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Abiotic and biotic stress responses are traditionally thought to be regulated by discrete signaling mechanisms. Recent experimental
evidence revealed a more complex picture where these mechanisms are highly entangled and can have synergistic and antagonistic
effects on each other. In this study, we identified shared stress-responsive genes between abiotic and biotic stresses in rice (Oryza
sativa) by performing meta-analyses of microarray studies. About 70% of the 1,377 common differentially expressed genes showed
conserved expression status, and the majority of the rest were down-regulated in abiotic stresses and up-regulated in biotic stresses.
Using dimension reduction techniques, principal component analysis, and partial least squares discriminant analysis, we were able
to segregate abiotic and biotic stresses into separate entities. The supervised machine learning model, recursive-support vector
machine, could classify abiotic and biotic stresses with 100% accuracy using a subset of differentially expressed genes. Furthermore,
using a random forests decision tree model, eight out of 10 stress conditions were classified with high accuracy. Comparison of
genes contributing most to the accurate classification by partial least squares discriminant analysis, recursive-support vector
machine, and random forests revealed 196 common genes with a dynamic range of expression levels in multiple stresses.
Functional enrichment and coexpression network analysis revealed the different roles of transcription factors and genes
responding to phytohormones or modulating hormone levels in the regulation of stress responses. We envisage the top-ranked
genes identified in this study, which highly discriminate abiotic and biotic stresses, as key components to further our understanding
of the inherently complex nature of multiple stress responses in plants.

The need to breed robust and high-productivity crops
is more important than ever due to increasingly adverse
environmental conditions and scarce natural resources.
Food productivity has to be raised by as much as 70%
to 100% to meet the nutritional needs of the growing
population, which is expected to rise to 9 billion by 2050
(Godfray et al., 2010; Lutz and Samir, 2010). Rice (Oryza
sativa) is both a major food crop and a model organism
that shares extensive synteny and collinearity with
other grasses. Thus, the development of rice that can
sustain a wide variety of adverse conditions is vital to
meet the imminent global energy demands.

A broad range of stress factors divided into two
major categories, namely abiotic stresses encompassing
a variety of unfavorable environmental conditions, such
as drought, submergence, salinity, heavy metal contami-
nation or nutrient deficiency, and biotic stresses caused
by infectious living organisms, such as bacteria, viruses,

fungi, or nematodes, negatively affect the productivity
and survival of plants. Advancements in whole-genome
transcriptome analysis techniques like microarrays and
RNA sequencing have revolutionized the identification
of changes in gene expression in plants under stress,
making it possible now to chart out individual stress-
specific biomolecular networks and signaling pathways.
However, in field conditions, plants are often subjected
to multiple stresses simultaneously, requiring efficient
molecular mechanisms to perceive a multitude of signals
and to elicit a tailored response (Sharma et al., 2013).
Increasing evidence from experimental studies suggests
that the cross talk between individual stress response
signaling pathways via key regulatorymolecules, resulting
in the dynamic modulation of downstream effectors, is
at the heart of multiple stress tolerance. A number of
studies have identified many genes, especially transcrip-
tion factors (TFs) and hormone response factors, that play
a central role in multiple stresses andmanifest a signature
expression specific to the stress condition. For example,
abscisic acid (ABA) response factors are up-regulated
in the majority of abiotic stresses, activating an oxidative
response to protect cells from reactive oxygen species
damage, but were found to be down-regulated in a
number of biotic conditions, possibly suppressed by
immune response molecules (Cao et al., 2011).

The wide range of abiotic and biotic stress factors and
their numerous combinations in natural conditions
generate a customized stress response. This suggests that
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the identification and characterization of key genes
and their coexpression partners, which show an ex-
pression profile that discriminates abiotic and biotic
stress responses, would increase our understanding of
plant stress response manyfold and provide targets for
genetic manipulation to improve their stress tolerance.
The availability of multiple genome-wide transcriptome
data sets for the same stress condition provides an op-
portunity to identify, compare, and contrast the stress-
specific gene expression profile of one stress condition
with other stresses. Meta-analysis combining similar
studies provides a robust statistical framework to
reevaluate original findings, improve sensitivity with
increased sample size, and test new hypotheses. Meta-
analysis of microarray studies is widely used, especially
in clinical research, to improve statistical robustness and
detect weak signals (Liu et al., 2013; Rung and Brazma,
2013). For instance, thousands of samples belonging to
hundreds of cancer types were combined, which pro-
vided new insights into the general and specific tran-
scriptional patterns of tumors (Lukk et al., 2010).
Microarray studies are burdened with a high dimen-
sionality of feature space, also called the “curse of di-
mensionality” (i.e. the availability of very many variables
[genes] for very few observations [samples]). Machine
learning algorithms (supervised and unsupervised), such
as principal component analysis (PCA), decision trees,
and support vector machines (SVM), provide a way to
efficiently classify two or more classes of data. Further
feature selection procedures like recursive-support
vector machines (R-SVM) provide means to identify
the top features contributing most to the accuracy of
classification.

In this study, we performed a meta-analysis of stress
response studies in rice using publicly available micro-
array gene expression data conducted on a single plat-
form (AffymetrixRiceArray). Meta-analysis of abiotic
and biotic stresses was performed separately to identify
differentially expressed genes (DEGs) involved in mul-
tiple stress conditions. The lists of abiotic and biotic
DEGs were then compared to identify common genes
with conserved and nonconserved gene expression (i.e.
whether up-regulated, down-regulated, or oppositely
regulated in both the categories), revealing the broad
patterns of their involvement in the stress response. In
order to test the efficiency of identified common DEGs
in the classification of abiotic and biotic stresses as well
as individual stresses within abiotic and biotic stresses,
we systematically investigated various classification
and machine learning techniques, including PCA,
partial least squares discriminant analysis (PLS-DA),
SVM, and random forest (RF). We characterized the
shared DEGs through functional enrichment analysis
of gene ontologies, metabolic pathways, TF families,
and microRNAs (miRNAs) targeting them. We also
analyzed the correlation of coexpression between the
common DEGs to find sets of genes showing high
coexpression and identify hub genes that show the
greatest number of edges over a very high cutoff
value.

