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Machine learning approaches to drug response prediction:

challenges and recent progress
George Adam 1,2,3, Ladislav Rampášek 2,3,4, Zhaleh Safikhani1,3,5, Petr Smirnov 1,3,6, Benjamin Haibe-Kains1,2,3,5,6✉ and

Anna Goldenberg2,3,4✉

Cancer is a leading cause of death worldwide. Identifying the best treatment using computational models to personalize drug

response prediction holds great promise to improve patient’s chances of successful recovery. Unfortunately, the computational task

of predicting drug response is very challenging, partially due to the limitations of the available data and partially due to algorithmic

shortcomings. The recent advances in deep learning may open a new chapter in the search for computational drug response

prediction models and ultimately result in more accurate tools for therapy response. This review provides an overview of the

computational challenges and advances in drug response prediction, and focuses on comparing the machine learning techniques

to be of utmost practical use for clinicians and machine learning non-experts. The incorporation of new data modalities such as

single-cell profiling, along with techniques that rapidly find effective drug combinations will likely be instrumental in improving

cancer care.
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INTRODUCTION

Cancer is a leading cause of death worldwide and the most
important impediment to increasing life expectancy in every
country of the world in the 21st century1. Fortunately, from 2011
to 2015, there has been a small but prominent decrease in death
rates for all races/ethnicities combined for 11 out of 18 most
common cancers among men and 14 of the 20 most common
cancers among women. The continued decreases in death rates
for colorectal cancer, prostate cancer and female breast cancer are
largely due to advances in early detection and more effective
treatments2. In this review, we will focus on the computational
challenges of identifying the best treatment that improves
chances of successful recovery.
Until recently, treatments were chosen based on the type of

cancer in a one-size-fits-all manner. We are now witnessing the
advent of precision oncology3–5 that takes into account patients’
genomic makeup for treatment decisions3,6,7. Treatment approval
based on tumor-site agnostic molecular aberration biomarkers has
become reality. The year 2017 marked the first FDA approval of
such a treatment8. Based on clinical trials in 15 types of cancer,
pembrolizumab was approved for treatment of solid tumors with
mismatch repair deficiency or high microsatellite instability9.
Larotrectinib is another promising treatment, targeting the
tropomyosin receptor kinase gene fusion in a variety of cancers10.
Unfortunately, there are no established biomarkers for majority of
the anticancer drug compounds. Identification of reliable biomar-
kers is a challenge not only for the most commonly used cytotoxic
drugs, but also in the case of targeted therapies as the drug
targets alone are generally poor therapeutic indicators11,12.
Discovery of biomarkers predictive of drug response and

development of multivariate companion diagnostics require
efficient computational tools and substantial number of samples.
Traditional statistical models and more sophisticated machine
learning approaches have been used to build predictors of drug

response and resistance both in the clinical13 and preclinical14

settings. As predictive models increase in complexity, the number
of observations required to train these models increases as well.
While omic profiles and clinical outcomes of patients are the most
relevant data sources for the development of clinically relevant
predictors, these datasets are often limited in size due to many
factors including high costs, limited accrual rates, and complex
regulatory landscape. In addition, by the nature of the experiment,
unbiased testing of multiple therapeutic strategies for the same
patient in the patient itself is practically infeasible. Cancer models
provide access to patient tumors in preclinical models, both
in vivo and in vitro, allowing researchers to test multiple drugs and
combinations in parallel14. Although these preclinical models
recapitulate patient therapy response to varying degrees, they
provide massive amounts of pharmacogenomic data for drug
response prediction. Here we review the recent applications of
machine learning to prediction of response to monotherapies and
identification of combination therapies (Fig. 1).

