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Abstract

Automation of the knowledge acquisition process in building knowledge-
based systems for process design is addressed through Machine Learning
techniques. A hybrid Machine Learning algorithm developed at the Uni-
versity of South Florida is presented as a knowledge acquisition tool for
developing knowledge-based systems. The learning algorithm addresses
the knowledge acquisition problem by developing and maintaining the
knowledge base through inductive learning from the examples.

The learning algorithm named as Symbolic-Connectionist net (SC-
net), overcomes the problems associated with neural and symbolic learn-
ing systems by integrating the symbolic information into a neural network
representation. The learning system allows for knowledge extraction and
background knowledge encoding in the form of rules. Fuzzy logic has
been made use of in dealing with uncertainty in the learning domain. The
description language for the learning system consists of continuous and
discrete variables along with relational and fuzzy comparators.

The applicability of the learning system for process design is illustrated
through a complex column sequencing example. The performance of the
learning system is discussed in terms of the knowledge extracted from
example cases and its classification accuracy on the test cases.
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1 Introduction

The development of knowledge-based systems in the field of process design
and analysis has been limited by the knowledge acquisition bottleneck.
The domain knowledge is mostly in the form of heuristics, case histories,
expert knowledge and domain texts resulting in a diverse and unstruc-
tured body of knowledge. Automation of knowledge acquisition process
would not only simplify the knowledge engineer’s task but also helps in for-
malizing knowledge and implementing knowledge bases for large Artificial
[ntelligence( Al) systems.

In developing Al based systems for process design, automation of pro-
cess synthesis plays a crucial role, as this step involves most complex and
creative tasks. Different types of problems involved in the chemical pro-
cess synthesis have been addressed by Hendry (1], Westerberg [2]. In this
study we limit ourselves to complex column sequencing which is a subclass
of more general separation scheme synthesis problem. Complex column
sequencing problem has been addressed by many researchers in the past
by algorithmic or optimization approach, Hendry [3], heuristic approach,
Tedder [4], evolutionary approach, Stephanopoulas [3]. These approaches
are not totally exclusive as some methods combine two or more of them,

Seader (6].

In this study we have taken the approach of extracting knowledge in
the form of rules from example cases using machine learning techniques,
which roughly falls in between the boundaries of heuristic and evolution-
ary approaches. Machine learning is defined here as “a process in which
a computer program improves its performance, acquires knowledge and
solves new problems in the specified domain”.

Over the years, researchinmachine learning has mainly focused on three
different approaches:

e neural modeling and decision-theoretic techniques
¢ symbolic concept-oriented techniques
e knowledge-intensive, domain-specific learning

these approaches are discussed in detail elsewhere, Michalski [7].

Neural learning (connectionist) systems, with their massive parallelism
and robustness have proven effective in many of the pattern classification
problems. But they are unsuitable for knowledge acquisition purposes as
they do not allow for knowledge extraction in the form of rules and require
very long training times. On the other hand, symbolic learning systems
can extract knowledge in the form of rules but they are very sensitive to
noise and tend to over generalize the knowledge. The problems associated
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with these systems have prompted researchers in machine learning to seek
a hybrid approach. One such development in this direction is SC-net,
Romaniuk [8]. SC-net is designed specifically for the purpose of developing
knowledge bases and is based on a hybrid Symbolic and Connectionist
architecture.

2 Learning in SC-net

Different learning steps involved in SC-net are shown in Figure 1. Each
time SC-net is presented with a training set consisting of input and cor-
responding output information.it invokes a call to Recruitment of Cells
Algorithm (RCA). Its main function is to map the training set into a
network representation so that they may be used for further processing.

The network generated consists of Input Cells, Information Collector
(IC) Cells , Negative Collector(NC) Cells , Positive Collector(PC) Cells,
Unknown(UK) Cells, and Output Cells as shown in Figure 2. The input
cells represent the input information presented in the training set, the IC
cells combine the input information into an intermediate form. The NC
and PC cells collect negative and positive evidence present in the training
set for a conclusion respectively. These cells are connected to every output
and IC cell. The UK cell acts as a threshold on the NC and PC cells,
letting them propagate an activation which is representative of the type
of evidence present(positive, negative and unknown). The output cells
represent the output information from the training set.

