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Machine learning approach 
to dynamic risk modeling 
of mortality in COVID‑19: a UK 
Biobank study
Mohammad A. Dabbah1, Angus B. Reed1, Adam T. C. Booth1, Arrash Yassaee1,2, 
Aleksa Despotovic1,3, Benjamin Klasmer1, Emily Binning1, Mert Aral1, David Plans1,4*, 
Davide Morelli1,6, Alain B. Labrique5 & Diwakar Mohan5

The COVID‑19 pandemic has created an urgent need for robust, scalable monitoring tools supporting 
stratification of high‑risk patients. This research aims to develop and validate prediction models, using 
the UK Biobank, to estimate COVID‑19 mortality risk in confirmed cases. From the 11,245 participants 
testing positive for COVID‑19, we develop a data‑driven random forest classification model with 
excellent performance (AUC: 0.91), using baseline characteristics, pre‑existing conditions, symptoms, 
and vital signs, such that the score could dynamically assess mortality risk with disease deterioration. 
We also identify several significant novel predictors of COVID‑19 mortality with equivalent or greater 
predictive value than established high‑risk comorbidities, such as detailed anthropometrics and prior 
acute kidney failure, urinary tract infection, and pneumonias. The model design and feature selection 
enables utility in outpatient settings. Possible applications include supporting individual‑level risk 
profiling and monitoring disease progression across patients with COVID‑19 at‑scale, especially in 
hospital‑at‑home settings.

�e COVID-19 pandemic has posed a signi�cant challenge to global healthcare systems. Although large-scale 
vaccination programmes have begun, many countries will not have widespread access to vaccines until 2023, 
meaning that non-pharmaceutical interventions are likely to remain indispensable national strategies for some 
 time1.

COVID-19 shows highly varied clinical presentation, with a signi�cant proportion (17–45%) of cases 
being asymptomatic and requiring no speci�c  care2,3. Conversely, the case fatality rate is reported between 
2–3%  worldwide4. Between these two extremes, typical symptoms include fever, continuous cough, anosmia, 
and dyspnoea, which may range from requiring only self-management at home to inpatient care. Understand-
ing which individuals are most vulnerable to severe disease, and thereby in most need of resources, is critical to 
limit the impact of the virus.

Decision-making at all levels requires an understanding of individuals’ risk of severe disease. Various patient 
characteristics, comorbidities, and lifestyle factors have been linked to greater risk of death and/or severe ill-
ness following  infection5–7. Once patients are infected with SARS-CoV-2, additional physiological parameters, 
such as symptoms and vital signs, can inform real-time  prognostication8. Laboratory testing and imaging can 
also inform risk strati�cation for early, aggressive intervention, though this data is only accessible to hospital 
inpatients, who are likely to be already severely  a�ected9,10.

Robust, predictive models for acquisition and prognosis of COVID-1911–16 and resource  management17,18 have 
been developed to support risk strati�cation and population management at-scale, o�ering important insights 
for organizational decision-making. For example, QCOVID is a leading COVID-19 risk model developed using 
primary care data from 8 million  adults11, with evidence of external  validation19. It is currently implemented in 
the NHS as a clinical assessment  tool20. However, the individual is currently overlooked, and granular, patient-
speci�c risk-scoring could unify decision-making across all levels. Existing individualized risk scores, however, 
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o�en con�ate risk of COVID-19 acquisition with risk of mortality following  infection11,14, which can limit their 
utility in patient management.

For predictive models to achieve impact at scale, assessment of risk factors should be inexpensive and acces-
sible to the general population, ideally without the need for specialized testing or hospital visits. Such risk predic-
tion tools, through improved patient triage, could be used to further increase the e�ciency of, and con�dence in, 
hospital-at-home solutions, which have shown promise in reducing hospital burden throughout the  pandemic21. 
Risk scores in these circumstances need to be dynamic and contemporaneous, ideally incorporating symptoms 
and vital sign data to maximise utility to clinical and research teams. �erefore, the primary aim of this study 
is to develop and validate a population-based prediction model, using a large, rich dataset and a selective, clini-
cally informed approach, which dynamically estimates the COVID-19 mortality risk in con�rmed diagnoses.

Results
Clinical characteristics of patients in the derivation cohort. �ere were 55,118 adults in the UK 
Biobank (UKB) tested for COVID-19. A�er excluding negative test results and patients without hospital records 
data, 11,245 adults (aged 51–85 years, mean: 66.9, SD: 8.7) were included in the analysis, of whom 640 (5.7%) 
had died as a result of COVID-19 (Supplementary Fig. 1). �e mean age of survivors was 66.4 years (SD: 8.6), 
compared to 76.0 years (SD: 5.6) for those that died. �e most common pre-existing conditions in patients were 
hypertension (36.2%), osteoarthritis (23.3%), and asthma (13.3%) (Table 1).