PREDICTION OF RESPONSE TO MONOTHERAPIES

In vitro and ex vivo tumor models

Large-scale efforts to associate molecular profiles with drug
response phenotypes in preclinical models date back to the late
90s when the National Cancer Institute Developmental Therapeu-
tics Program released large-scale pharmacogenomic data of 60
cancer cell lines (NCI60) screened with tens of thousands of
chemical compounds, including a large panel of FDA-approved
drugs15. NCI60 facilitated several drug discoveries, notably a 26S
proteasome inhibitor bortezomib that is now used in multiple
myeloma treatment15. Since then, high-throughput in vitro drug
screens of cancer cell lines (CCLs) derived by immortalization of
human cancer cells became popular experimental bases for
discovery of multi-omic underpinnings of drug sensitivity and
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resistance16. Since this seminal study, multiple large-scale
databases have been publicly released to the cancer research
community17,18. More recently, advances in growing tumors in
animal models enabled the generation of large collection of
patient-derived xenografts (PDX) to monitor tumor growth with
and without drug treatment in mice19. Novartis published the
largest PDX-based pharmacogenomic dataset to date, referred to
as the PDX Encyclopedia20. The NCI recently announced the
Patient-Derived Models Repository (PDMR) with comprehensive
molecular profiling and commitment to release pharmacological
profiles in the future. A series of databases and tools have been
developed recently to harmonize and make easily available
multiple pharmacogenomic studies investigating anticancer
monotherapies (Table 1).

Methods for monotherapy prediction

The availability of commercial drug response prediction
approaches is limited. In fact, publicly available methods mainly
consist of biomarker assays which measure quantities such as
gene expression and determine whether or not a specific therapy
linked to the biomarker assay would be effective for a given
patient. Most of these assays and predictive models are univariate,
with only a few multivariate assays that are based on simple
statistical and machine learning approaches (the OncotypeDx21

and MAMMAPRINT22 models for breast cancer are based on a
linear regression model and a nearest centroid model,

respectively). Thus, this review focuses on academic approaches
to drug response prediction since they significantly outnumber
commercial approaches, are more transparent, and address the
more difficult task of predicting the efficacy of multiple drugs
without knowing ahead of time the useful features for the task.
The most typical computational approaches to drug response

prediction, specifically in preclinical models, consist of (1)
quantification of drug response; (2) molecular feature selection
or dimensionality reduction of the cellular measurements; (3)
machine learning model fitting to predict drug response; and (4)
model evaluation23,24. Multiple studies explored which genomic
modalities harbor the most predictive signal of drug response by
analyzing performance of predictive models. The most commonly
utilized modalities include single nucleotide variations, copy
number variations, RNA expression, methylation, and proteomics.
Despite their widespread use in clinical settings, mutations and
copy number variations have been shown to account for only a
small subset of candidate biomarkers, while gene expression,
methylation and protein abundance are regarded as the most
predictive modalities25–27, each can be complemented by the
multi-omic view of the cancer28–30. Perhaps the main obstacle in
effectively leveraging all data modalities is fusing them while
ignoring redundancies. A combined set of measurements can
reach hundreds of thousands of features, while the number of
available patients or cell lines remains in the hundreds. Such a
high feature to sample ratio is bound to lead to overfitting where