RESULTS

DEGs Common to Abiotic and Biotic Stresses

We analyzed 559 microarray samples (219 from abiotic
and 340 from biotic stresses) from 13 stress conditions, of
which seven were abiotic (cold, drought, heat shock,
metal, nutrient, salt, and submergence) and six were
biotic (bacterium, fungus, insect, nematode, virus, and
weed; Supplemental Table S1A). Meta-analysis by
combinatorial analysis of seven abiotic stresses from 15
different studies together identified 3,471 DEGs and
six biotic stresses from 17 different studies revealed
3,065 DEGs, with a false discovery rate (FDR) # 0.01
(Fig. 1A; Supplemental Table S2). About 60% of DEGs
in abiotic stresses were down-regulated, while 60% of
DEGs in biotic stresses were up-regulated (Fig. 1B).
This broad pattern indicates that a wide variety of
biological processes are down-regulated under abiotic
stress, as it affects the whole system, thus driving the
plant to a protective and energy-conserving mode.
On the other hand, biotic stresses are often localized,
especially at the early stages, and require an array
of defense response molecules and metabolites to be
synthesized and orchestrated, such as in systemic ac-
quired resistance, to execute a resistance response against
a specific infectious organism. Among the DEGs, more
than 26% or 1,377 genes were common to abiotic and
biotic stresses, indicating that these genes, which are just
3.5% of all non-transposable element genes in rice
(Michigan State University [MSU] Rice Genome An-
notation Project release 7), are affected by a diverse set
of stress conditions and possibly play significant roles
in multiple stress responses (Supplemental Table S3).
Our major objective in this study is to analyze the
stress-responsive genes involved in multiple stresses
that regulate cross talk between abiotic and biotic stresses.
Therefore, we focused on the 1,377 common DEGs for
our study.

We found 72% or 999 out of 1,377 common DEGs
with conserved expression between abiotic and biotic
stresses, suggesting that most of these genes and their
associated biological processes are regulated in a similar
fashion in the vast majority of stress conditions. Among
the 28% of DEGs showing nonconserved expression,
21% or 295 genes were down-regulated in abiotic and
up-regulated in biotic stress (Fig. 1C). About 16% or 221
of these genes are annotated as “expressed protein” and
approximately 7% or 96 have no GOSlim assignment,
revealing that many of stress-responsive genes are still
poorly understood. Studies elucidating the functional
roles of these genes would be vital for a comprehensive
understanding of the stress response in rice.

Machine Learning Approaches Based on Common DEGs
Classified Abiotic and Biotic Stresses into Two Classes
with High Accuracy

We investigated if the different stress conditions can be
accurately classified using the common DEGs employing
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machine learning approaches. Initially, we investigated
the performance of PCA in discriminating abiotic stresses
from biotic stresses as two classes using all of the 1,377
common DEGs. The first three principal components
(PCs) captured 56.4% of variance between the samples.
The three-dimensional (3D) PCA plot of the top three
PCs showed clear separation of abiotic and biotic classes
for the majority of the samples, although both classes
were widely dispersed across components (Fig. 2A).
Nonetheless, there were some samples showing con-
siderable overlap between the classes. We then analyzed
the data set using PLS-DA, a technique that is specif-
ically suited for the analysis of data sets with high
feature dimensions and multicollinearity (Pérez-Enciso
and Tenenhaus, 2003). Many of the published micro-
array studies have found PLS-DA to be a highly effi-
cient method for multiclass classification (Student and
Fujarewicz, 2012). PLS-DA resulted in five components
that captured approximately 62% variance between
the two classes and separated them with a very high
accuracy of 0.99 (r2 = 0.95 [goodness of fit], Q2 = 0.93
[predictive value], P , 0.01) upon 10-fold cross valida-
tion. The 3D plot of PLS-DA showed clear separation of
all the samples between abiotic and biotic stresses
(Fig. 2B). The important genes contributing most to the
PLS-DA separation can be identified using a variable

importance in projection (VIP) score, which is a weighted
sum of squares of partial least squares loadings (Pérez-
Enciso and Tenenhaus, 2003). There were 177 genes with
a VIP score (component 1) cutoff value of 1.5 or greater
(Zhang et al., 2013) and 33 genes with values of 2 or
greater (Supplemental Table S4).

Next, we analyzed the same data set using another
very popular supervised learning technique for micro-
array data classification, R-SVM, which identified 540
genes (39.2% out of 1,377) that can classify abiotic and
biotic stresses with 100% accuracy and 88 (6%) genes
with 95% accuracy after rigorous cross validation using
leave-one-out cross validation (Fig. 3). These 540 genes
included a number of hormone response and stress
response signaling genes. All five of the MYB TFs,
which are important regulators of development and
defense responses in plants (Yanhui et al., 2006), found
in the common DEGs were among these 540 genes.
Furthermore, 103 (19%) of the 540 genes were part of a
recently published database of stress-responsive TFs
(Stress Responsive Transcription Factor Database ver-
sion 2 [STIFDB2]; Naika et al., 2013), which provides a
list of stress-responsive genes (1,118 genes of rice subspe-
cies japonica) identified through biocuration and genomic
data mining. Out of 540 genes, 178 (33%) were genes with
nonconserved expression patterns between abiotic and

Figure 1. Comparison of DEGs under abiotic and biotic stress responses. A, Two-way Venn diagram showing the common
DEGs between abiotic and biotic stresses. B, Number of up-regulated and down-regulated DEGs in all identified abiotic and
biotic stresses. C, Four-way Venn diagram showing the number of genes with conserved and nonconserved expression patterns.
[See online article for color version of this figure.]
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biotic stresses, which is slightly higher compared with
the 28% of genes showing nonconserved expression in
all of the common DEGs. Although PCA based on these
540 genes resulted in poor separation of the classes,
with 47.4% variance captured by the top three PCs,
PLS-DA showed clear separation of the two classes
(Fig. 2, C and D). The top five components of PLS-DA
captured 53% of variance with classification accuracy
of 0.97 (r2 = 0.91, Q2 = 0.87, P , 0.01), which is slightly
less than the 0.99 accuracy obtained using all 1,377
common DEGs. There were 79 genes (14% of 540) with
VIP $ 1.5 and 27 genes with VIP $ 2. There were two
genes with VIP $ 3, which code for xylanase inhib-
itor and glycosyl hydrolase, both showing conserved
up-regulation.

Analysis of Shared DEGs Identified Top Genes with
Discordant Behavior among Multiple Stresses

From the 13 stress conditions analyzed, we selected
the top 10 stresses (five abiotic stresses [drought, metal,
salt, cold, and nutrient] and five biotic stresses [bacterium,

fungus, insect, weed, and nematode]) based on a higher
number of microarray samples. We analyzed these data
using the normalized and pareto-scaled intensities of
1,377 DEGs to assess the performance of these genes for
the classification of different stress conditions. The top
five components of PLS-DA captured 62.9% of variance
between various stresses and showed classification ac-
curacy of 0.77 (r2 = 0.92, Q2 = 0.88, P, 0.01). There were
196 and 53 genes with VIP scores (component 1) of 1.5
and 2 or greater. The relatively low classification accuracy
reflects the inherently similar expression patterns be-
tween different stresses. Nonetheless, components 1 and
3 as shown in the two-dimensional score plot and the
top three components as shown in the 3D score plot
were able to clearly separate abiotic and biotic stresses
as two major groups (Fig. 4). The two-dimensional and
3D plots also showed wide dispersion of drought stress
and closeness with the majority of cold stress samples.
Similarly, the 3D plot showed higher overlap between
salt and metal stresses than other stresses, suggesting a
higher similarity of the gene expression profile between
them. The nutrient stress samples can be observed as a
distinct group, although closer to other abiotic stresses.

