Sopharaka*, Matthew N. Daileyb ,Bunyarit Uyyanonvaraa 
Sarah Barmanc,Tom Williamsond, Khine Thet Nweb and Yin Aye Moeb 

 
aSirindhorn International Institute of Technology, Thammasat University, Thailand ;bComputer 

Science and Information Management, Asian Institute of Technology, Thailand; cDigital 
Imaging Research Centre, Kingston University, UK; dSt Thomas’ Hospital, UK 

 
(Received 29 October 2008; final version received 15 June 2009) 

 
Exudates are among the preliminary signs of diabetic retinopathy, a major cause of vision loss in 
diabetic patients. Early detection of exudates could improve patients’ chances to avoid blindness. In 
this paper, we present a series of experiments on feature selection and exudates classification using 
naive Bayes and support vector machine (SVM) classifiers. We first fit the naive Bayes model to a 
training set consisting of 15 features extracted from each of 115,867 positive examples of exudate 
pixels and an equal number of negative examples. We then perform feature selection on the naive 
Bayes model, repeatedly removing features from the classifier, one by one, until classification 
performance stops improving. To find the best SVM, we begin with the best feature set from the 
naive Bayes classifier, and repeatedly add the previously-removed features to the classifier. For each 
combination of features, we perform a grid search to determine the best combination of 
hyperparameters ν (tolerance for training errors) and γ (radial basis function width). We compare the 
best naive Bayes and SVM classifiers to a baseline nearest neighbor (NN) classifier using the best 
feature sets from both classifiers. We find that the naive Bayes and SVM classifiers perform better 
than the NN classifier. The overall best sensitivity, specificity, precision, and accuracy are 92.28%, 
98.52%, 53.05%, and 98.41%, respectively. 
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1. Introduction 
Diabetic retinopathy is a severe eye disease 
and a major cause of blindness. Exudates, 
lipid leakages from blood vessels, are 
visible signs of an early stage of retinal 
abnormality in diabetic retinopathy. 
Diabetic patients need regular screening 
because early detection of exudates could 
help prevent blindness. However, manual 
examination by ophthalmologists takes time 
and the number of experts is not sufficient 
to meet the demand for screening. Given 
the limitations of manual screening, the 
prospect of automatic detection of retinal 
exudates, towards diagnosis and tracking 

the progress of a patient’s treatment 
program, is enticing. 

There have been several attempts to 
solve this problem. Quite a few are based 
on thresholding and region growing: 

• Liu et al. (1) detect exudates using 
thresholding and region growing. 
Their fundus photographs were 
taken with a nonmydriatic fundus 
camera then scanned by a flatbed 
scanner. 

• Ege et al. (2) use a median filter to 
remove noise, segment bright 
lesions and dark lesions by 
thresholding, perform region 
growing, then identify exudates 
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regions with Bayesian, 
Mahalanobis, and nearest neighbor 
(NN) classifiers. The system failed 
to detect exudates in low quality 
images. 

• Sinthanayothin et al. (3) report the 
result of an automated detection of 
diabetic retinopathy on digital 
fundus images using recursive 
region growing segmentation 
(RRGS). They measure performance 
on 10×10 pixel patches. 

• Usher et al. (4) detect candidate 
exudate regions using a combination 
of RRGS and adaptive intensity 
thresholding. The candidate regions 
thus extracted are classified as 
exudate or non-exudate by a neural 
network. 

• Kavitha and Shenbaga (5) propose 
median filtering and morphological 
operations for blood vessel 
detection. They use multilevel 
thresholding to extract bright 
regions assumed to be the optic disc 
or exudates. They detect the optic 
disc as the converging point of the 
blood vessels, then classify the other 
bright regions as exudates. The 
method performed poorly on low-
contrast images. 

 
Thresholding and region growing 

methods are straightforward, but selecting 
threshold values, region seed points, and 
stopping criteria are difficult. 

 Clustering has also been proposed as a 
possible solution to the exudate detection 
problem: 

• Osareh and colleagues (6, 7) use 
fuzzy c-means clustering to segment 
color retinal images into 
homogeneous regions, then train 
neural networks and support vector 
machines (SVMs) to separate 
exudate and non-exudate areas. 

• Zhang et al. (8) use local contrast 
enhancement and fuzzy c-means 
clustering in the LUV color space to 
segment candidate bright lesion 
areas. They use hierarchical SVMs 
to classify bright non-lesion areas, 
exudates, and cotton wool spots. 

 
The main difficulty with clustering 

methods is determining the number of 
clusters to use. 

A few other attempts are based on 
specialized features and morphological 
reconstruction techniques: 

• Katarzyna et al. (9) detect candidate 
exudate regions with a watershed 
transformation and a marker and 
extract the optic disc based on 
geodesic reconstruction by dilation. 