Fig. 1 Graphical abstract. Patient data are limited, so to predict drug response, much of the existing literature use model system data, e.g.
immortalized cell lines and PDX. a Currently most patients in cancer are still treated in a one-size-fits-all manner according to the type (or
subtype) of cancer they have. b There is a growing number of examples of personalizing monotherapy in practice, where depending on the
mutations in the tumor, the patient can be prescribed a targeted drug. This approach is applicable to fewer than 20% of the patients. The
computational contribution is to take a large number of model systems and patients, when available and construct a predictive model to
identify the best drug for majority of the patients. c Due to tumor heterogeneity and acquired drug resistance, monotherapies may not be
effective, there is currently a growing body of work predicting drug synergy and effective drug combinations. Originally these models were
trained using bulk data, but more recently, single-cell data-based approaches are starting to show promise. The person symbol in the figure
was obtained from dryicons.com. The black magnifying glass is courtesy of Stanislav Tischenko under the Creative Commons Attribution 3.0
License.
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a model can perfectly fit the limited size training set, yet will have
poor generalization performance when tested on new data. This
limits the class of applicable predictive models to those with low
complexity such as support vector machines or logistic regression
since high complexity models like deep neural networks require
many samples to avoid overfitting. Successful applications of deep
learning in domains such as image classification or machine
translation have worked due to a more favorable measurement to
sample ratio (N > D) in addition to architectures that mimic the
human brain and limit overfitting such as convolutional neural
networks. Developing neural network architectures with an
effective inductive bias for genomics will allow the complex
underlying cancer biology to be better modeled compared to
linear models which reduce risk of overfitting at the cost of
introducing significant modeling bias. Another approach to deal
with the limited number of samples typically available in drug
response prediction experiments is feature selection. Feature
selection removes features such as the gene expression of genes
which are determined to be uninformative for the phenotype
being predicted. This improves the ratio of features to samples,
and a common to feature selection is univariate feature selection
where only features highly corrected with the phenotype are kept.
Multivariate approaches to feature also exist and consider sets of
features at a time since any single feature individually might not
be predictive of the outcome, but that does not imply that a
collection of features is uninformative as well. Papillon-Cavanagh
et al.31 identified univariate feature selection as a robust selection
approach, later improved by minimum Redundancy, Maximum
Relevance (mRMR) Ensemble feature selection32. Costello et al.
and Jang et al. performed extensive comparative analyses of
machine learning methods for drug response prediction in cancer
cell lines, recommending using elastic net or ridge regression with
input features from all genomic profiling platforms27,29. Costello
et al. summarized a crowdsourced DREAM drug prediction
challenge29, revealing two leading trends among the most
successful methods. First, the importance of the ability to model
nonlinear relationships between data and outcomes, and second,
the incorporation of prior knowledge, e.g. biological pathways.
The challenge winning model, Bayesian multitask multiple kernel
learning method33, incorporated both of these approaches
together with multi-drug learning34. Such multitask framing of
the prediction problem is highly effective as it enables a more
efficient use of available data when tuning parameters. Specifi-
cally, instead of building separate prediction models for each drug
thereby using just a subset of the data, a single model trained with
all the data that has some parameters shared amongst all the
drugs, and some drug-specific parameters is the better choice.
Nonlinear relationships are of utmost importance since many

cellular processes follow nonlinear dose-response relationships
such as the activation of MAPK via Progesterone in oocytes35.
Furthermore, models encoding prior biological knowledge have
improved and more stable feature selection since noisy gene-level
measurements can be abstracted into gene sets that have been

experimentally validated to be involved in cancer-related pro-
cesses. Lee et al.36 developed a method that integrates disease
relevant multi-omic prior information to prioritize gene-drug
associations. Most recently, Zhang et al.37 and Wang et al.38

introduced methods based on similarity network fusion and
similarity-regularized matrix factorization, respectively, that take
into account similarity among cell lines, drugs and targets. Drug
chemical features and similarities were shown to be a promising
additional information that can improve drug response prediction
performance. There is no canonical way of incorporating drug
features into most predictive models since it is difficult to encode
how the drug features and omics features interact. Future models
that address this shortcoming are likely to outperform competitors
that do not, due to the highly informative content of molecular
fingerprints. Specifically, a predictive model in a multitask setting
can take compounds with known molecular targets, use the
similarity computed between the molecular fingerprints, and
more effectively tune parameters using similarity between
compounds for parameter regularization.

Deep learning methods for monotherapy prediction

The use of neural networks for drug response prediction dates
back to the 90s. El-Deredy et al. showed that a neural network
trained on tumor nuclear magnetic resonance (NMR) spectra data
has potential as a drug response predictor in gliomas, and may be
used to provide information about the metabolic pathways
involved in drug response39. Neural networks, however, did not
become a method of choice for monotherapy prediction yet. In
fact, despite the recent prevalence of deep neural network (DNN)
methods across many areas and industries, including related
fields, such as computational chemistry40–45, DNNs have only fairly
recently found their way into the drug response prediction. The
reason for this is the typically low ratio of the number of samples
to the number of measurements per sample that does not favor
traditional feedforward neural architectures. Overparameterization
in these models easily leads to overfitting and poor generalization
to new datasets. However, in recent years, more public data has
become available and newly developed deep neural network
models are showing promise. For example, Chang et al.46

developed the CDRscan model, featuring a convolutional neural
network architecture trained on a dataset of ~1000 drug response
experiments per compound. Their model achieved significantly
improved performance compared to other classical machine
learning approaches such as Random Forests and SVM. Part of
why CDRscan performed better than these baseline models
resides in its ability to integrate genomic data and molecular
fingerprints. In addition, its convolutional architecture has shown
to be effective in many machine learning domains. Taking
inspiration from already well-established neural architectures,
and modifying their structure to properly handle genomic data is
certainly a promising future direction.