Leave‑one‑out validation. To maximise the potential of the dataset, a leave-one-out (LOO) cross-valida-
tion approach was implemented (Fig. 1C). In this process, each data point is used as a test set while the remain-
ing data points are used to train a Random Forest (RF) classi�er using the entire feature space. �is approach 
is the most extreme version of k-fold cross-validation and results in lower model bias and variance than the 
typical train/test split method. Feature importance is calculated by aggregating individual importance across 
all trained classi�ers in the LOO experiment. �e feature selection process (Fig. 1B) ensured the combination 
of data-driven insights with clinical experience, shortlisting approximately 12,000 features to 64 characteristics. 
�e shortlisted features included: 3 vital signs; 12 symptoms; 32 pre-existing clinical conditions; 5 medications 
and treatments; and 13 patient characteristics (Table 1).

Model performance and comparison. �e receiver operating characteristic (ROC) curves for the pre-
diction models are presented in Fig. 2A. With an area under the curve (AUC) of 0.90, the Random Forest (RF) 
model showed excellent performance. A Cox Proportional Hazard (CPH) model was trained using the �nal set 
of RF-de�ned variables to maximize explainability of the RF, CPH model coe�cients are detailed in Supplemen-
tary Table 1. �is model had improved performance, reaching a higher AUC of 0.91.

Figure 2A also shows the ROC curves for both the RF and  CPH22 models against the sex-aggregated QCOVID 
 model11. As shown, the ROC curves for the RF and CPH are very comparable with a slight advantage for the CPH. 
From Fig. 2A, it can be seen that when QCOVID is applied to the UKB dataset it performs well and achieves 
an AUC of 0.84, showcasing resilience to unseen data. To explore the performance further, it is essential to look 
at the robustness of the generated models. Figure 2B illustrates the use of F-β statistical analysis to examine 
the performance of the various models. As expected, despite the CPH having a slightly greater AUC score, it is 
clear that the RF has much more stable performance. Moreover, it can be seen that both the CPH and QCOVID 
models achieve optimal F-β scores when β is small. However, for the RF model, the F-β scores are considerably 
larger than its comparators and are more consistent across the range of thresholds, thereby demonstrating greater 
stability and increased capabilities regarding recall (i.e. minimizing false-negatives).

�e results of this model highlighted both known and novel risk factors for mortality in COVID-19 (Fig. 3). 
Age was the most important feature of the model. To test for over�tting due to this feature, and limitations in 
the dataset, the model was re-processed excluding age, which had minimal e�ect on model performance (CPH 
AUC: 0.90, Supplementary Fig. 2).

Novel features. Novel features highlighted by the CPH included demographic and lifestyle features, such as 
waist circumference and sleep duration (Fig. 3). Key features in recent medical history are also elucidated, with 
prior acute kidney failure, respiratory failure, bacterial pneumonia, and non-bacterial pneumonia (diagnosed 
between one week and one month prior to COVID-19 infection) comprising the most prominent predictors of 
mortality. Acute kidney failure and bacterial pneumonia remain in the top features, even with a more distant 
diagnosis window of between one month and 12 months prior to COVID-19 infection (Fig. 3).

Discussion
�is study developed and validated machine learning models to predict mortality in patients with COVID-19 
using comprehensive data from 11,245 COVID-19 patients in the UKB. �e results show that by using easily 
accessible patient characteristics, brief medical history, symptoms, and vital signs we can predict mortality in 
patients with COVID-19 with excellent performance (AUC: 0.91). �e features selected in the presented model 
mirror much of the current clinical understanding regarding risk factors associated with COVID-19 mortality, 
highlighting  age23 and  obesity24 as signi�cant contributors.

In addition, we identi�ed many novel features that may be strong predictors of mortality in patients with 
COVID-19. �e most interesting �ndings concern the impact of prior inpatient diagnosis of urinary tract infec-
tion (UTI), respiratory failure, acute kidney failure, bacterial and non-bacterial pneumonias, and other bacte-
rial infections. With the exception of UTI, dividing each feature into time groupings by their proximity to the 
COVID-19 diagnosis highlights diminishing risk the more distant the event. For respiratory conditions and other 
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Characteristic

n (%) [count]

All Participants Survived Died

Total 11,245 10,605 (94.3) 640 (5.7)

Demographic

  Male sex 5,274 4,850 (92) 424 (8)

  Age (yrs), mean (SD) 66.9 (8.7) 66.4 (8.6) 76.0 (5.6)

Lifestyle and anthropometrics

  Body mass index, mean (SD) 28.4 (5.1) [11,153] 28.3 (5.1) [10,528] 30.0 (5.7) [625]

  Waist circumference (cm), mean (SD) 92.5 (14.0) [11,185] 92.1 (13.9) [10,556] 100.1 (14.7) [629]