• Sanchez et al. (10) combine color 
and sharp edge features to detect 
exudate. First they find yellowish 
objects, then they find sharp edges 
using various rotated versions of 
Kirsch masks on the green 
component of the original image. 
Yellowish objects with sharp edges 
are classified as exudates. 

• Walter et al. (11) use morphological 
reconstruction techniques to detect 
contours typical of exudates. 

• Wang et al. (12) extract color 
features then use a nearest neighbor 
classifier to identify retinal lesions. 

 
All of these techniques are highly 

sensitive to image contrast. 
Most of the work just reviewed is based 

on imagery acquired after dilating patients’ 
pupils, e.g. with eye drops, to make 
exudates and other retinal features clearly 
visible. Since pupil dilation takes time and 
is uncomfortable for patients, in our work, 
we investigate methods for automated 
exudate detection on imagery acquired 
without pupil dilation. The ultimate aim of 
our work is to develop an automatic 



 
This is a preprint of a paper published in the Journal of Modern Optics.  The paper should be cited as “Sopharak, 
Akara, Dailey, Matthew N., Uyyanonvara, Bunyarit, Barman, Sarah, Williamson, Tom, Nwe, Khine Thet and 
Moe, Yin Aye (2010) ‘Machine learning approach to automatic exudate detection in retinal images from diabetic 
patients’, Journal of Modern Optics, 57(2):124-135” 
 

exudate detection system to provide 
decision support and reduce 
opthalmologists’ workloads. 

In previous work, we have proposed and 
evaluated methods for automatic detection 
of exudate in non-dilated retinal images 
using mathematical morphology techniques 
(13), fuzzy c-means (14), and a 
combination of fuzzy c-means and 
mathematical morphology (15). In 
experiments on comparable data sets, the 
sensitivity and specificity for these methods 
were 80.00% and 99.46%, 92.18% and 
91.52%, and 86.03% and 99.36%, 
respectively. While these results are 
encouraging, they are limited by suboptimal 
feature selection and pixel classification 
techniques. 

Here we take a machine learning 
approach to the problem of exudates 
classification. In our experiments, the NN 
classifier is used as a baseline method for 
comparison with naive Bayes and SVM 
classifiers. Our results show that the naive 
Bayes and SVM classifiers perform 
substantially better than the NN classifier 
and the methods reported in our previous 
work. This is the first work to achieve 
practically useful exudate detection results 
on non-dilated fundus images. 

Our methodology is described in section 
2. In section 3, we report the results of each 
experiment. Finally, we discuss the results 
and conclude in section 4. 
 

2. Methodology 
We acquired 39 digital retinal images taken 
without pupil dilation from the Eye Care 
Center at Thammasat University Hospital. 
The images were captured in 24-bit color 
with a KOWA-7 non-mydriatic retinal 
camera with a 45° field of view. We scaled 
all images to 752 × 500. 

Firstly, we process the raw images using 
a pre-processing method described in 
section 2.1, in order to enhance the contrast 
of the image. We then eliminate the optic 
disc as described in section 2.2. Section 2.3 
explains the features we extract from each 
pixel in a retinal image. Our feature 
selection and classification experiments 
with the naive Bayes and SVM classifiers 
are clarified in sections 2.4 and 2.5. In 
section 2.6, we explain how we obtain a 
baseline for comparison using a NN 
classifier. Finally, we describe the methods 
used to measure the system’s performance 
in section 2.7. 
 

2.1 Preprocessing 
To obtain an image suitable for feature 
extraction, we perform several steps of 
preprocessing. First, we convert each 
original RGB image to grayscale by taking 
the average of the red, green, and blue 
channels. Second, we perform median 
filtering to remove shot noise. Finally, we 
apply “contrast-limited adaptive histogram 
equalization” (16) to enhance local contrast. 
Exudate and optic disc regions are typically 
much higher in intensity than neighboring 
image regions (17, 18), so the contrast 
enhancement technique tends to assign 
them the highest intensity values. The steps 
are illustrated in Figure 1. 
 

2.2 Optic disc detection 
After preprocessing, the optic disc has some 
characteristics similar to hard exudates: 
bright intensities and sharp boundaries. To 
prevent the optic disc from interfering with 
exudate detection, we first detect the optic 
disc and eliminate it from consideration. 
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(a) (b) 

 
Figure 1. Image preprocessing. (a) Original retinal image. (b) The same image preprocessed by 
grayscale conversion, median filtering, and contrast enhancement. 
 

 
(a) (b) 

 
Figure 2. Optic disc detection result. (a) Entropy filtered image. (b) Optic disc area are eliminated from 
the contrast enhanced image. 
 