Figure 2. 3D plots of two-class classification of abiotic and biotic stresses. A and B, 3D plots based on the top three com-
ponents by PCA and PLS-DA, respectively using 1,377 common DEGs. C and D, 3D plots based on the top three components by
PCA and PLS-DA, respectively, using the top 540 genes ranked by SVM return 100% accuracy of classification. The axes of B are
rotated 90˚, which shows the best possible separation of two groups. [See online article for color version of this figure.]
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Bacterial stress samples show two major groups. One
of the groups with the most bacterial samples showed
overlap with fungal stress samples only. The other group
was closer to weed, nematode, and fungal stress samples.
Insect stress was observed as a distinct group closer to
the group with bacterial and fungal samples.
The same data set was analyzed using another clas-

sification technique, RF, which classified eight of the 10
stresses with 100% accuracy with an overall out-of-box
(OOB) error rate of 0.0087, which is an unbiased estimate
of classification error based on the one-third of samples

left out (test samples) after bootstrap sample selection
(Table I). Two of the stresses with less than 100% ac-
curacy of classification were salt, with one wrongly
classified sample (error rate of 0.037), and fungal stress,
with two wrongly classified samples (error rate of 0.08).
RF also provides a measure of variable importance by
evaluating the increase in OOB error rate upon per-
mutations called mean decrease in accuracy (Hsueh
et al., 2013). The top 15 significant genes based on mean
decrease in accuracy are shown in Supplemental Figure
S1, including LOC_Os02g45170 (error rate of 0.0056), a
bHLH TF, and LOC_Os05g31040, which codes for a
cytokinin dehydrogenase precursor.

Functional Enrichment Analysis Revealed Molecular
Mechanisms and Gene Families in Conserved and
Nonconserved Gene Sets

Gene Ontology (GO) enrichment analysis of the 560
genes showing conserved down-regulation in abiotic
and biotic stresses identified major biological and cellular
processes: photosynthesis (FDR = 1.40E-07), electron
carrier activity (FDR = 3.60E-06), small molecule bio-
synthetic process (FDR = 2.10E-05), and cellular nitro-
gen compound metabolic process, which is the parent
term for a number of amino acids and nucleobase-
containing compounds to be overrepresented. The terms
transcription repressor activity (FDR = 0.0008) and re-
sponse to oxidative stress (FDR = 0.034) were also found
to be significant (Supplemental Fig. S2; Supplemental
Table S4). On the other hand, 439 genes showing con-
served up-regulation revealed a number of terms related

Figure 3. Classification error rates of different subsets of common DEGs
upon 10-fold cross validation using R-SVM. The error rate using all of
1,377 or 540 common DEGs was 0% (100% accuracy of classification)
and 0.1% (99% accuracy) using 220 genes and 0.5% (95% accuracy)
using 88 genes. [See online article for color version of this figure.]

Figure 4. Multiclass classification of 10 stress conditions by PLS-DA. All five abiotic stresses are circled by red ovals and all five
biotic stresses are circled by green ovals. A, Two-dimensional plot between PLS-DA components 1 (14.9%) and 3 (8.1%). B, 3D
plot between PLS-DA components 1 (14.9%), 2 (28.9%), and 3 (8.1%). [See online article for color version of this figure.]
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to regulatory processes. The most significant innermost
child terms are Ser-type endopeptidase inhibitor activity
(FDR = 2.2E-06) and chitin catabolic process (FDR =
0.00013). Ser proteases perform diverse physiological
roles in plants, important among which are induction
after pathogen attack leading to the hypersensitivity
response, regulation of Rubisco proteolysis, stomata de-
velopment, perception of growth hormones, symbiosis,
and senescence (Antão and Malcata, 2005; van der
Hoorn, 2008). Significant enrichment of inhibitors of
Ser-type endopeptidases in diverse stress conditions
indicates the induction of several activities repressed
by Ser proteases as part of the stress response. Further-
more, Ser protease inhibitors were also found to act as
defense proteins by suppressing the activity of bowel
proteinases in insects and plant pathogenic microor-
ganisms (Mosolov and Valueva, 2011). Among the genes
showing nonconserved expression, the set of genes
down-regulated in abiotic stresses and up-regulated in
biotic stresses were enriched with GO terms that include
extracellular region (FDR = 5.30E-06) and catalytic acti-
vity (FDR = 5.3E-05).

Metabolic pathway enrichment analysis using the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID) revealed a number of pathways
specifically enriched in one of the sets. In the conserved
down-regulated gene set, there were four annotation
clusters with enrichment scores greater than 2.0 related
to porphyrin and chlorophyll metabolism, transcription
repressor activity via the Nmr-A-like domain, which is
involved in posttranslational modification of the GATA
TFs, which bind the DNA sequence GATA (Stammers
et al., 2001), photosynthesis, and nicotianamine syn-
thase activity. There were three annotation clusters
with enrichment scores greater than 2.0 in the conserved
up-regulated gene set related to heat shock protein
Hsp20, Val, Leu, and Ile degradation, and the Bowman-
Birk proteinase inhibitor family of Ser protease inhibitors.
In rice, Bowman-Birk proteinase inhibitor genes were
reported previously to be induced in multiple stresses
like wounding, infection, and hormonal stress (Rakwal
et al., 2001; Qu et al., 2003). The top annotation clusters
in the nonconserved abiotic down-regulated and biotic
up-regulated gene set were made up of a number of

interpro domain terms, glycoprotein, metal-ion binding,
plant peroxidases (POXs), and glycoside hydrolases.