Table 1. Platforms harmonizing preclinical pharmacogenomic datasets and providing basic processing functions for biomarker discovery.

Platforms Cancer models # Models # Drugs URL References

PharmacoGx PharmacoDB Cell lines 1691 759 https://bioconductor.org/packages/PharmacoGx/
http://pharmacodb.ca/

17,111

GDSCTools Cell lines 1001 265 https://gdsctools.readthedocs.io 112

CellminerCDB Cell lines ∼1000 ~50,000 https://discover.nci.nih.gov/cellminercdb/ 113

CancerDP Cell lines 1061 24 http://crdd.osdd.net/raghava/cancerdp/index.php 114

PDXFinder PDX 567 33 https://www.pdxfinder.org/ Unpublished

Xeva PDX 277 61 https://github.com/bhklab/Xeva 115

Cancer-Drug eXplorer 2D cell cultures 462 60 http://cancerdrugexplorer.org/ 116
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Another promising direction is autoencoders that are able to
learn from smaller datasets. An autoencoder is a neural network
that compresses its input and tries to reconstruct the original data
from the compressed representation. This is quite useful for
feature extraction as shown by Way and Greene47 where a 5000
dimensional gene expression profile was compressed into just 100
dimensions, some of which represented phenotypically relevant
features such as patient sex or melanoma status. Rampášek et al.48

evaluated semi-supervised variational autoencoders on mono-
therapy response prediction and developed an extension—a joint
drug response prediction model, Dr.VAE, that leveraged pre- and
post-treatment gene expression in cell lines, showing improved
performance in drug response prediction on a variety of FDA-
approved drugs compared comprehensively to many classical
machine learning approaches. This improvement could potentially
have been even greater if the model was setup in a multitask
fashion in combination with molecular fingerprints. Dincer et al.49

developed DeepProfile, a method that combined variational
autoencoders to learn 8-dimensional representation of gene
expression in AML patients and then used this representation to
fit a Lasso linear model for drug response prediction with
improved performance compared to no feature extraction.
Similarly, Chiu et al.50 pretrained autoencoders on mutation data
and expression features on TCGA dataset and subsequently
trained a deep drug response predictor. What differentiates their
method from others is the use of pretraining. Pretraining allows
for using unlabeled data from other sources such as TCGA, instead
of just the gene expression profiles available from the drug
response experiments, thereby significantly increasing the number
of samples available and improving performance compared to
using just the labeled data. The brief summary of methods is
available in Table 2. The trend of model development shows that as
more data become available and deep learning methods become
better adapted to high dimensional/low sample size data, there is
hope for convergence and creation of sophisticated models that
will likely push the field of computational drug response prediction
forward to eventually become clinically relevant.

RESISTANCE TO MONOTHERAPY

While drug response prediction can help pick an optimal therapy
given the current molecular characteristics of the cancer cells,
tumors often exhibit drug resistance over the course of the
treatment. Consequently, patients that respond initially to therapy
regress as their cancer either adapts to overcome the chosen

treatment, or an existing resistant subclone repopulates the
tumor51. Understanding the common mechanisms cancers use to
develop resistance can help inform treatment approaches to
counteract this phenomena.
For therapies inhibiting the activity or signaling of their target, a

common mechanism towards resistance is feedback selecting for
upregulated expression of the target protein. For example,
resistance to 5-FU has been demonstrated to arise from the
amplification of its target thymidylate synthase (TS)52, with
corresponding overproduction of TS enzyme and mRNA tran-
scripts53. Furthermore, especially for tyrosine kinase inhibitors,
tumors will evolve to re-activate pathways downstream of the
targeted protein. A classical example is the resistance to the EGFR
inhibitor Gefitinib which can often be explained by an acquired
T790M mutation reducing drug binding affinity54.
For DNA damaging compounds or compounds inhibiting DNA

repair, altered DNA damage response can lead to resistance.
Studies have shown that treatment with cisplatin, a DNA
damaging agent usually effective against BRCA deficient cancers,
can lead to mutations restoring BRCA function and subsequently
the activity of the Homologous Repair (HR) pathway55,56.
Furthermore, studies suggest that secondary alterations to DNA
damage response proteins can shift the response from the error-
prone Non-Homologous End Joining pathway to HR, reducing
sensitivity to DNA damaging agents57. Other mechanisms of
resistance include modifications to enzymes involved in drug
metabolism to either reduce conversion of drugs to active forms
or deactivate the compound58,59, and more recently, intra-tumor
heterogeneity (ITH)60. As this review is focuses on drug response
prediction, not enough depth is provided to discussing how
tumors acquire resistance to therapies, or how therapies work.
Readers are referred to work by Holohan et al.51, Housman et al.59,
and Malhotra and Perry61 for a comprehensive discussion on this
topic. For more details on the biological complexity of cancer in
general, readers are referred to the review articles by Blackadar62,
and Bertram63.