We find that the optic disc is 
distinguished from the rest of the retina by 
its smooth texture. To determine which 
regions of the image are smooth or textured, 
for each point x, we obtain a probability 
mass function PIx : {0, 1, . . . , 255} a  
[0..1] for the intensities Ix of the pixels in a 
local region around x then compute the 
entropy of that mass function. 
 

255

0
( ) ( ) log ( )

x xx I I
i

H I P i P i
=

= − ⋅∑  
 
(1) 

 
This local pixel intensity entropy 

measure is high when the region around a 
pixel is complex and low when it is smooth. 
After filtering with the entropy operator we 
apply Otsu’s binarization algorithm (19) to 
separate the complex regions from the 
smooth regions. 

However, after binarization more than 
one candidate region is typically identified. 
We select the largest connected component 
Ri whose shape is pproximately circular. 
We measure the circularity of Ri using the 
compactness measure 
 

2( ) 4 ( ) / ( ),i i iC R A R P Rπ=  (2) 
 
where A(Ri) is the number of pixels in 
region i and P(Ri) is the length of the 
boundary of Ri. To ensure that all pixels on the 
boundary of the optic disc are also grouped with 
the optic disc region, we apply binary dilation 
to the detected region. The results from this step 
are shown in Figure 2. This method for finding 
the optic disc achieves 100% accuracy on our 
data set. Eliminating the optic disc during 
preprocessing dramatically simplifies the 
decision that the classifier is required to make. 
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2.3 Feature extraction 
Proteins and lipids leaking from damaged 
blood vessels form exudates. Exudates can 
be identified on an ophthalmoscope as areas 
with hard white or yellowish colors. They 
have varying sizes, shapes, and locations 
near the leaking capillaries within the 
retina. 

We asked ophthalmologists how they 
identify exudates in an image so that our 
feature extraction would reflect 
ophthalmologists’ expertise. We found that 
color, size, shape and texture are the most 
important features they consider. To 
differentiate exudate pixels from non-
exudate pixels, we attempt to mimic 
ophthalmologists’ expertise by extracting 
these relevant and significant features. As 
an initial set of candidate per-pixel features, 
we selected 15 features and used them as 
input for our classifier. A general 
motivation and an explanation of the 
motivation for each feature is explained in 
this section. 

(1) The pixel’s intensity value after 
preprocessing. Exudate pixels can 
usually be distinguished from 
normal pixels by their intensity. 

(2) The standard deviation of the 
preprocessed intensity values in a 
window around the pixel. We use a 
window size of 15 × 15. We use the 
standard deviation because exudates 
tend to be more highly textured than 
non-exudate regions, and the 
standard deviation is a simple 
indication of texture. 

(3) The pixel’s hue. Hue characterizes 
chrominance or color information 
which should distinguish exudates 
from non-exudates. 

(4) The number of edge pixels in a 
region around the pixel. Exudates 
often form small clusters so they 
tend to have many edge pixels. We 
apply a Sobel edge operator then 
eliminate the strong edges arising 

from blood vessels and the optic 
disc using decorrelation stretch (20) 
on the red band. We use a 17 × 17 
neighborhood. 

(5) The average intensity of the pixel’s 
cluster. We cluster the preprocessed 
image into contiguous regions with 
similar intensity using 
agglomerative clustering (21). This 
feature is simply the average of the 
intensities of the pixels assigned to 
the same cluster. 

(6) The size of the pixel’s cluster, 
measured in pixels. 

(7) The average intensity of the pixels 
in the neighborhood of the pixel’s 
cluster. The pixel’s cluster is 
extracted and dilated using a 3 × 3 
structuring matrix. The 
neighborhood pixels are those 
obtained by subtracting the original 
region from the dilated region. 

(8) The ratio between the size of the 
pixel’s cluster and the size of the 
optic disc. 

(9) The distance between the pixel’s 
cluster and the optic disc. We use 
the Euclidean distance between the 
centroid of the pixel’s cluster and 
the centroid of the optic disc. 

(10) Six difference of Gaussian (DoG) 
filter responses. The DoG filter 
subtracts one blurred version of an 
original image from another blurred 
version of the image (22). We 
convolve with seven different 
Gaussian kernels with standard 
deviations of 0.5, 1, 2, 4, 8, 16, and 
32. We use DoG1, DoG2, DoG3, 
DoG4, DoG5 and DoG6 to refer to 
the features obtained by subtracting 
the image at scale σ = 0.5 from 
scale σ = 1, scale σ = 1 from σ = 2, 
scale σ = 2 from σ =4, scale σ = 4 
from σ = 8, scale σ = 8 from σ = 16, 
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and scale σ = 16 from σ = 32, 
respectively. 
 