There were 97 TF and regulator genes in the common
DEGs (7%) belonging to 24 gene families that showed a
distinct pattern (Supplemental Table S5). The major TF
families NAC (for no apical meristem, Arabidopsis
transcription activation factor, and cup-shaped cotyle-
don domain), HSF (for heat shock transcription factor),
WRKY (for WRKY amino acid signature at the
N-terminus), MYB (for MYB DNA binding domain),
and MYB related were part of conserved down-regulated
genes and nonconserved genes down-regulated under
abiotic stresses and up-regulated under biotic stresses.
Similarly, the TF families ERF (for ethylene response
factor), bZIP (for basic leucine zipper), bHLH (for basic
helix-loop-helix), and three others were among the
conserved up-regulated genes and/or nonconserved
genes up-regulated under abiotic stresses and down-
regulated under biotic stresses. Twelve out of 13 ERFs
were found in conserved up-regulated gene sets. These
APETALA2 (AP2) domain-containing ERFs are well
known for their role in both abiotic and biotic stress
responses and were also shown to enhance multiple
stress tolerance (Xu et al., 2011). Nine out of 12 WRKY
TFs were among the nonconserved genes down-regulated
under abiotic stresses and up-regulated under biotic
stresses, which suggests that these TFs are the major
regulatory factors that determine the direction of the
molecular machinery and ultimately the cellular fate
under simultaneous multiple stresses. MYB along with
NAC TFs are reported to control antagonism between
hormone-mediated abiotic stress and pathogen response
pathways (Atkinson and Urwin, 2012). On the other
hand, all five GOLDEN2 (G2)-like TF family members,
which also contain a MYB-like DNA-binding domain,
were part of the conserved up-regulated gene set. The
G2-like TFs are required for chloroplast development
and were shown to influence nuclear photosynthetic
gene expression (Waters et al., 2009). We found a dearth
of studies on the role of G2-like TFs under stress con-
ditions. Down-regulation of photosynthetic mechanisms
under stress is well established, as also observed in the
enriched GO terms in our conserved down-regulated
gene set. Genetic manipulation of G2-like TFs would

Table I. Classification of multiple stresses using the RF method

The overall OOB error rate was 0.0087.

Abiotic,

Cold

Abiotic,

Drought

Abiotic,

Metal

Abiotic,

Nutrient

Abiotic,

Salt

Biotic,

Bacterium

Biotic,

Fungus

Biotic,

Insect

Biotic,

Nematode

Biotic,

Weed

Class

Error

Abiotic, cold 9 0 0 0 0 0 0 0 0 0 0
Abiotic, drought 0 46 0 0 0 0 0 0 0 0 0
Abiotic, metal 0 0 29 0 0 0 0 0 0 0 0
Abiotic, nutrient 0 0 0 8 0 0 0 0 0 0 0
Abiotic, salt 0 1 0 0 26 0 0 0 0 0 0.037
Biotic, bacterium 0 0 0 0 0 166 0 0 0 0 0
Biotic, fungus 0 0 0 0 0 2 23 0 0 0 0.08
Biotic, insect 0 0 0 0 0 0 0 14 0 0 0
Biotic, nematode 0 0 0 0 0 0 0 0 9 0 0
Biotic, weed 0 0 0 0 0 0 0 0 0 12 0
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shed further light on the regulation of photosynthesis
under stress and reveal novel mechanisms to enhance
stress tolerance. Out of the five lesion-simulating disease
(LSD; Dietrich et al., 1997) family members reported in
rice subspecies japonica by Plant Transcription Factor
Database (PlnTFDB), two were part of the conserved
down-regulated gene set. LSD TFs act as negative
regulators of programmed cell death in a hypersensitive
response (Epple et al., 2003). Transgenic suppression of
LSD orthologs in rice resulted in a dwarf phenotype
due to a deficiency of bioactive gibberellic acid, while
overexpression of LSD enhanced resistance to rice bac-
terial blight (Xu and He, 2007). Based on our finding,
studying LSD TFs under simultaneous abiotic and biotic
stresses would provide vital clues on stress cross talk and
the modulation of programmed cell death.
We analyzed the miRNAs predicted to target the 1,377

common DEGs using the database PMRD (Zhang et al.,
2010). Out of the 456 experimentally verified miRNAs
(miRBase; Griffiths-Jones et al., 2006) in rice, 142 (31%)
miRNAs belonging to 50 miRNA families were found
to target one or more commonDEGs (Supplemental Table
S6). Recently, 35 miRNAs from 31 miRNA families were
found to be differentially expressed under abiotic stresses,
drought, salt, and cold (Shen et al., 2010). Eighteen
of these 31 stress-responsive miRNA families were
among the 50 miRNA families targeting the common
DEGs. The miRNA osa-miR1436 was found to target
five of the conserved up-regulated genes, including
LOC_Os09g23620, aMYB TF, while osa-miR446was found
to target five of the conserved down-regulated genes.

Coexpression Analysis Revealed Two Dense Clusters of
Positively and Negatively Correlated Genes under
Multiple Stresses

We conducted coexpression analysis using the nor-
malized gene expression values of the common DEGs
from stressedmicroarray samples and calculating Pearson
correlation coefficient (r) between them. Out of the 947,376
possible edges (coexpression gene pairs) between the
common DEGs, we found 8,924 edges with very high
correlation (r $ 0.9 = 4,254 and r # 20.7 = 4,670 edges,
P = 0.01) in abiotic stress samples and 21,229 edges
(r $ 0.9 = 7,673 and r # 20.7 = 13,656 edges, P = 0.01)
in biotic stress samples. A very high number of nega-
tive edges were observed in biotic stresses compared
with abiotic stresses. For instance, there were 88 edges
in biotic stresses with r # 20.9 but only four edges in
abiotic stresses with r # 20.9. There were 3,701 shared
edges between the two data sets with r $ 0.9 and r #
20.7, out of which 2,684 (72%) were positive edges
and 1,017 were negative edges. These 3,701 edges were
between 381 genes, out of which 257 (67%) genes showed
conserved down-regulation, 54 genes showed conserved
up-regulation, and 49 genes showed down-regulation in
abiotic stresses and up-regulation in biotic stresses. The
2,684 positive edges were between 208 genes, out of which
194 (93%) genes showed conserved down-regulation.

Among the 381 genes, 15 had more than 75 high-
correlation edges. The top three genes with the highest
number of edges were LOC_Os02g22480 (glycosyltrans-
ferase; 142 edges), LOC_Os11g47840 (putative rhomboid
homolog; 120 edges), and LOC_Os03g57200 (glutathione
S-transferase; 93 edges). All three of these genes showed
conserved up-regulation. Among the 14 TFs with sig-
nificant edges, three TFs belonging to Nuclear Factor Y
(a histone-like CCAAT-binding domain TF), G2-like,
and bHLH TF families had the highest number of sig-
nificant edges (79, 37, and 20, respectively). The majority
of these edges were positive edges with other genes that
showed conserved down-regulation.