COMBINATION THERAPIES

Drug combinations are crucial for addressing the issue of drug
resistance and preventing recurrence caused by a negligible
amount of remaining cancer cells. Synergistic combinations can
also reduce toxicity by allowing for lower doses of either drug to
be used. By enabling reduced doses, drug combinations can
further increase the feasibility of drug repurposing by increasing

Table 2. Computational tools for monotherapy prediction.

Name Availability Purpose Methodology and features Reference

HNMDRP Matlab
and R code

Drug response prediction
in CCLs

Genomic and compound features combined with
drug–target interaction and PPI

37 Source code: https://github.com/
USTC-HIlab/HNMDRP

KRL Python code Drug prioritization (ranking)
in CCLs transferable to
patients

Kernelized rank learning using genomic features,
(predominantly gene expression)

117 Source code: https://github.com/
BorgwardtLab/Kernelized-Rank-
Learning

CDRscan Web
Applicationa

Drug response prediction
in CCLs

Deep neural network trained on somatic mutations
and drug compound fingerprints

46

Dr.VAE Python code Drug response prediction
in CCLs

Semi-supervised Variational Autoencoder of gene
expression that incorporates drug perturbation
effects

48 Source code: https://github.com/
rampasek/DrVAE

CancerDP Web
Application

Drug response prediction
in CCLs

SVM models using (combination of) genomic
features (mutations, CNVs, expression levels)

114 Webserver: http://crdd.osdd.net/
raghava/cancerdp/

BMTMKL Matlab
and R code

Drug response prediction
in CCLs

Bayesian multiview (original genomic modalities +
aggregated views) multitask model

29 Source code: https://github.com/
mehmetgonen/bmtmkl

A non-exhaustive summary of the most recent monotherapy prediction methods with an available web service or source code.
aA web application has been promised by the authors, but no official implementation yet as of February 2020.
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the potency of compounds that are only effective at clinically
dangerous doses64.
Trial and error combination design has limited applicability in

the clinic due to time constraints and potential hazardous
exposure to toxic combinations without improving efficacy. For
example, Hecht et al.65 performed a clinical trial for metastatic
colorectal cancer (mCRC) patients involving the targeted com-
pound bevacizumab, either oxaliplatin or irinotecan as a
chemotherapeutic agent, and an optional addition of a human
antibody panitumumab. The purpose of the trial was to evaluate
benefit conferred by panitumumab. It was revealed that for the
cohort that used oxaliplatin as a chemotherapeutic agent, survival
was 5 months lower for patients that also received panitumumab,
and there was a significant increase in adverse effects such as
infections and pulmonary embolism compared to patients that
did not receive panitumumab. Tol et al.66 also performed a clinical
trial for mCRC, using combination of capecitabine, oxaliplatin, and
bevacizumab, as the baseline treatment to investigate cetuximab.
Patients that received cetuximab had a shorter progression-free
survival and reported significantly more adverse effects compared
to patients that did not receive cetuximab.
One promising direction for a setting where the goal is to study

a constrained set of options to design an optimal treatment plan
for a patient is adaptive trials via reinforcement learning67. The
probabilistic ranking given by their method potentially allows for
identifying when tumors develop drug resistance by analyzing
when drug combinations are given priority over individual
treatments. While this work, performed on PDX, learns more
complex yet more effective policies in terms of survival than
currently offered in the clinic, it is not clear how to mitigate the
potential risks of exploration needed for reinforcement learning.
We do hope that this direction is given its due consideration in the
clinic since these early results appear to be very promising.
The limits of trial and error in the clinic can also be overcome

in vitro with the use of preclinical models in the form of
immortalized cancer cell lines or cell lines derived from patient
biopsies. Patient-derived cancer models allow screening drug
combinations in parallel without subjecting patients to serious
toxicity risk (Table 4). Unfortunately, due to the sheer number of
possible drug combinations, it is not possible to explore their
potential antagonism, additive or synergistic effects68, so there is a
need for methods that can predict combination therapy response
prior to experimentally validating it.