Before feature selection or classification, 
we z-scale (transform to a mean of 0 and a 
standard deviation of 1) all 15 features 
using the statistics of each feature over the 
training set. Examples of some of the 
features are shown in Figure 3. 
 

2.4 Feature selection and classification using 
naive Bayes 
The naive Bayes classifier uses the 
principle of Bayesian maximum a posteriori 
(MAP) classification: measure a finite set of 
features x1,…, xn then select the class 
 

ˆ arg max ( x) ,
y

y P y=   

 
where 
 

( x) (x ) ( )P y P y P y∝ . (3) 

 
P(x | y) is the likelihood of feature vector x 
given class y, and P(y) is the priori 
probability of class y. Naive Bayes assumes 
that the features are conditionally 
independent given the class:  
 

(x ) ( ).i
i

P y P x y=∏   

   
We estimate the parameters P(xi| y)and P(y) 
from training data. 

After z-scaling, all of our features xi  are 
continuous, but the simple version of naive 
Bayes just described requires discrete 
features, so we perform unsupervised 
proportional k-interval discretization as 
implemented in Weka (23). The technique 
uses equal-frequency binning, where the 

number of bins is the square root of the 
number of values. After discretization, the 
conditional probability tables are obtained 
by simply counting over the training set. 

Feature selection proceeds as follows. 
We first estimate the model of equation 3 
from a training set using all 15 features, 
then we evaluate the resulting classifier’s 
performance on a separate test set. We find 
that sensitivity is normally quite high with 
this approach, so we seek to reduce the 
number of false positives on the test set as 
much as possible by iteratively deleting 
features until the average of the precision 
and sensitivity (“PR,” see section 2.7) stops 
improving. On each step, for each feature, 
we delete that feature from the model, train 
a new classifier, and evaluate its 
performance on the test set. The PR of the 
best such classifier is compared to the PR of 
the classifier without deleted features. If the 
classifier’s PR improves, we permanently 
delete that feature then repeat the process. 
Finally, the best feature set and classifier 
are retained. 
 

2.5 Feature selection and classification using 
support vector machines 
Support vector machines map training data 
into a high-dimensional feature space in 
which we can construct a separating 
hyperplane maximizing the margin, or 
distance from the hyperplane to the nearest 
training data points. 

In the input space, a binary SVM’s 
decision function can be written: 
 

1

ˆ (x) ( (x, x ) ) ,
n

i i i
i

y h sign y K bα
=

= = +∑  
 
(4)

 
 
 



 
This is a preprint of a paper published in the Journal of Modern Optics.  The paper should be cited as “Sopharak, 
Akara, Dailey, Matthew N., Uyyanonvara, Bunyarit, Barman, Sarah, Williamson, Tom, Nwe, Khine Thet and 
Moe, Yin Aye (2010) ‘Machine learning approach to automatic exudate detection in retinal images from diabetic 
patients’, Journal of Modern Optics, 57(2):124-135” 
 

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

  

 (j)  
 
Figure 3. Input features. (a) Standard deviation of intensity. (b) Hue. (c) Number of edge pixels. (d) 
Cluster intensity. (e) DoG1. (f) DoG2. (g) DoG3. (h) DoG4. (i) DoG5. (j) DoG6. 

 
where x is the feature vector to be 
classified, i indexes the training examples, n 
is the number of training examples, yi is the 
label (1 or -1) of training example i, K(⋅,⋅) is 
the kernel function, and αi and b are fit to 
the data to maximize the margin. Training 
vectors for which αi ≠ 0 are called support 
vectors. 

In practice, the classes overlap in feature 
space and there is no perfectly separating 
hyperplane. In these cases a soft margin 
classifier is required. We use the ν-SVM 
(24) in which the parameter ν ∈ [0..1] 
controls how many support vectors are 
allowed to lie on the wrong side of the 
separating hyperplane.  

We use the ν-SVM with a radial basis 
function (RBF) kernel of the form 

(x, x ) exp( x - x ).K γ′ ′= −  (5) 

Each support vector thus becomes the 
center of a RBF, and γ determines the area 
of influence that support vector has over the 
data space.  

We use the best feature set obtained 
from naive Bayes as an initial feature set for 
the SVM. We then add features to the SVM 
classifier one at a time and compare the PR 
of each classifier to that of the previous 
classifier. The first feature added in is 
always the last feature removed during the 
naive Bayes classifier’s feature selection 
process. The feature-adding process is 
repeated until all features are added back. 
The best feature set is the set which 
provides the highest PR. 