We analyzed the 3,701 significant edges using the
plugin NetworkAnalyzer in the network analysis platform
Cytocape 2.8.3 (Shannon et al., 2003), which revealed a
dense cluster of positive edges (edges with r $ 0.95 are
shown in red) and included most of the nodes with
more than 75 edges (shown in blue) and a sparse cluster
of negative edges (edges with r # 20.9 are shown in
green; Fig. 5). The two positive edge- and negative
edge-rich clusters were found to be bridged by the
gene LOC_Os01g13570, coding for phosphoglycerate
mutase, with a positive edge to the SOUL heme-binding
protein that was highly connected to the negative
edge-rich cluster, and positive edges with rhodanese
and pentatricopeptide domain-containing proteins, which
were highly connected to the positive edge-rich cluster.

High Overlap among Genes Identified by Different
Classification Techniques, Coexpression, and Functional
Enrichment Analysis

We compiled the significance of the common DEGs
based on various criteria, including feature importance
identified by different classification techniques, count
of the number of coexpression edges, PlnTFDB gene,
and STIFDB2 gene (Supplemental Table S3). We found
that many of the PLS-DA two-class significant genes
(177 genes with VIP $ 1.5) were also significant in
PLS-DA multiclass (36% or 71 out 196) and RF’s top
100 genes (68%) but showed poor overlap with the 540
significant genes found by SVM (2% or nine out of
540), TF genes (9% or nine out of 97), and STIFDB2
genes (10% or 27 out of 259). However SVM’s 540 genes
showed high overlap with PLS-DAmulticlass (50% or 99
out of 196), TF genes (45% or 44 out of 97), and STIFDB2
genes (40% or 103 out of 259). Taken together, the 196
top genes of PLS-DA multiclass showed overlap with
most of the other significant gene lists, of which 43
(22%) were also part of the STIFDB2 list. Out of 1,118
japonica rice genes reported as stress-responsive genes
in STIFDB2 (Naika et al., 2013), 259 (23%) were part of
common DEGs. Furthermore, out of 97 TF genes in the
common DEGs, only 12 were part of STIFDB2 and none
of the major WRKY and MYB TF genes, including those
previously reported as stress-responsive genes (Atkinson
and Urwin, 2012), were part of STIFDB2’s list. The top 10
of these 196 genes are given in Table II. The top-most
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gene encodes a CCCH zinc finger domain-containing
TF known to control embryogenesis (Li and Thomas,
1998) and involved in multiple abiotic stresses (Sun
et al., 2007; Kim et al., 2008). A homolog of this gene
(LOC_Os05g10670), which was also part of the 1,432
up-regulated genes in our meta-analysis of abiotic
stresses, was recently reported to confer delayed senes-
cence and improved tolerance to high-salt and drought
stresses by regulating reactive oxygen species homeo-
stasis and metal homeostasis (Jan et al., 2013). One
gene that was part of all feature selection lists was
LOC_Os11g26780, a dehydrin gene that had one sig-
nificant positive edge with another dehydrin gene
(LOC_Os11g26790; r = 0.97 and 0.93 in abiotic and biotic
stresses, respectively), both of which showed conserved
up-regulation.

Comparison of the common DEGs with the list of
1,922 hormone-related genes of Arabidopsis (Arabi-
dopsis thaliana) as reported in the Arabidopsis Hor-
mone Database 2.0 (Jiang et al., 2011) using putative
orthologous genes found by GreenPhylDB (Rouard et al.,
2011) revealed 31 common DEGs that were orthologous
to 51 Arabidopsis hormone genes (Supplemental Table S3).

A summary table of the expression status of hormone-
related genes in the common DEGs (78 genes) based on
Arabidopsis hormone database orthologs and paralogs
with the same annotation and expression status in both
abiotic and biotic stresses (except TFs) or name of the
hormone in the gene annotation provided by MSU Rice
Genome Annotation Project release 7 is given in Table III.
Overall, the expression status of various hormone-related
genes was very similar to the one proposed in a recent
review (Atkinson and Urwin, 2012). For instance, nine
out 12 ABA-responsive genes showed conserved up-
regulation, while six out of 10 ethylene (ET)-responsive
genes showed nonconserved down-regulation under
abiotic stress and up-regulation under biotic stress. Most
of the conserved auxin down-regulated genes were
related to auxin biosynthesis and response factors,
while conserved up-regulated genes were related to
auxin-repressed factors, which indicates extensive down-
regulation of auxin-induced biological processes. A re-
cent study analyzed the transcriptome of rice under
bacterial stress by Xanthomonas oryzae pv oryzae and
compared the DEGs with those found in seven other
microarray studies conducted on AffymetrixRiceArray

Figure 5. Coexpression network of common DEGs. The edges with r $ 0.95 are shown in red and those with r # 20.9 are
shown in green. Nodes with more than 75 edges are shown in blue and those with more than 25 edges are shown in gray. The
edges of the Nuclear Factor Y (NF-YC) TFs are shown in blue. [See online article for color version of this figure.]
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(Narsai et al., 2013). The authors reported 240 genes
(212 loci) as differentially expressed in multiple stresses.
Out of these loci, 110 (51.8%) were part of our common
DEGs list, most of which belonged to the conserved
up-regulation gene set (64%) and included many
important genes, such as WRKY, AP2/EREBP (for
ethylene-responsive element binding protein) family
TFs, ATP-binding cassette transporter, multidrug resis-
tance, and universal stress genes.

DISCUSSION

The multiple stress response in plants has been a hot
topic of research, as many studies, including those
involving genetic manipulation and chemical inter-
vention, reported that increased resistance to one stress
resulted in heightened susceptibility to other abiotic
and biotic stress conditions (Atkinson and Urwin,
2012; Sharma et al., 2013). Furthermore, it was sug-
gested that plant hormones are the key determinants
of genetic switches and cellular adjustments in a multi-
stress environment. Different plant hormones are broadly
categorized to play central roles in different kinds of
stress responses. For instance, within biotic stresses,
(hemi)biotrophic pathogens commonly activate the
salicylic acid (SA)-dependent defense response, while
necrotrophic pathogens activate jasmonic acid (JA)-
and ET-dependent signaling pathways (Sharma et al.,

2013). SA and JA/ET often act antagonistically and
propagate opposing influences (Pieterse et al., 2009).
On the other hand, ABA is well established as the major
player of the abiotic stress response. ABA is increas-
ingly found to also play a critical role in biotic stresses
by negatively regulating plant immunity. Many studies
found that abiotic stresses enhance plant susceptibility
to pathogen attacks due to weakening of defense sys-
tems. Thus, it was proposed that plants prioritize abiotic
stress tolerance over the biotic stress response, with
ABA as the molecular switch between the two responses
to minimize the damage (Lee and Luan, 2012). Recently,
however, contrary studies where biotic stress takes
precedence have been reported (Kim et al., 2011; Mang
et al., 2012; Sánchez-Vallet et al., 2012). Thus, in light of
these recent developments, which revealed a rather com-
plicated picture of multiple stress responses, we embarked
on the identification of DEGs in abiotic and biotic stress
environments separately and performed comparative
analysis of the shared stress-responsive genes, which
would provide vital clues on the causative factors be-
hind the cross talk resulting in the observed synergistic
and antagonistic regulation of known abiotic and biotic
stress response pathways.