  Hip circumference (cm), mean (SD) 104.8 (9.9) [11,181] 104.6 (9.8) [10,552] 106.7 (11.3) [629]

  Body weight (kg), mean (SD) 80.9 (16.9) [11,172] 80.6 (16.7) [10,544] 85.9 (18.6) [628]

  Obesity (BMI > 30) 1,307 1,167 (89.3) 140 (10.7)

  Standing height (cm), mean (SD) 168.5 (9.2) [11,245] 168.5 (9.2) [10,605] 168.9 (9.3) [640]

  Blood type

     Unknown 353 318 (90.1) 35 (9.9)

     AA 892 834 (93.5) 58 (6.5)

     AB 435 417 (95.9) 18 (4.1)

     AO 4,074 3,858 (94.7) 216 (5.3)

     BB 67 62 (92.5) 5 (7.5)

     BO 1,051 999 (95.1) 52 (4.9)

     OO 4,373 4,117 (94.1) 256 (5.9)

  Sleep duration (hrs), mean (SD) 7.0 (1.4) [11,245] 7.0 (1.4) [10,605] 7.2 (1.7) [640]

  Alcohol intake

     Unknown 33 30 (90.9) 3 (9.1)

     Daily or almost daily 1,662 1,562 (94) 100 (6)

     �ree or four times a week 2,168 2,068 (95.4) 100 (4.6)

     Once or twice a week 3,010 2,862 (95.1) 148 (4.9)

     One to three times a month 1,284 1,228 (95.6) 56 (4.4)

     Special occasions only 1,398 1,300 (93) 98 (7)

     Never 1,690 1,555 (92) 135 (8)

  Smoking status

     Unknown 68 60 (88.2) 8 (11.8)

     Never 6,195 5,915 (95.5) 280 (4.5)

     Previous 3,933 3,642 (92.6) 291 (7.4)

     Current 1,049 988 (94.2) 61 (5.8)

  Gait and mobility issues 68 60 (88.2) 8 (11.8)

Medication and treatment

  Allergy to antibiotics 1,143 1,044 (91.3) 99 (8.7)

  Long-term use of anticoagulants 981 821 (83.7) 160 (16.3)

  Radiation therapy 274 237 (86.5) 37 (13.5)

  Maintenance chemotherapy 476 420 (88.2) 56 (11.8)

  Chemotherapy 256 210 (82) 46 (18)

Pre-existing medical conditions

  General diseases of the circulatory 
system

1,216 1,030 (84.7) 186 (15.3)

  Chronic ischemic heart disease 1,388 1,200 (86.5) 188 (13.5)

  Atrial �brillation 1,007 834 (82.8) 173 (17.2)

  Hypertension 4,074 3,624 (89) 450 (11)

  Stroke 767 624 (81.4) 143 (18.6)

  General diseases of the respiratory 
system

169 143 (84.6) 26 (15.4)

  Asthma 1,497 1,391 (92.9) 106 (7.1)

  Chronic obstructive pulmonary disease 670 537 (80.1) 133 (19.9)

  Interstitial lung disease 107 71 (66.4) 36 (33.6)

  Respiratory failure

     less than 1 month 291 171 (58.8) 120 (41.2)

     between 1 and 12 months 180 117 (65) 63 (35)

     more than 12 months 154 109 (70.8) 45 (29.2)

Continued
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Characteristic

n (%) [count]

All Participants Survived Died

  Non-bacterial pneumonia

     less than 1 month 812 542 (66.7) 270 (33.3)

     between 1 and 12 months 512 368 (71.9) 144 (28.1)

     more than 12 months 624 508 (81.4) 116 (18.6)

  Bacterial pneumonia

     less than 1 month 734 485 (66.1) 249 (33.9)

     between 1 and 12 months 349 240 (68.8) 109 (31.2)

     more than 12 months 45 38 (84.4) 7 (15.6)

  General diseases of the nervous system 640 554 (86.6) 86 (13.4)

  Parkinson’s disease 164 124 (75.6) 40 (24.4)

  MND, MS, or HD 21 18 (85.7) 3 (14.3)

  Dementia 491 373 (76) 118 (24)

  Haematological Cancer

     less than 12 months 85 52 (61.2) 33 (38.8)

     between 12 and 60 months 95 71 (74.7) 24 (25.3)

     more than 60 months 111 86 (77.5) 25 (22.5)

  Non-haematological Cancer

     less than 12 months 208 180 (86.5) 28 (13.5)

     between 12 and 60 months 590 545 (92.4) 45 (7.6)

     more than 60 months 908 834 (91.9) 74 (8.1)

  Diabetes (Type 1) 143 110 (76.9) 33 (23.1)

  Diabetes (Type 2) 1,416 1,204 (85) 212 (15)

  Osteoarthritis 2,625 2,394 (91.2) 231 (8.8)

  Depression and anxiety disorder 1,404 1,271 (90.5) 133 (9.5)