The cells in the network model the min, max and sum operators of
fuzzy logic, Zadeh [9]. Every cell contains a bias value CB;, which indi-
cates the type of fuzzy operator the cell models and its value lies between
—1 and +1. A min cell has a negative bias value, negate cell has bias value
zero and a max cell has a positive bias value. The absolute value of CB;
represents an upper threshold on the cell activation C A;. The cells in turn
are connected by links which carry link weights. If cell C; ( with C4;)
and cell C; ( with C'A;) are connected then the weight of the connecting
link is CW;;. Every cell C; with a cell activation C A; ( except for input
cells) computes its new cell activation C'A; according to the formula

(|CB;| * m}jn{C’AJ- *CW;;} if C;is a min cell
i
|CB;| * m}ax{CA,- *CW;;} if C;is a max cell

¥
CAi = |CBi|« {CA;*CW,;} if C; is a linear threshold cell

JHS

CAipesiios + CAipgarve — 3 if Ci is a final output cell
1-CA; xCW;; if C; is a negate cell
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Figure 1. Learning in SC-net
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A cell activation value of 1.0 indicates the complete presence of a fact
and/or a conclusion, whereas a value of 0.0 indicates complete absence
and finally a value of 0.5 indicates unknown. The last two formulas(final
output cell and negate cell) are special cases of the third formula(linear
threshold cell), leaving only three basic operators: min, max and sum.

Every training instance, consisting of input cell activations and the
expected output cell activations is presented to the network for a single
feed forward pass. After the pass has been completed, the actual and
the expected activation for every output are compared. Three possible
conditions may result from this comparison :

1. The difference is below some epsilon(e = 0.02). Then the example
is already learned and no modifications are made to the network.

2. The difference is within 5¢, then the example is similar to at least one
previously seen and stored instance. The cell bias value is adjusted
to all the IC cells connected to PC cell if the expected output cell
activation is above 0.5 and to all the IC cells connected to NC cell
if the expected output cell activation is below 0.5. This procedure
is continued until the difference falls below .

3. The difference is above 5¢, this means that the example is new and
the network is modified by recruiting a new cell to include this ex-
ample. The new cell is then connected to appropriate input cells.

The network generated by the above procedure is next presented to the
Pre-Selection of Attributes(PSA) algorithm for introducing redundancy
in to the network. Since the RCA generated network aims toward a min-
imal representation of the input domain, it is possible that the network
identifies the wrong input features as important. This is especially true
in the case of insufficient number of training instances. PSA algorithm
addresses this problem by selecting all the input attributes that represent
a concept. In many empirical studies, Romaniuk (8], it was found that
PSA can improve the classification accuracy in pattern-matching type of
problems.

The network topology in SC-net is based on the training examples,
unlike the user specified ones in other connectionist approaches. The cells
are recruited at a single level, the cell growth proceeds horizontally making
it an ideal candidate for parallelization. But under worst case conditions,
the network growth is linear, resulting in a recruitment of one to three new
cells for each example. This problem can be controlled by including some
guiding knowledge in the training set. The learning system allows for in-
jection of background knowledge in the form of if...then rules. The learning
system makes use of the fuzzy logic language hedges(low, medium,high),
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quantifiers(never,sometimes,always) and operators(maz, min) in develop-
ing a more natural language like description language. As a next step in
the learning process the PSA modified network is presented to the Global
Attribute Covering (GAC) algorithm, whose main function is to minimize
the network growth.

Given the RCA (with/without PSA) generated network as its input
GAC algorithm generates (except for contradictions and inconsistencies
in the examples) an equivalent network, minimized by both in the num-
ber of cells and links. As a first step in GAC, all links to IC cells are
disconnected, by making CW;; = 0, this forces all IC cells to propagate
an activation of 1 ( firing state ) regardless of the inputs presented to the
network during the training phase. Since all IC cells fire they will also
activate the corresponding output cells they are connected to. Since it is
known when a concept should be activated (output cell activation above
some threshold value) for a given input set, one can easily determine those
IC cells that fired but should not have according to the given input assign-
ment. Whenever an IC cell is incorrectly activated it will be entered into
a conflict list. Further all links entering the IC cell as inputs will be con-
sidered as potential inhibitors for network minimization. By reconnecting
specific links, IC cells can be prevented from firing for the same inputs. A
badness measure associated with each link is used to prune the links, the
details of the algorithm may be found in, Romaniuk (8].

The GAC generated network is next generalized through the use of the
GEneralization of NETwork (GENET ) learning component. In symbolic
terms, generalization is accomplished by replacing single conditions by a
disjunction of similar conditions, which allows extraction of rules covering
a larger domain.

Once the learning system completes all the above steps the network
generated is capable of classifying new example cases in the specified
domain and allows for knowledge extraction in the form of rules. The
knowledge can be extracted from the trained network by making use of
the symbolic information collected by IC cells. As these cells combine the
input concepts and connect to an output cell through a NC or a PC cell
depending on the type of evidence present, it is easy to determine which
of the input concepts are contributing to a particular output concept. The
rules are generated by taking the conjunction of the input concepts to the
IC cells as the premise and the output cell concepts as the conclusion.