This procedure is an adaptation of the 
standard greedy backward elimination 
feature selection method. Since training our 
SVM requires a two-dimensional search 
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over the hyperparameter space, full 
backward elimination is not practical. We 
thus use the naive Bayes model to select a 
candidate feature for elimination from the 
SVM. This means we only have to perform 
O(N) hyperparameter searches, where N is 
the original number of features, rather than 
O(N2) 
 
 
2.6 Nearest neighbor classifier 
As a simple baseline for comparison, we 
use a nearest neighbor classifier. The 
nearest neighbor classifier simply classifies 
a test instance with the class of the nearest 
training instance according to some 
distance measure. We experiment with two 
distance measures, Mahalanobis and 
Euclidean. 
 
 
2.7 Performance measurement 
We evaluate performance on the test set 
quantitatively by comparing the classifier’s 
result to ground truth. To obtain ground 
truth, for each image, we used image 
processing software to hand label candidate 
exudate regions, then we asked an 
ophthalmologist to verify or reject each 
candidate region. 

To evaluate classifier performance, we 
use sensitivity, specificity, precision, PR 
and accuracy on a per-pixel basis. All 
measures can be calculated based on four 
values, namely the true positive (TP) rate 
(the number of exudate pixels correctly 
detected), the false positive (FP) rate (the 
number of non-exudate pixels wrongly 
detected as exudate pixels), the false 
negative (FN) rate (the number of exudates 
pixels not detected), and the true negative 
(TN) rate (the number of non-exudate 
pixels correctly identified as non-exudate 
pixels). These values are defined in Table 1. 
 
 
 
 

Table 1. Pixel-based evaluation. 

 Disease status 
Test result Present Absent 
Positive True Positive 

(TP) 
False Positive 
(FP) 

Negative False Negative 
(FN) 

True Negative 
(TN) 

 
From these quantities, the sensitivity, 

specificity, precision, PR and accuracy are 
computed using equations 6, 7, 8, 9, and 10 
respectively. Sensitivity is the percentage of 
the actual exudate pixels that are detected, 
and specificity is the percentage of non-
exudate pixels that are correctly classified 
as non-exudate pixels. Precision is the 
percentage of detected pixels that are 
actually exudate, and PR is the average of 
the precision and sensitivity. Accuracy is 
the overall per-pixel success rate of the 
classifier. 

TPSensitivity
TP FN

=
+

 
(6) 

 
TNSpecificity

TN FP
=

+
 

(7) 

 
TPPrecision

TP FP
=

+
 

(8) 

 

2
Precision SensitivityPR +

=  
(9) 

 
TP TNAccuracy

TP FP FN TN
+

=
+ + +

 
(10) 

 

3. Results 
We performed preprocessing as described 
in section 2.1 on all 39 training and test 
images using Matlab. The window size for 
median filtering was 3×3. For optic disc 

detection (section 2.2), we used a 9×9 
neighborhood for entropy filtering, and an 
11-pixel radius flat disc structuring element 
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for optic disc dilation. With a compactness 
threshold of 0.5, we obtained 100% 
accuracy in optic disc removal over all 39 
images in our data set. 

In our experiment, the classification is 
pixel-based, so each training or test sample 
represents one pixel in a training or testing 
image. For each image in the training set, 
we computed the features for every exudate 
pixel then randomly selected and computed 
features from an equal number of non-
exudate pixels. The two sets of examples 
formed our training set. We thus obtained 
231,734 samples, 115,867 examples of 
exudate pixels and 115,867 examples of 
non-exudate pixels, for training. From our 
test images, we used the 42,909 exudate 
pixels and 2,374,201 non-exudate pixels as 
a testing set. 

We used Weka data mining software 
(23) running on a standard PC for feature 
discretization and naive Bayes 
classification. We used libSVM’s (25) 
implementation of the ν-SVM with the 
radial basis function kernel on a 20-node 
Gnu/Linux Xeon cluster for training and 
testing SVM classifiers. For a given feature 
set, to find optimal hyperparameters (ν, the 
tolerance for misclassified training 
examples, and γ, the width of the radial 
basis function) for the SVM, we performed 
a grid search, retaining the parameter values 
for which test set accuracy was maximized. 

We found that z-scaling normalization of 
the input features was necessary for Weka 
but slightly decreased SVM performance, 
so we report results with normalized input 
features for the naive Bayes classifier and 
unnormalized input features for the SVM 
classifier. The initially selected features, 
consisting of pixel’s intensity value after 
preprocessing, standard deviation of the 
preprocessed intensity, pixel hue, number 
of edge pixels in a region around the pixel, 
average intensity of the pixel’s cluster, size 
of the pixel’s cluster, average intensity of 
the pixel in the neighborhood of the pixel’s 

cluster, ratio between the size of the pixel’s 
cluster and the size of the optic disc, 
distance between the pixel’s cluster and the 
optic disc, and the six difference of 
Gaussian filter responses, were fed into the 
naive Bayes classifier feature selection 
procedure (section 2.4). We then fed the 
best feature set from the naive Bayes 
classifier to the SVM classifier as an initial 
feature set and performed feature selection 
as described in section 2.5. Finally, we fed 
the best feature sets from the naive Bayes 
and SVM classifiers to the NN classifier 
(section 2.6) to obtain a performance 
baseline. For the NN classifier with 
Mahalanobis distance, we calculated the 
covariance matrix on the positive training 
examples only. 
 