  Rheumatoid arthritis 317 268 (84.5) 49 (15.5)

  Anemia 1,260 1,067 (84.7) 193 (15.3)

  Urinary tract infection

     less than 1 month 96 72 (75) 24 (25)

     between 1 and 12 months 171 136 (79.5) 35 (20.5)

     more than 12 months 875 730 (83.4) 145 (16.6)

  Acute kidney failure

     less than 1 month 262 164 (62.6) 98 (37.4)

     between 1 and 12 months 288 199 (69.1) 89 (30.9)

     more than 12 months 443 331 (74.7) 112 (25.3)

  Any bacterial infection

     less than 1 month 169 110 (65.1) 59 (34.9)

     between 1 and 12 months 209 145 (69.4) 64 (30.6)

     more than 12 months 484 395 (81.6) 89 (18.4)

  Diverticulum 1,657 1,507 (90.9) 150 (9.1)

  Haemorrhoids 1,120 1,065 (95.1) 55 (4.9)

  Irritable bowel syndrome 399 368 (92.2) 31 (7.8)

  Gastroenteritis

     less than 1 month 161 135 (83.9) 26 (16.1)

     between 1 and 12 months 157 133 (84.7) 24 (15.3)

     more than 12 months 1,700 1,546 (90.9) 154 (9.1)

Symptoms

  Joint pain 1,156 1,035 (89.5) 121 (10.5)

  Delirium 250 175 (70) 75 (30)

  Hematemesis 563 512 (90.9) 51 (9.1)

  Syncope and collapse 19 17 (89.5) 2 (10.5)

  Dyspnea 282 246 (87.2) 36 (12.8)

  Cough 70 60 (85.7) 10 (14.3)

  Myalgia 248 221 (89.1) 27 (10.9)

  Nausea and vomiting 38 29 (76.3) 9 (23.7)

  Chest pain 831 757 (91.1) 74 (8.9)

Continued
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infections, the risk returns to approximately baseline when > 12 months prior to COVID-19 diagnosis. �e outly-
ing signi�cance of acute kidney failure at > 12 months before COVID-19 diagnosis suggests the impact of renal 
damage may be more integral to COVID-19 prognosis than that of the respiratory system. �is is supported by 
�ndings related to UTIs, where they appear as a less severe, but persistent, risk factor regardless of the time since 
diagnosis. Respiratory and renal complications are a hallmark of severe COVID-1925. It is, therefore, unsurprising 
that previous pathology of these organs e�ectively forecasts prognosis. To date, however, the relationship between 
non-severe urogenital pathology and COVID-19 has not been e�ectively assessed. A recent systematic review 
on urological manifestations of COVID-19 found urinary symptoms were absent from all included  studies26. 
Where data has been collected, sample sizes have been too low to draw strong conclusions. �ough the occur-
rence of de novo urinary symptoms has been documented without noticeable impact on  prognosis27,28, it has 
been previously suggested, and recently evidenced, that the presence of pre-existing urinary conditions may be 
associated with a poorer disease prognosis proportional to their  severity29,30. Our investigation provides the �rst 
reliable evidence that a history of UTI is predictive of greater COVID-19 mortality risk, roughly equivalent to 
the predictive value of type 2 diabetes or a prior stroke (Fig. 3). We hypothesise that the underlying nature of 
this association re�ects the e�ect of poorer, possibly sub-clinical, baseline health status. While this sub-clinical 
deterioration previously had no noticeable impact, in the context of a highly infective, fatal pathogen such as 
SARS-CoV-2, even a small deterioration can take on clinical signi�cance.

�e unique value of the UKB can be attributed to its well-established, longitudinal background dataset. 
Encompassing non-traditional health data, including anthropometric measurements and lifestyle insights, allows 
for the assessment of commonly overlooked, yet easily collectable, variables to supplement the already-known 
clinical factors. �e ability to capture a deeper phenotype of the individual prior to infection has proved integral 
to the model’s performance, in line with other disease-speci�c prediction models developed on the  UKB31–33. 
Notably, we identi�ed baseline waist circumference, height, weight, and hip circumference to be valuable inde-
pendent of BMI and obesity, accounting for four of the top-seven RF-ranked features (Supplementary Fig. 3). 
Although the pathophysiological link between adiposity and severe COVID-19 outcomes is not fully understood, 
our results indicate that comprehensive body composition may provide more granular risk pro�ling than BMI 
 alone34,35. Moreover, while baseline sleep duration has been demonstrated to be highly predictive of all-cause 
 mortality36, cardiovascular  diseases37, and type 2  diabetes38, our �ndings mark the �rst instance of its signi�-
cant predictive in�uence within COVID-19 prognosis. While we present novel features associated with severe 
COVID-19 outcomes, it is important to consider that correlations identi�ed in this observational dataset o�en 
will not re�ect direct causation. We encourage further investigation of these novel features, both those previ-
ously established outside of COVID-19 and those discovered de novo, in a prospective setting to establish the 
underlying pathophysiology conferring their predictive association with COVID-19 mortality.