The learning system is truly hybrid in nature because it has the virtues
of highly parallel and uniform knowledge representation, ability to deal
with continuous variables, fault tolerance and noise resistance from the
connectionist approach. From the symbolic side it has the advantages of
knowledge extraction, powerful symbolic description language and back-
ground knowledge injection to support knowledge refinement. The next
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section describes the application of the learning system as a knowledge
acquisition tool for a process design problem.

3 Example

The learning system’s knowledge acquisition capability and classification
accuracy is illustrated through the selection of a complex column sequence
example. The learning system is expected to select a type of sequence for
a given set of specifications and to extract the knowledge in the form of
rules, after learning the concepts from examples. In this study, we have
considered the well known complex column sequences like Direct/Indirect,
Sidestream Stripper/Rectifier, Petlyuk columns and Sidestream columns
as shown in Figure 3. ’

Initially, the learning program is presented with example cases which
consist of the information required to select a complex column sequence.
These examples are generated through the use of ASPEN [10] simulator,
which selects the best possible sequence for a given input specification
based on Total Annualized Cost, Douglas [11] for each possible sequence.
In generating the input information we have made use of the design heuris-
tics proposed, Tedder [4], Glinos {12] in the literature.

The training examples generated from the ASPEN simulator are pre-
sented to the SC-net program as a training set. Each example in the
training set has input information and output information. The input
information consists of relative volatilities, product fractions in the feed
and product purity. The output information consists of optimal design
sequence for the given input information. A sample training set is shown
in Table-1, the following notation is used in the table :

¢ Input Information

a4p relative volatility of component A w.r.t. B.
apce relative volatility of component B w.r.t. C.
MP percentage of the middle product in the feed.
OH percentage of the overhead product in the feed.
BP percentage of the bottoms product in the feed.
PP Product purity desired.

e Qutput Information
DESIGN The type of sequence (D1,D2,D3,D4,D5,D6,D7).

The input variables can take on values like close, wide, low, high
etc., as shown in Table-I. These values are represented as linguistic vari-
ables for generating knowledge which is general and easily understand-
able/modifiable by a domain expert to incorporate into a knowledge base.
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These variables are modeled using pi-shaped fuzzy numbers, Zimmermann
[13]. Figure 4 shows their range and membership values. The qualitative
information such as close-boiling mixtures or low middle-product can eas-
ily be represented as a[close], MP[low].

The learning algorithm was trained with 64 example cases and the time
taken for training is 20 seconds of CPU on a SUN SPARC station. Figure
5 shows the network generated by SC-net for this training set, the input
cell layer and the interconnection network consists of the network created
to represent the fuzzy input variables along with each of their values. The
output cells from the interconnection network will be the input variables
with their values presented in the example cases. Only a few of them are
shown in the Figure 5. '

The knowledge extracted in the form of if...then rules from the training
set is shown in Table-1I. Consider for example the rules generated for the
sidestream columns (D6 and D7). These two rules identify that sidestream
columns are to be chosen when low purity products are desired and also
that the location of sidedraw to be below the feed (D6), if very low amounts
of bottom product is present in the feed and to be above the feed (D7),
if the amount of overhead products present in the feed is very low. The
extracted rules are very similar to the design heuristics proposed in the
literature, Tedder [4], Glinos [12] by human experts, in terms of their
simplicity and accuracy.

To evaluate the classification accuracy, the learning system was tested
with 26 new test cases apart from the one used for training. Table-III
shows the performance of SC-net. The learning system was able to classify
all the cases correctly. This high degree of classification accuracy can be
attributed to the general nature of the rules and hybrid nature of the
learning system. The system has been found, Romaniuk[8] to have a
classification accuracy of the order of 95 to 99 % in many of the standard
classification problems.

4 Conclusion

A hybrid learning mechanism has been studied and its applicability in pro-
cess design is illustrated through the complex column sequencing problem.
The learning system was successful in extracting knowledge in the form of
natural language like rules. The extracted rules were general in nature and
performed well on classification problem. The high degree of classification
accuracy of the learning system on the studied test cases make it a suit-
able system for studying structured selection and fault diagnosis problems.
The learning system can be used as a powerful knowledge acquisition tool
for building knowledge-based systems for domains with a large body of
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Table I Rules generated by SC-net

if and(MP[medium],BP[very_low},PP[high]) then D1 (1.000);
if and(BP[medium],PPlhigh]) then D1 (1.000);
if and(MP[low],BP{low],PP[high]) then D1 (1.000);

if and(MP[medium],BP{low],PP[high]) then D1 (1.000);
if and(BP[high],PP[high]) then D2 (1.000);