3.1 Experiment 1: naive Bayes classification 
In our first experiment, we fit the naive 
Bayes model (equation 3) to the training set 
using all 15 features. The resulting 
classifier had an overall per-pixel 
sensitivity, specificity, precision, PR and 
accuracy of 95.84%, 96.56%, 33.49%, 
64.67% and 96.55%, respectively. In the 
next step, we removed features from the 
classifier one by one and compared the 
resulting PR to PR obtained on the previous 
feature set. We obtained the best PR value 
(65.78%) by deleting cluster intensity, 
presumably due to its redundancy with the 
pixel intensity feature. We continued this 
process until the PR stopped improving. 
Finally, the best-performing classifier 
contained six features: the pixel’s intensity 
after preprocessing, the standard deviation 
of the preprocessed intensities in a window 
around the pixel, the pixel hue, the number 
of edge pixels in a window around the 
pixel, the ratio between the size of the 
pixel’s intensity cluster and the optic disc, 
and DoG4.The complete test results are 
listed in Table 2. 
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3.2 Experiment 2: SVM classification 
In our second experiment, we performed a 
grid search to determine the best 
combination of hyperparameters ν  
(tolerance for training errors) and γ (radial 
basis function width) for the ν -SVM using 
the best feature set for the naive Bayes 
classifier as an initial feature set. We then 
added features back into the classifier one 
by one and repeated the grid search for each 
feature set combination. We found that PR 
fluctuated as we performed feature 
inclusion, so we continued including 
features until all 15 features were included. 
The results of the tests are shown in Table 
3. The best performance was obtained using 
10 features: the pixel’s intensity after 
preprocessing, the standard deviation of the 
preprocessed intensities in a window 
around the pixel, the pixel hue, the number 
of edge pixels in a window around the 
pixel, the ratio between the size of the 
pixel’s intensity cluster and the optic disc, 
distance between the pixel’s cluster and the 
optic disc, DoG1, DoG2, DoG4, and DoG6, 
with γ = 0.002 and ν  = 0.98. This classifier 
has a sensitivity of 92.28%, specificity of 
98.52%, precision of 53.05%, and PR of 
72.67%. Its overall accuracy is 98.41%. 
Examples of exudate regions predicted by 
the SVM for two test set images are shown 
in Figure 4. Comparisons between the 
predicted exudates regions and the 
corresponding ground truth data are shown 
in Figure 5. 
 

3.3 Experiment 3: NN classification 
In a final experiment, we obtained a 
baseline for comparison using a NN 
classifier with Euclidean and Mahalanobis 
distance metrics. To compare with the 
performance of the the naive Bayes and 

SVM classifiers, we used the best feature 
sets obtained for naive Bayes and the SVM. 
On best feature set obtained from the naive 
Bayes classifier, the NN classifier with 
Euclidean and Mahalanobis distance have a 
PR of 61.54% and 61.81%, respectively. On 
the best feature set obtained from the SVM 
classifier, the NN classifier with Euclidean 
and Mahalanobis distance obtained a PR of 
65.15% and 64.99%, respectively. The 
results are compared in Table 4. The results 
indicate that the naive Bayes and SVM 
classifiers perform substantially better in 
PR than the NN classifier. In addition, the 
NN classifier using the best feature set 
obtained from the SVM classifier performs 
better than that using the best feature set for 
the naive Bayes classifier. 
 

4. Discussion and conclusion 
In this paper, we propose 15 per-pixel 
features as potential indicators of exudates. 
We use naive Bayes and SVMs for feature 
selection and pixel classification. We filter 
images for noise, enhance image contrast, 
detect and remove the optic disc, extract 
local features describing pixels or regions, 
then classify those features using a model 
built from a training set. The naive Bayes 
classifier, after feature selection, achieves 
an overall per-pixel sensitivity of 93.38%, 
specificity of 98.14%, precision of 47.51%, 
PR of 70.45% and an overall accuracy of 
98.05% on a test set not used during 
training. The SVMs classifier achieves an 
overall per-pixel sensitivity of 92.28%, 
specificity of 98.52%, precision of 53.05%, 
PR of 76.27% and an overall accuracy of 
98.41%. 
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Table 2. Naive Bayes prediction performance 