Our study identified 1,377 differentially expressed
common genes under a wide spectrum of abiotic and
biotic stress conditions, and their expression status can
be considered as a representation of their overall in-
volvement in the stress response to nonliving factors

Table II. Top 10 genes with the highest VIP score in multiclass classification by PLS-DA

MSU Identifier Annotation
PLS-DA Multiple Stress

(VIP component 1)

PLS-DA Abiotic

Versus Biotic

(VIP component 1)

RF Top 100

(Mean Decrease

in Accuracy)

PLS-DA Two-Class

(SVM 540)

SVM 540

(Frequency)

LOC_Os01g09620 Zinc finger/CCCH TF 2.899 2.1512 0 0 0
LOC_Os11g11970 Expressed protein 2.8141 2.1813 0.003567 0 0
LOC_Os11g26780 Dehydrin 2.8021 1.6348 0.002054 2.5939 358
LOC_Os07g48020 POX 2.7992 1.8946 0 0 0
LOC_Os06g24990 Xylanase inhibitor protein1 2.7427 2.2645 0 3.593 358
LOC_Os11g32890 Expressed protein 2.718 1.6966 0 2.6919 358
LOC_Os06g48300 Protein phosphatase 2C 2.6559 0 0 2.2334 358
LOC_Os10g40040 Expressed protein 2.5979 0 0 2.3424 358
LOC_Os09g07350 Fasciclin-like

arabinogalactan protein8
2.5059 0 0 1.9348 358

LOC_Os05g06920 RelA-SpoT like protein RSH4 2.5036 2.8245 0.004242 0 0

Table III. Expression status of various hormone-related genes in the common DEGs

The number of orthologs of Arabidopsis plant hormone database genes are shown in parentheses

Hormone Total Genes Conserved, Down Conserved, Up
Nonconserved (Abiotic

Up-Biotic Down)

Nonconserved (Abiotic

Down-Biotic Up)

ABA 12 (9) – 9 (3) – 3 (1)
Auxin 21 (6) 5 (1) 11 (3) 3 (1) 2 (1)
Brassinosteroid 11 (5) – 7 (4) – 4 (1)
Cytokinin 4 (2) 4 (2) – – –
ET 10 (5) 3 (2) 1 (1) – 6 (2)
Gibberellic acid 8 (3) 2 (1) 5 (2) 1 (0) –
JA 7 (3) 4 (1) – 1 (1) 2 (1)
SA 5 (3) – 4 (2) – 1 (1)
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and living organisms. Thus, this list of genes forms an
ideal gene set to objectively investigate the similarities
and differences between abiotic and biotic stress re-
sponses. Although more than 70% of common DEGs
showed conserved differential expression, we were
able to classify different stresses, including abiotic and
biotic stresses, with high accuracy, indicating that
their subtle expression differences can be exploited
to effectively discriminate between various stress
conditions.

A closer look at chloroplast- and photosynthesis-
related genes in the common DEGs revealed conserved
down-regulation of 17 out of 18 PSII, chlorophyll a/b-
binding, and thylakoid lumenal genes (Fig. 6). A diverse
set of 40 chloroplast precursor enzymes that contain an
N-terminal transit peptide for import into chloroplast
(Jarvis, 2008) were also part of the common DEGs, 26
(65%) of which showed conserved down-regulation.
Furthermore, a number of cytochrome P450 genes (29
genes) that encode parent compounds for a number
of secondary metabolites involved in plant defense

(Jirschitzka et al., 2013) were part of the common
DEGs. Fourteen of these 29 (approximately 48%) genes
showed conserved down-regulation, while seven showed
conserved up-regulation, and the rest showed non-
conserved differential expression. Thus, exploring the
nonconserved DEGs would shed further light on the
cross talk of stress responses via metabolic adjust-
ments. The cell wall is the first line of plant defense in
response to external stimuli. A number of important
gene families involved in cell wall synthesis and
modifications showed distinct patterns of expression
under abiotic and biotic stresses. For instance, there
were six OsWAK (for wall-associated kinase) genes in
common DEGs, all of which showed nonconserved
down-regulation under abiotic stresses and up-regulation
under biotic stresses (Fig. 6). WAKs are part of the
transmembrane receptor-like kinase superfamily, which
perceive stimuli using extracellular domains with signal
transmission through their cytoplasmic kinase domains
(Li et al., 2009). There are currently 144 rice genes
regarded as WAKs (MSU Rice Genome Annotation

Figure 6. Visual representation of different gene families and functional categories based on expression between abiotic and
biotic stresses. For each annotation, the stacked bars represent up-regulated genes (total) scaled to 100% and down-regulated
genes scaled to 2100%. [See online article for color version of this figure.]
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Project release 7) compared with 26 genes in Arabi-
dopsis, which is most likely due to lineage-specific gene
duplications (Zhang et al., 2005). However, very little is
known about the function of these genes in rice except
OsWAK1, whose overexpression increased resistance to
the blast fungus Magnaporthe oryzae (Li et al., 2009;
Kohorn and Kohorn, 2012). FAS1 (for fasciclin-like)
domain-containing genes are another group of trans-
membrane genes involved in cell adhesion (Johnson
et al., 2003; Ma and Zhao, 2010). All five fasciclin do-
main genes in the common DEGs showed conserved
down-regulation. Similarly, most cupin, expansin, and
aquaporin genes involved in cell wall synthesis and
organization showed conserved down-regulation.
A number of transporter and kinase/phosphatase

genes showed clear patterns of coordinated expression
under abiotic and biotic stresses. All three of the genes
coding for pleiotropic drug resistance-type ATP-binding
cassette transporter proteins, which were found to be
induced by ABA, SA, and JA in rice (Moons, 2008),
showed conserved up-regulation. Reversible protein
phosphorylation executed by kinases and phospha-
tases is a fundamental mechanism that facilitates the
orchestration of some of the most sophisticated signal-
ing pathways. A number of different kinds of kinases
and phosphatases were found in the list of common
DEGs, out of which Ser/Thr protein kinases and phos-
phatases showed high distinction between the two
stresses, as also found by the GO analysis (Supplemental
Table S4). All five of the protein phosphatase 2C genes,
which are key players in ABA signaling pathways,
showed conserved up-regulation (Fig. 6). Four of these
protein phosphatase 2C genes were part of the signifi-
cant genes found by both SVM and PLS-DA multiclass,
indicating that these genes show distinct patterns of
expression in different stress conditions and can be con-
sidered as some of the most important genes to study the
multiple stress response.
A number of transporter and POX precursor genes