Our model’s critical component is the distinction of variables with respect to their time of onset. Classifying 
variables in a time-dependent fashion enables discrimination between pre-existing conditions, symptoms, and 
complications. �is was especially important as several of our novel features are also established complications of 
COVID-19. Studies have emphasised the need for distinguishing pre-existing conditions from complications of 
COVID-19 infection and their respective impact on  prognosis39,40 but, to our knowledge, no predictive models for 
this disease have strati�ed variables in such a way. Applied in the context of patient management, and enriched by 
the explainability of variable time-�ltering, our results could help clarify crucial aspects of patients’ past medical 
history and their relation to predicted prognosis. Models which forecast infection risk as a component of their 
mortality prediction have been criticised for generalizing human behaviour, which results in underestimation 
of risk factors and leaves their calibration extremely vulnerable to changes in local population  dynamics41. One 

Characteristic

n (%) [count]

All Participants Survived Died

  Hematuria 42 35 (83.3) 7 (16.7)

  Malaise and fatigue 49 41 (83.7) 8 (16.3)

  Hypotension 342 266 (77.8) 76 (22.2)

Vital signs

  Diastolic blood pressure, mean (SD) 77.9 (12.2) [123] 77.2 (10.9) [104] 81.9 (17.4) [19]

  Systolic blood pressure, mean (SD) 129.3 (19.2) [124] 128.2 (17.6) [104] 135.1 (25.7) [20]

  Heart rate, mean (SD) 84.7 (17.5) [80] 84.0 (16.9) [71] 90.9 (22.0) [9]

  Body temperature, mean (SD) * 37.5 (1.2) [41] 37.7 (1.1) [37] 36.1 (0.9) [4]

  Oxygen saturation, mean (SD) * 94.7 (3.3) [20] 94.4 (3.6) [16] 95.8 (1.5) [4]

  Respiratory rate, mean (SD) * 24.1 (7.4) [18] 24.8 (8.5) [11] 22.9 (5.8) [7]

Table 1.  Descriptive characteristics of the UK Biobank cohort with positive COVID-19 test results. Pre-
existing medical conditions included only when reported more than one week prior to COVID-19 positive 
test result. Symptoms and vitals included only from primary care (GP) records when reported within + /- 
two weeks of COVID-19 positive test result. MND = motor neurone disease; MS = multiple sclerosis; 
HD = Huntington’s disease. * Oxygen saturation, respiratory rate, and body temperature were included in the 
initial analysis, however, they were removed from the model due to low data availability.
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Figure 1.  Work�ow for model development and feature selection. (A) Conceptual diagram of the data 
ingestion pipeline and analysis methods. To combine databases, several data pre-processing steps were carried 
out, including: sanitisation (eliminating redacted records and nuanced entries); normalization (scaling values 
to ensure �tting with a reasonable range for further processing); time �ltering; duration calculation (computing 
the time interval between testing positive and mortality); missing value substitution (replacing missing values 
or records with the mean value of the UK Biobank database); augmentation (bringing all data for each subject 
into a single uni�ed record); and one-hot-encoding (codifying the presence of a pre-existing condition or 
symptom into a binary sequence for each subject). �is data ingestion process standardized the input features 
and attributes for all subjects in this study regardless of their unique and variable conditions, symptoms, 
vital signs, and records. (B) Illustration of the data-driven and clinically reviewed feature re�nement process. 
(C) Schematic representation of the leave-one-out cross-validation method for feature selection and model 
validation. Each sample is systematically le� out in each fold (purple). Prediction error estimates are based on 
le� out samples. AUC = area under the curve; GP = general practice; LOO = Leave-One-Out; ROC = receiver 
operating characteristic.
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strength of our model is that the risk of mortality is predicated on the assumption of a positive COVID-19 test, 
avoiding the associated ambiguity of multi-event prediction and enabling its use in clinical practice.

�e approach taken in the development of this model is a symbiosis of machine learning and traditional 
statistical modeling, boosting the acceptability of the derived algorithm. From an optimisation perspective, the 
objective of the model is to reduce the full feature array to a minimal subgroup (Fig. 1) while maintaining a 

Figure 2.  Model performance evaluation. (A) the receiver operating characteristic (ROC) curve comparison 
shown for our Random Forest (RF) and Cox models against QCOVID. (B) the F-β score generated at β = 1 
(F1-score in bold), β = [ 0.5, 2, 3, 5], shown in decreasing size dashed line. AUC = area under the curve. Both the 
ROC and F-β score curves show the performance at various thresholds (i.e. operation points). �reshold value 
may be dependent on the application of the model. For example, in clinical circumstances requiring low false 
negatives, the threshold would be optimised for recall, though this would also correspond to higher numbers of 
false positives.