Features Sensitivity Specificity Precision PR Accuracy 
All features 95.84% 96.56% 33.49% 64.67% 96.55% 
Without CI 95.68% 96.91% 35.89% 65.78% 96.89% 
Without CI and  DoG  3 95.58% 97.12% 37.51% 66.55% 97.09% 
Without CI, DoG  3 and NI 95.20% 97.36% 39.49% 67.35% 97.33% 
Without CI, DoG  3, NI and CS 96.10% 97.41% 40.17% 68.14% 97.39% 
Without CI, DoG 3, NI, CS and DoG 5 95.76% 97.62% 42.12% 68.94% 97.59% 
Without CI, DoG 3, NI, CS, DoG 5 and DoG 2 95.41% 97.80% 43.98% 69.70% 97.76% 
Without CI, DoG 3, NI, CS, DoG 5, DoG 2 and 

distance 
94.82% 97.95% 45.56% 70.19% 97.90% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance and DoG 6 

93.82% 98.06% 46.62% 70.22% 97.98% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance, DoG 6 and DoG 1 

93.38% 98.14% 47.51% 70.45% 98.05% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance, DoG 6, DoG 1 and NE 

92.12% 96.46% 31.98% 62.05% 96.38% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance, DoG 6, DoG 1 and SD 

90.03% 97.70% 41.48% 65.76% 97.57% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance, DoG 6, DoG 1 and SR 

93.70% 97.52% 40.61% 67.16% 97.46% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance, DoG 6, DoG 1 and intensity 

92.08% 97.81% 43.18% 67.63% 97.71% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance, DoG 6, DoG 1 and hue  

94.14% 97.77% 43.27% 68.70% 97.70% 

Without CI, DoG 3, NI, CS, DoG 5, DoG 2, 
distance, DoG 6, DoG 1 and DoG 4 

91.42% 98.11% 46.60% 69.01% 97.99% 

∗ CI = cluster intensity, CS = cluster size, DoG = difference of Gaussian, NE = number of edge pixels, NI = 
neighborhood intensity, SD = standard deviation and SR = size ratio 
 
Table 3. SVM prediction performance 

Features Sensitivity Specificity Precision PR Accuracy 
*Best feature set from NB (γ=0.004, ν=0.999) 87.90% 98.57% 52.56% 70.22% 98.37% 
With DoG 1 (γ=0.004, ν=0.999) 88.71% 98.60% 53.38% 71.05% 98.42% 
With DoG 1 and DoG 6 (γ=0.004, ν=0.99) 92.54% 98.21% 48.24% 70.38% 98.10% 
With DoG 1, DoG 6 and distance (γ=0.004, 

ν=0.995) 
93.00% 98.32% 50.06% 71.53% 98.23% 

With DoG 1, DoG 6, distance and DoG 2  
(γ=0.002, ν=0.98) 

92.28% 98.52% 53.05% 72.67% 98.41% 

With DoG 1, DoG 6, distance, DoG 2 and DoG 
5 (γ=0.002, ν=0.98) 

92.89% 98.43% 51.61% 72.25% 98.33% 

With DoG 1, DoG 6, distance, DoG 2, DoG 5 
and CS (γ=0.004, ν=0.995) 

93.61% 98.17% 47.98% 70.79% 98.08% 

With DoG 1, DoG 6, distance, DoG 2, DoG 5, 
CS and NI (γ=0.004, ν=0.9) 

93.35% 97.89% 44.38% 68.87% 97.81% 

With DoG 1, DoG 6, distance, DoG 2, DoG 5, 
CS, NI and DoG 3  

(γ=0.004, ν=0.995) 

92.36% 98.15% 47.44% 69.90% 98.05% 

With DoG 1, DoG 6, distance, DoG 2, DoG 5, 
CS, NI, DoG 3 and CI  
(γ=0.004, ν=0.995) 

92.18% 97.64% 41.36% 66.67% 97.54% 

∗ Best feature set from NB is pixel’s intensity, standard deviaton, pixel’s hue, number of edge pixels, ratio 
between the size of the pixel’s cluster and the size of the optic disc and DoG 4 
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(a) (b) 

 
(c) (d) 

 
Figure 4. Exudates detection by the SVM classifier. (a–b) Two original test set images. (c–d) 
Perimeters of the exudate regions predicted by the SVM, superimposed on images (a) and (b). 
 

 
(a) (b) 

 
(c) (d) 

 
Figure 5. Comparison of SVM prediction and ground truth. (a–b) Exudate pixels predicted by 
the SVM for the original images from Figures 4a and 4b. (c–d) Ground truth data for the same 
two images. 
 