showed clear patterns of difference in expression be-
tween abiotic and biotic stresses. For instance, two out

of three major facilitator superfamily antiporter genes
showed nonconserved up-regulation under abiotic
stresses. As many as 23 POX precursor genes were part
of common DEGs, out of which 13 (56%) showed non-
conserved down-regulation under abiotic stresses. Fur-
thermore, nine and 12 of these 23 POX genes were part
of SVM and PLS-DA multiclass significant features,
respectively. A study of rice infected with blast fungus
showed that 10 POX genes redundantly respond to
multiple stresses (Sasaki et al., 2004). Our findings sug-
gest that the functionalities of many of the POX genes are
specific to biotic stresses and are promising candidates to
decipher the cross talk between stresses.

The domain family with the highest number of
conserved up-regulated genes was the zinc finger family,
including C2H2 (for zinc finger domain with two cys-
teines and two histidines), C3H (for CCCH zinc finger
domain) TFs, C3HC4 (for cysteine-rich zinc finger), and
ZIM (for zinc-finger protein expressed in inflorescence
meristem) domain-containing members, with 14 and
15 members out of 17 showing overexpression in abi-
otic and biotic stresses, respectively. All of the penta-
tricopeptide domain genes (11), which play essential
roles in RNA editing, organelle biogenesis (Yuan and
Liu, 2012), and plant development by coordinating in-
teraction between mitochondria and chloroplasts (Toda
et al., 2012), showed conserved down-regulation except
LOC_Os07g36450, which showed conserved up-regulation.
Thus, this gene would be an important candidate to
further explore and understand their specific role under
stress conditions and determine what makes it different
from other pentatricopeptide genes. Another interesting
gene family showing high distinction between the two
stress categories was the protease inhibitor/seed storage/
lipid transfer protein family, with five out of nine mem-
bers showing nonconserved down-regulation in abiotic
stresses. VQ domain-containing proteins were recently
found to interact with WRKY TFs (WRKY33) in Arabi-
dopsis. Furthermore, knockout or overexpression of VQ
genes substantially altered the defense response (Cheng
et al., 2012). There are five VQ domain genes in common

Table IV. List of common DEGs that showed alteration in stress response upon overexpression/suppression

MSU Identifier Annotation Phenotype Reference

LOC_Os01g55940 OsGH3.2, probable indole-3-acetic
acid-amido synthetase

Enhanced broad-spectrum disease
resistance

Fu et al. (2011)

LOC_Os02g08440 WRKY71 Enhanced defense response Liu et al. (2007)
LOC_Os03g60080 NAC domain-containing protein67 Increased drought and salt tolerance Hu et al. (2006)
LOC_Os05g25770 WRKY45 Increased susceptibility to bacteria Tao et al. (2009)
LOC_Os06g44010 WRKY28 Enhanced disease resistance Peng et al. (2010)
LOC_Os07g40290 OsGH3.8, probable indole-3-acetic

acid-amido synthetase
Enhanced disease resistance Ding et al. (2008)

LOC_Os08g06280 LSD1 zinc finger domain-containing
protein

Increased resistance to blast fungus Wang et al. (2005)

LOC_Os09g25070 WRKY62 Increased bacterial susceptibility Peng et al. (2008)
LOC_Os11g03300 NAC domain TF Increased drought tolerance and yield Jeong et al. (2010)
LOC_Os12g16720 Cytochrome P450 71A1 Enhanced fungal resistancea Fujiwara et al. (2010)

aSuppression of gene expression by knockout.
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DEGs, out of which four showed nonconserved biotic
up-regulation. Furthermore, WRKY24, which is the
rice ortholog of WRKY33, also showed nonconserved
biotic up-regulation. The striking contrast in these genes
in their behavior between abiotic and biotic stresses
suggests them as important candidates to explore the
multiple stress response.

A list of studies that overexpressed or suppressed 10
of the common DEGs that significantly altered the
stress response is provided in Table IV. Seven of these
are TF genes (four genes code for the WRKY family of
TFs) and are part of significant features found by SVM.
Overexpression of a gene (LOC_Os01g55940) coding
for an indole-3-acetic acid-amido synthetase con-
ferred broad-spectrum resistance toMagnaporthe grisea,
X. oryzae pv oryzae, and X. oryzae pv oryzicola (Fu et al.,
2011). Overexpression of two genes coding for NAC
TFs enhanced tolerance to multiple abiotic stresses
such as drought and salinity (LOC_Os03g60080) as
well as cold (LOC_Os11g03300; Hu et al., 2006; Jeong
et al., 2010). The expression of these three genes and
LOC_Os07g40290, an auxin-responsive gene coexpressed
with 40 other common DEGs, was up-regulated in both
biotic and abiotic stresses. Furthermore, we compared the
common DEGs against a recently released database of
Arabidopsis loss-of-function mutants (Lloyd andMeinke,
2012) using orthologous identifiers, which revealed 138
orthologous mutant genes out of which 33 showed
increased resistance or sensitivity to a variety of stresses
(Supplemental Table S7). Two genes (LOC_Os06g44010
and LOC_Os12g16720) are common between the DEGs
in Table IV and their orthologs with loss-of-function
mutants in Arabidopsis. The first gene encodes a
WRKY TF that is up-regulated under biotic stress and
down-regulated under abiotic stress. The second gene
codes for a cytochrome P450 monooxygenase whose
inactivation leads to Sekiguchi lesion mutant rice
(Fujiwara et al., 2010). This gene is part of a conserved
up-regulated gene set. Experimental analysis involving
the overexpression or knockout of the stress-responsive
genes described above has often focused on one or a
few stresses. Genetically engineering rice plants with
the top candidate genes identified in our study, singly
or in combination, would identify their role in con-
ferring broad-range resistance to multiple abiotic and
biotic stresses.