if and(BP{medium],PP{medium]) then D3 (1.000);
if and(o.gclclose],BP[low],PP[medium]) then D3 (1.000);
if and(BP[very_low],PP{medium]) then D3 (1.000);

if and(agc[near],BP[low],PP[medium]) then D3 (1.000);

if and(BP[high],PP[medium]}) then D4 (1.000);

if and(a 4 glclose].MP{medium],BP{low],PP{medium])
then D4 (1.000);

if and(t 4 g[near], MP[medium],BP[{low],PP[medium])
then D4 (1.000);

if and(MP[very_high],PP[high]) then DS (1.000);

if and(MPthigh],PPlhigh]) then DS (1.000);
if and(BP{very_low],PP[low]) then D6 (1.000);

if and(OH[very_low],PP{low]) then D7 (1.000);
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Table IIl Comparison of SC-net performance on test cases

oAB agc MP OH BP PP Expected SC-net
2.45 2.15 40 55 5 high D1 D1
2.45 2.15 40 5 55 high D2 D2
2.45 2.15 10 45 45 medium D3 D3
2.45 2.15 60 15 25 high DS D5
2.45 2.15 46 50 4 low D6 D6
2.45 2.15 46 4 50 low D7 D7
2.8 1.38 25 20 55 high D2 D2
2.8 1.38 50 30 20 medium D3 D3
2.8 1.38 68 20 12 high DS DS5
2.8 1.38 52 45 3 low D6 D6
2.8 1.38 75 5 20 low D7 D7
1.69 1.3 65 17 18 high DS DS
3.6 1.8 70 15 15 high DS DS
1.69 1.3 80 18 2 low D6 Dé
1.69 1.3 20 78 2 high D1 D1
3.6 1.8 65 31 4 low D6 Dé
3.6 1.8 20 78 2 medium D3 D3
1.69 1.3 65 4 31 low D7 D7
1.69 1.3 20 2 78 high D2 D2
3.6 1.8 65 4 31 low D7 D7
3.6 1.8 20 2 78 high D2 D2
1.69 1.3 25 20 55 high D2 D2
3.6 1.8 25 20 55 high D2 D2
1.69 1.3 25 55 20 high D1 D1
1.69 1.3 10 45 45 medium D3 D3

3.6 1.8 15 60 25 medium D3 D3
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unstructured knowledge. The background knowledge encoding features,
knowledge extraction capabilities and the powerful description language
of SC-net can be utilized in building Al systems which can automate the
knowledge acquisition process.

References

(1] Hendry, J.E., Rudd, D.F. and J.D. Seader, “ Synthesis in the Design
of Chemical Processes,” AIChE J.,19, 1-15 (1973).

[2] Westerberg, A.W. “A Review of Process Synthesis,” ACS Symp. Ser.,
124, 53-87 ACS, Washington, DC (1980).

[3] Hendry, J.E. and R.R. Hughes, “ Generating Separation Process
Flowsheets,” Chem Eng. Prog.,68, T1-76 (1972).

[4] Tedder, D.W. and D.L. Rudd, “ Parametric Studies in Industrial
Distillation, ” AICKE J.,24, 303-334 (1978).

[5] Stephanopoulas, G. and A.W. Westerberg, “ Studies in Process
Synthesis-II. Evolutionary Synthesis of Optimal Flowsheets,” Chem,
Engg. Sci. , 31, 195-204 (1976).

(6] Seader, J.D. and A.W. Westerberg,“ A Combined Heuristic and Evo-
lutionary Strategy for Synthesis of Simple Separation Sequences,”
AICKE J.,23, 951-954 (1977).

[7] Michalski, R.S., Cazbonell, J.G. and T.M. Mitchell, MACHINE
LEARNING An Artificial Intelligence Approach, Tioga, Palo Alto,
CA (1983).

[8] Romaniuk, S. “Extracting Knowledge from a Hybrid, Symbolic, Con-
nectionist Network ,” Ph.D. Thesis, Univ. of South Florida, Tampa,
FL (1991).

[9] Zadeh, L.A. “Fuzzy Logic,” [FEE Computer, 21, 83-92 (1988).
(10] ASPEN PLUS Aspen Technology, Inc., Cambridge, MA (1988).

[11] Douglas, J.M. Conceptual Design of Chemical Processes, McGraw-
Hill (1988).

[12] Glinos, K. and M.F. Malone, “ Optimality Regions For Complex Col-
umn Alternatives in Distillation Systems,” Chem. Eng. Res. Des.,66,
229-240 (1988).

[13] Zimmermann, H.J. Fuzzy Set Theory and Its Applications, Kluwer
Academic, Hingham, MA (1985).