Figure 3.  Plot of Cox model coe�cients of COVID-19 mortality in UK Biobank cohort. Values show 
HR ± 95%CI. AKF = acute kidney failure, MND = motor neurone disease, MS = multiple sclerosis, 
HD = Huntington’s disease, HR = hazard ratio, CI = con�dence interval.
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high prediction accuracy for COVID-19 mortality. However, by signi�cantly reducing the number of features 
through the data-driven approach and clinical re�nement, the model also overcomes the curse of dimensionality, 
where beforehand the full feature array was far greater in size than the available samples, resulting in improved 
performance (AUC: 0.91). �e results show that both the RF and CPH models are comparable in terms of accu-
racy. However, the RF was integral to the CPH’s construction by searching through the large feature space and 
selecting the most important of the original ~ 12,000. Moreover, the RF model is more resilient to over�tting the 
data, and this could explain the improved F1-scores. Owing to its stability, we would recommend the RF model 
as the preferred implementation in clinical practice. Given the di�erent performance characteristics of the RF and 
CPH models, an ensemble of the two models may be of interest for investigation to further improve stability and 
performance. Prior to deployment in clinical practise, calibration of the �nal resulting model would be required 
alongside external validation on a new dataset. In addition, further investigation into di�ering machine learning 
models, such as  SVMs42 or Deep Neural  Networks43 would be of merit. Such models could then be interpreted 
using methodologies such as the  SHAP44 or  LIME45.

Several studies have reported risk models for COVID-19 mortality. In a review of prediction models for 
COVID-19, Wynatts et al. report all current prediction models show high risk of bias, and lack evidence from 
independent external  validation46. While this model is yet to be externally validated, we have considerably larger 
sample size than comparable  models46 and, by implementing LOO cross-validation, our results have reduced 
overall variability and bias than the traditional train-test-validate method. A recent study utilising only age, 
minimum oxygen saturation during encounter, and health-care setting of patient encounter as features achieved 
comparable results (AUC: 0.91)47, however, the intended use of this model di�ers from the one presented. While 
the model presented outperforms QCOVID (AUC: 0.91 vs. 0.84), and best e�orts were made in the comparison, 
it cannot be considered a direct comparison. In replication of the QCOVID algorithms, variables were mapped 
to related �elds in the UKB, however, we were unable to con�rm these were fully paired. Moreover, as the UKB 
is not linked to GP databases in the same manner, there were some missing variables (Supplementary Table 2). 
Importantly, contrasting with our purpose of supporting patient management, QCOVID is designed for popula-
tion risk strati�cation to aid public health decision-making, and was used to exemplify the necessity of speci�c 
model design for speci�c purposes.

�e COVID-19 pandemic has resulted in extraordinary acceptance of digital technology in  healthcare48. Risk 
assessment tools can support the streamlining of clinical time and resource prioritization, whether on a national, 
organizational, or patient level. Models such as those presented, can support the latter by monitoring patients 
at-scale and identifying those at-risk of severe illness, in real-time, and without requiring specialist equipment 
or clinical input. Algorithm performance may be further improved by inclusion of passive, continuous variables 
via smartphones or wearables. Establishing our model in a prospective healthcare setting may enable this when 
coupled with high quality, continuous vital sign information and replete data on the course of symptomatol-
ogy. Similar digital phenotyping has also shown potential in predicting COVID-19 infection at early symptoms 
 onset49,50. We believe a combination of these two types of digital tools, in union with dedicated hospital-at-home 
services, may become considered standard practice in infectious disease management, particularly during his-
torically resource-intense periods, such as annual in�uenza outbreaks.

While the use of the UKB is a key strength in the development of the model, there are associated limita-
tions which may impact the generalizability of the model. �e UKB cohort trends towards being healthier and 
wealthier than the general population, which poses a notable limitation when modeling noncommunicable 
 diseases51. As COVID-19 acquisition, however, is determined by exposure, this limitation is minimised in our 
investigation. Separately, the UKB COVID-19 data subset is less likely to capture asymptomatic or non-severe 
cases, in part as such individuals may not have received a test or sought medical treatment, but predominantly 
owing to UKB’s enrichment for older age resulting in lesser rates of such presentation. �e restricted age distribu-
tion (51–85 years) may further limit generalization of our �ndings to outside of this age range, however, O�ce 
for National Statistics �gures show those aged ≥ 50 have accounted for 97.97% of all COVID-19-related deaths 
in England and Wales (up to 19th February 2021)52.