Table 4. PR performance comparison 

Classifier NB SVM NN (Euc.) NN (Mah.) 
Best feature set for NB 70.45% 70.22% 61.54% 61.81% 
Best feature set for SVM 68.94% 72.67% 65.15% 64.99% 
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The final SVM classifier contains 
ten features: the pixel’s intensity after 
preprocessing, the standard deviation 
of the preprocessed intensities in a 
window around the pixel, the pixel 
hue, the number of edge pixels in a 
window around the pixel, the ratio 
between the size of the pixel’s intensity 
cluster and the optic disc, the distance 
between the pixel’s cluster and the 
optic disc and the response at the pixel 
to a derivative of Gaussian filter. Both 
the naive Bayes and SVM classifiers 
perform well compared to a baseline 
nearest neighbor classifier.  

The naive Bayes classifier benefits 
from aggressive feature selection, 
probably because it assumes 
conditional independence of the 
features even though some of our 
features are clearly highly correlated. 
The support vector machine classifier 
is better able to handle these statistical 
dependencies, achieving slightly higher 
performance with a larger feature set at 
the cost of substantially increased 
compute time during both training and 
testing. It might be possible to achieve 
similar performance with faster 
classifiers such as Adaboost cascades.  

How do the exudates predicted by 
naive Bayes and the SVM compare? 
Figure 6 shows closeups of the 
classifiers’ exudate boundary 
predictions for two typical exudates. 
The SVM classifier tends to delineate 
exudate boundaries more accurately 
with fewer false detections. Although 
the SVM is only slightly better than 
naive Bayes in terms of the 
quantitative performance evaluation, 
its superiority is very clear in the 
images. 

This shows that two methods with 
quantitatively similar per-pixel 
accuracy can perform differently in 
terms of qualitative accuracy. The 

reason is that false detections near true 
exudate boundaries are qualitatively 
less serious than isolated false 
detections. Similarly, a group of false 
negatives along the boundary of a true 
exudate is qualitatively less serious 
than a completely missed exudate 
region. In principle, we could define a 
new performance measure that weighs 
false detections and false negatives 
differently depending on their distance 
from or connectedness to true exudate 
regions. This could quantify the 
performance of the SVM-based 
classifier. However, here we simply 
use the standard performance measures 
and show the qualitative difference in 
the images. 

Both the naive Bayes classifier and 
the SVM occasionally miss faint 
exudates and incorrectly detect as 
exudate image artifacts or retinal 
structures that share some 
characteristics with exudates. For 
example, as shown in Figure 7, strong, 
high contrast choroidal blood vessels 
appearing in the retinal background 
can be incorrectly detected as exudates. 
As another example, Figure 8 shows 
that faint blood vessels are also 
sometimes incorrectly detected as 
exudates. Overall, our experimental results 
show that careful preprocessing, good 
features, feature selection, and an 
appropriate classifier together provide 
excellent exudates detection performance 
even on retinal images acquired from 
patients whose pupils have not been 
dilated. We use a relatively large set of 
pixel descriptor features along with a 
principled method for feature selection, 
and we compare three different machine 
learning techniques with different 
characteristics. To our knowledge, the 
results reported here are the best automatic 
exudate detection results thus far. 
Additionally, our data set is apparently the 
largest existing set with hand-labeled 
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(a) (b) (c) 

  
(d) (e) (f) 

 
Figure 6. Closeups of results for two typical exudates. (a) and (d) Original images. (b) and (e) 
Naive Bayes classification results. (c) and (f) SVM classification results. 
 
 

  
(a) (b) (c) 

 
Figure 7. Example false detection of exudates on choroidal blood vessel. (a) Original image. 
(b) Detection results for naive Bayes classifier. (c) Detection results for SVM classifier. 
 

  
(a) (b) (c) 

 
Figure 8. Example false detection of exudates on faint blood vessel. (a) Original image. (b) 
Detection results for naive Bayes classifier. (c) Detection results for SVM classifier. 
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ground truth provided by doctors. The data 
set and SVM classifier (in the standard 
libSVM format) are available to interested 
researchers at http://ict.siit.tu.ac.th/˜ivc. 

Although care must be taken not to 
overgeneralize the applicability of 
these results, as the feature set and 
SVM hyperparameters ν  and γ have 
been tuned to maximize performance 
on the test set, and validation on a new 
independent test set is still necessary, 
this work is a promising step towards 
automated diagnosis of diabetic 
patients’ retinal images. Automated 
detection of exudates in diabetic 
patients’ retinas could help enable 
early detection of diabetic retinopathy 
and could help doctors track the 
progress of treatment over time. 

In future work we plan to expand 
the data set and explore using the 
system as a practical aid to help 
ophthalmologists screen patients for 
diabetic retinopathy symptoms quickly 
and easily. 
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