CONCLUSION

The availability of large volumes of genome-scale gene
expression data and advanced computational techniques
enabled us to dissect the complex nature of the stress
response and examine in depth the overlap between
abiotic and biotic stress responses. The plethora of novel
insights reported in this work revealed the overarching
roles of major stress regulatory molecules, including
phytohormones such as ABA and JA/ET, parent com-
pounds of small metabolites like shikmate, TFs likeWRKY
and MYB, and signaling genes like WAKs, which are

central to the fine-tuning of stress response pathways.
Furthermore, the expression patterns exhibited by these
genes provided a molecular basis to classify different
stress conditions with high accuracy. The top regulatory
and signaling genes identified in this study are likely
to be involved in cross talk between biotic and abiotic
stress responses and to provide potential candidates
crucial for the development of a rice variety with broad-
range stress tolerance. Furthermore, mechanistic insights
gained in rice on multiple stress responses would provide
anchor points to explore specific stress signaling path-
ways and orthologous genes in other cereal crops.

MATERIALS AND METHODS

Selection of Stress Response Microarray Studies
and Identification of DEGs

All of the microarray studies performed on the Affymetrix Rice Genome

Array and deposited at the Gene Expression Omnibus under the platform

GPL2025 were manually searched to identify and categorize 13 stress condi-

tions (seven abiotic and six biotic stresses), as shown in Supplemental Table S1.

Two meta-analysis studies were performed combining abiotic and biotic

stresses separately. Briefly, the raw intensity CEL files of the selected samples

were downloaded from the Gene Expression Omnibus, and intensity values

were extracted from the CEL files using the bioconductor package Affy in R

(Gautier et al., 2004), quality checked using the package ArrayQualityMetrics

(Kauffmann et al., 2009), and the samples failing quality tests were removed.

The samples of each stresswere normalized together using the robustmultichip

average method (Irizarry et al., 2003). The probes were then matched to their

loci based on annotation provided at http://www.ricechip.org. Probes with

no match or ambiguously matching multiple loci were discarded. The retained

probes and their normalized intensity values were then loaded into a

oneChannelGUI environment to perform nonspecific filtering of probes with

relatively small signal distribution using an interquartile range filter at the most

stringent setting (0.5) and probes with very low intensity values [probes below

threshold log2(50) = 5.64 in 90% or more of arrays]. DEGs were identified using

the rank product method (Breitling et al., 2004). We used the function

RPadvance of the bioconductor package RankProd (Hong et al., 2006), which

is specifically designed for meta-analysis by taking into consideration the different

origins of samples. The number of permutation tests was set to 250. The function

topGene with a percentage of false positives cutoff value of 0.01 or less was used

to output DEGs. Among multiple probes matching the same locus, the probe

identifier with the highest fold change was retained.

Classification Methods

We used a number of classification and machine learning techniques to

assess the performance of identified common DEGs between abiotic and biotic

stresses in the classification of different stresses. We extracted the robust

multichip average-normalized intensity values of the identified common

DEGs between abiotic and biotic stresses from stress-treated microarrays (126

abiotic and 232 biotic arrays) and scale adjusted using mean centering and

dividing by the square root of the SD of each variable (pareto scaling;

Supplemental Fig. S3). Pareto scaling was chosen as it keeps the data structure

partially intact while reducing the relative importance of large values (van den

Berg et al., 2006).

PCA is a nonsupervised (i.e. it does not make use of class labels) dimen-

sionality reduction procedure that performs an orthogonal transformation of

the original variables into a set of linearly uncorrelated variables such that the

largest variance between the classes is captured in the transformed variables,

also called PCs (Yeung and Ruzzo, 2001). The PCs are numbered in decreasing

order, and the top one (PC1) captures the maximal variance between different

classes. PLS-DA is a supervised (i.e. it makes use of class labels) projection

method that separates groups by rotating the PCs such that a maximum

separation among classes is obtained (Zhang et al., 2013).

SVM classifies binary training data by drawing a hyperplane (linear or

nonlinear based on the type of kernel selected) that maximally separates the
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two categories (Furey et al., 2000). R-SVM performs this type of classification

recursively using different feature subsets and selects the best-performing fea-

tures based on cross-validation error rates. Although SVM based on microarray

data is widely used to classify and predict disease status in humans (Hedenfalk

et al., 2001) and identify important features (Zhang et al., 2006), only a few studies

have used R-SVM to identify stress-responsive genes in plants (Liang et al., 2011).

We performed R-SVM classification using a linear kernel with genes (features) in

columns and samples in rows. We utilized a leave-one-out cross-validation

procedure to determine the accuracy of the classification, in which features are

randomly partitioned into training and test sets and the poorly performing fea-

tures with higher cross-validation error rate are recursively eliminated. RF is a

decision tree-based algorithm that grows the branches of an ensemble of classi-

fication trees by selecting random subsets of features from bootstrap samples and

makes class predictions based on the majority vote of the ensemble. A number of

characteristics of RF make it ideal for our data set, including its use for multiclass

problems, it is less affected by noise, and it does not overfit the training data

(Díaz-Uriarte and Alvarez de Andrés, 2006). The statistical packages and tools

provided by R, WEKA (Frank et al., 2004), and Metaboanalyst (Xia et al., 2012)

were utilized to implement different analytical procedures.

Functional Enrichment Analysis

GO analysis was carried out using the Singular Enrichment Analysis tool

offered by agriGO (Du et al., 2010) at default settings of Fisher’s t test (P ,

0.05), FDR correction by the Hochberg method, and five minimum mapping

entries against species-specific precomputed background references. Meta-

bolic pathway enrichment analysis was carried out using the tool DAVID

version 6.7 (Huang et al., 2009). This functional annotation tool performs en-

richment analysis of various annotation resources including gene ontologies,

protein domains, and pathways using a modified Fisher’s exact test called

EASE. Furthermore, it clusters significant annotation terms using k statistics

and fuzzy heuristic clustering based on the degree of common genes between

two annotations and provides an enrichment score for each annotation cluster.

Information on TF genes in rice (Oryza sativa) was obtained from the database

PlnTFDB (Pérez-Rodríguez et al., 2010) and analyzed for the enrichment of TF

families. The miRNAs predicted to target stress-responsive genes were

obtained from PMRD, the plant miRNA database (Zhang et al., 2010).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Top 15 genes found by RF based on mean de-

creasing accuracy.

Supplemental Figure S2. Top GO terms of common DEGs.

Supplemental Figure S3. Box plot and density distribution of common

DEGs before and after pareto normalization.

Supplemental Table S1. Number of microarray studies and samples ana-

lyzed for different stress conditions and description of the samples in

different studies.

Supplemental Table S2. DEGs in abiotic and biotic stresses.

Supplemental Table S3. List of common DEGs.

Supplemental Table S4. Top functional annotation clusters found by the

tool DAVID.

Supplemental Table S5. Distribution of TF families in conserved and non-

conserved DEGs.

Supplemental Table S6. List of miRNAs targeting common DEGs.

Supplemental Table S7. List of common DEGs with loss-of-function mu-

tant Arabidopsis orthologs and their mutant phenotypes.
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