Although age is clearly an important feature, our sensitivity analysis (Supplementary Fig. 2) demonstrated 
negligible performance drop, likely because much of the risk associated with older age is captured within other 
included features. One reason for using uniform leave-one-out (LOO) training is to overcome such issues of 
feature reliance and generalize the model as much as possible. �e F-score in Fig. 2B illustrates this robustness, 
however, this must be tested on a separate representative dataset for a conclusive answer. Our robust development 
approach, paired with deep individual phenotyping, strengthens the evidence towards e�ective COVID-19 risk 
pro�ling. Granular symptoms and vital measurements are signi�cant in determining deterioration. However, 
owing to the nature of this dataset, we could not model trajectories at this resolution but encourage further inves-
tigation in an appropriate dataset. In addition to the limitations of the dataset, it is likely that there are regional 
variances in COVID-19 outcomes. As such, the model would strongly bene�t from external validation, especially 
with the continued emergence of disruptive SARS-CoV-2  variants53. Evidence of real-world utility, with the asso-
ciated incomplete and missing data, is lacking for COVID-19 risk models. Further research is required to both 
establish prospective, real-world model performance and to understand the maximal data quality reduction, with 
respect to advanced techniques to handle missing data, which still produces clinically acceptable performance.

Conclusion
In conclusion, we present a comprehensive, robust model based on readily accessible factors (AUC: 0.91). In 
our analysis, we combine data-driven model development and clinical re�nement to produce a model that 
uniquely incorporates time-to-event, symptoms, and vital signs. We identify several signi�cant novel predictors 
of COVID-19 mortality with equivalent or greater predictive value than established high-risk comorbidities, 
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such as detailed anthropometrics, lifestyle factors, and prior acute kidney failure, urinary tract infection, and 
pneumonias. �e design and feature selection of the framework lends itself for deployment at-scale in a digital 
setting. Possible applications of this include supporting individual-level risk pro�ling and monitoring deteriora-
tion in high volumes of COVID-19 patients, particularly in hospital-at-home settings.

Online methods
Study population. �e development and validation of the risk model was carried out using the UKB. �e 
UKB is a large cohort study with rich phenotype mapping of participants, including over 500,000 individuals 
aged between 40- and 69-years-old at recruitment, between 2006 and 2010, from across England, Scotland, and 
 Wales54. �e open dataset contains detailed health data and outcomes obtained prospectively from electronic 
health records and self-reported health measures from on-site testing over the past 15-years. �e current analy-
sis was approved under the UKB application number 55668. �e UK Biobank study received ethical approval 
from the North West Research Ethics Committee (16/NW/0274) and all participants provided written informed 
consent.

COVID‑19 status and sample selection. For this study, only participants with a positive RT-PCR 
COVID-19 test were included (Supplementary Fig. 1). Public Health England provided data on SARS-CoV-2 
tests, including the specimen date, location, and  result55. COVID-19 test result data were available for the period 
16th March 2020 to 24th February 2021, and were linked with hospital admission (28th February 2021), pri-
mary care (1st October 2020), and death records (16th February 2021). In total, 101,062 COVID-19 tests were 
conducted on 55,118 participants in the available cohort. Of these, 42,599 were excluded due to negative test 
results. Overall, 12,519 participants tested positive of which 10,605 were survivors, 640 non-survivors, and 1,274 
were excluded due to missing information. Deaths were de�ned as COVID-19-related if ICD-10 codes U07.1 or 
U07.2 were present on the death records. No COVID-19 test data were available for UKB assessment centers in 
Scotland and Wales, thus data from these centers were not included.

Time filtering. Considering the chronology of medical events is critical to distinguish between, for exam-
ple, pre-existing conditions and complications resulting from COVID-19. Speci�c attributes, therefore, can be 
included or excluded in the prediction model for various use cases. �is study focuses on developing a model to 
predict mortality for COVID-19 patients before hospital admission. Accordingly, inclusion of respiratory failure 
(ICD-10: J96.9), for example, as a symptom or complication to predict mortality has limited use, as such events 
would demand hospital admission. Conversely, it is valuable to include personal history of respiratory failure as 
a prognostic indicator. �us, we implemented a time �lter for all features which were not demographics, symp-
toms, or vital signs, excluding any data recorded less than one-week prior to patients’ positive COVID-19 test. 
�is accounted for the circumstance whereby a patient may have been admitted for severe symptoms of COVID-
19 prior to receiving a test. Further time �ltering of < 1 month, 1–12 months, and > 12 months was applied to 
speci�c acute features, and < 12 months, 12–60 months, and > 60 months for cancer related diagnosis, to provide 
more granular insight. Similarly, it is important to consider only relevant symptoms and vital signs correspond-
ing to the period of COVID-19 infection. �us, a two-week window pre- and post- the �rst COVID-19 positive 
test was implemented.

COVID‑19 mortality model. Feature selection. �e data ingestion pipeline, Fig. 1A, generates an array 
of ~ 12,000 dimensions (including patient characteristics, pre-existing conditions, symptoms, and vital signs). 
Owing to the disparity in size between the survivor and non-survivors population in the dataset and the im-
portance of obtaining an unbiased model, a LOO cross-validation  experiment56, which is also closely related to 
the jack-knife estimation  method57, was used to search the full feature array for the most relevant features. LOO 
iterates through every sample in the dataset, whereby at each step the current sample was used to evaluate the 
model trained on the remaining dataset (Fig. 1C). At each iteration the samples of all classes were balanced to 
ensure unbiased training and, following evaluation, the model was discarded and a new model trained. A RF 
model was chosen due to its inherent ability to extract features, handle high dimensionality data, and generalize 
well to unseen  data58. During each step of the LOO cross-validation, a ranked list of features was extracted and 
averaged across the entire experiment to obtain a �nal shortlist of features that produced the highest accuracy, 
further cross-checked by clinical expertise. Figure 1B illustrates the production of shortlisted features driven by 
data, and their validation and review based on clinical judgement.

Clinical feature selection was informed by a review of ranked feature importance in RF model. �e highest 
ranked 1,000 features were screened by at least two reviewers. Any disagreements were settled by consensus 
with input of additional reviewers. Features were excluded where: (i) they could not be readily obtained through 
self-reporting or measured outside of the clinical setting; (ii) there was high confounding with higher ranked 
features; (iii) clinical consensus concluded that the feature’s rank was more likely to be explained by database bias. 
Subsequently, features which were closely related (e.g. cancer diagnoses) were grouped together. Supplementary 
ICD-10 codes were included and, where possible, generalized (Supplementary Table 3).

Model construction and validation. �e LOO evaluation was selected to maximize the value of the available 
datasets. �e LOO is used in this case to quantitatively evaluate the model; it is not used for hyperparameter 
tuning of the model. In essence, at each iteration of the LOO, there is a hold-out test set, which is a single sample 
of unseen data. At each iteration, a completely new model is trained from scratch on a randomly selected set of 
samples and tested on a single hold-out sample. At the end of the experiment, following iteration over all dataset 
samples, the results of each of these hold-out sets are aggregated to provide the �nal evaluation performance of 
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the model. None of the models at each iteration are used in any other iteration and they are completely discarded 
once the iteration is complete. Speci�cally, this is equivalent to a k-fold evaluation, where k = n − 1 , with n 
being the total number of samples in the set. Moreover, LOO has been chosen to be as objective as possible when 
reporting on the outcome of the model. A single hold-out set could potentially provide a di�erent benchmark 
depending on the random split of this set. Conversely, the LOO exhaustively tests against every sample in the 
dataset.

In this study, the prediction classes were two: COVID-19 survivors (n = 11,245) and non-survivors (n = 640). 
At each LOO iteration, two groups of equal sample size were randomly selected without replacement for training. 
�e evaluation sample outcome and RF likelihood value were aggregated from all iterations. A�er aggregating 
all the evaluation results from the LOO experiment, the ROC curve analysis was carried out, and the AUC 
computed as a measure of  accuracy58. Furthermore, the F-β statistic was used to evaluate the robustness of the 
model. When β is 1, this becomes the F1-score, which gives equal weights to recall and precision. A smaller β 
value gives more weight to precision, minimising false-positive errors, while a larger β value gives more weight 
to recall, minimising false-negative errors. �e F-score range is [0, 1], where a score of 1 is a perfect performance.

�e machine learning algorithm used in this study is the RF, which is an ensemble meta-estimator constructed 
from several decision  trees58. �ese trees were �tted to the data using the bootstrap aggregation method (or 
bagging), which is robust and resilient to over-�tting59. �e Gini impurity was used to compute the model likeli-
hood of prediction. To quantify the prediction uncertainty of the RF model, a Monte Carlo approach was used 
to compute the con�dence interval of each prediction. A CPH  model22, predicting survival time to death from 
the �rst con�rmed COVID-19 positive test result, was trained on the same subset of features selected by the RF 
feature selection process and tested on in the same manner as the RF to maximise its explainability. We did not 
carry out censoring of the data, as such, the AUROC can be considered the same as concordance probability 
(Harrel’s C) for binary outcomes—which in this case is COVID-19 mortality and survival.

QCOVID comparison. We compared our model against QCOVID, a leading risk prediction model for infec-
tion and subsequent death due to COVID-19, which was developed by �tting a sub-distribution hazard model 
on the QResearch  database11. Predictor variables reported in QCOVID were mapped to comparable features in 
the UKB dataset. �e UKB dataset did not include all of the relevant variables used in the QCOVID algorithm, 
hence chemotherapy grades and medication variables were excluded in our analysis (Supplementary Table 2). 
QCOVID risk equations for mortality were then implemented for both male and female cohorts. To ensure a 
fair comparison between models, QCOVID risk equations were evaluated on the UKB dataset using the same 
methods described above.

All methods within this article were performed in accordance with and was written following the TRIPOD 
(Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis)  guidelines60, 
which are further elaborated in Supplementary Table 4.
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