Methods for combination therapy prediction

Many computational methods have been developed to predict
anticancer drug combination synergy based on a variety of
genomic, drug structure, and biological network data. These
methods vary in how much drug combination screening data is
required, if used at all. Drug combination screening data refers to
testing cancer models with combinations of two or more drugs
rather than a single drug. A typical combination experiment setup

involves testing two drugs at 8 different half-log dilution
concentrations each including the null concentration as a
control69. This gives rise to an 8×8 dose-response matrix. Using
a 384-well assay plate, six pairs of drugs can be screened at once
in this arrangement. Once cells are incubated in the wells for a
sufficient amount of time, usually 72 h, a cell viability readout is
conducted to determine the number of viable cells in each well.
The collected data is then processed using a tool such as
SynergyFinder70 to quantify the drug combination response
compared to individual compound response based on a variety
of models. As an example, the Bliss independence model71

provides a score under the assumption that the two drugs act
independently, so measurement above this score indicates
synergy. For more details on different synergy scores as well as
experimental design of drug combination studies, the reader is
referred to the experimental design guide by He et al.69. The
number of experiments increases exponentially with the number
of drugs tested in combination, making these combination
screens both logistically complex and expensive. It is therefore
favorable to have a method which does not require significant
amounts of combination screens. Several approaches for drug
synergy prediction described in the literature instead use a
combination of either perturbation experiments or sensitivity
experiments coupled with drug target and drug structure data. For
example, the work done by Li et al.72 leverages gene expression
perturbation data, measured as the difference in gene expression
before and after treatment, to compute various statistics about
differentially expressed genes as the main pharmacogenomic
features. Additionally, the authors extracted drug physicochemical
properties, distance between drug targets in PPI networks, and
Jaccard similarity between targeted pathways to represent
biological and chemical prior knowledge. These features were
then used to train a random forest model to perform the binary
prediction task of whether a drug combination is synergistic or
not. Gayvert et al.73 also made predictions with random forests by
using both single-drug response values and combination therapy
response values when available. Interestingly, they did not
leverage drug structure information nor gene expression profiles
when making predictions. This is a drawback since drug structure
information is easily available, and including it may improve
performance, but it provides flexibility in not having to measure
gene expression. However, their framework is broadly applicable,
and their results indicate that even a small number of drug
combination experiments can have a great performance benefit
when used to train a model that makes predictions using primarily
single-drug response data.
There is a class of drug combination optimization approaches

that interacts with the user by suggesting promising combinations
to test. Both Weiss et al.74 and Nowak-Sliwinska et al.75 use
Feedback System Control (FSC) to iteratively refine drug
combinations and suggest new ones to test in vitro. The process
works by first starting with some randomly selected drug
combinations for some range of doses. This group of

Table 3. Methods to infer tumor clonal composition from bulk DNA sequencing data.

Name Using SSM or CNV for phylogeny reconstruction Joint Deconvolution and Phylogeny inference? Reference

PhyloWGS SSM and percomuted CNV mixing proportion estimates Joint Inference 118

Canopy Both Joint Inference 119

SPRUCE SSM and percomuted CNV mixing proportion estimates Joint Inference 120

PASTRI SSM only Two step clustering and Phylogeny Inference 121

PyClone SSM only, corrects VAFs for CNV, does not use in reconstruction explicitly Clustering and Identifying clonal genotypes only 122

SciClone SSM only Clustering and Identifying clonal genotypes only 123

THetA2 CNV only Clustering and Identifying clonal genotypes only 124
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combinations is then mutated using Differential Evolution (DE) to
propose new drug combinations that are to be tested in vitro, and
whose efficacy will be compared against the original randomly
selected combinations. For each mutated combination, if that
combination had higher efficacy than the original random
combination that it was created from, then the new combination
is kept, otherwise the original combination is kept. This procedure
is repeated until some convergence criterion is met. This approach
seems to be very effective in practice because the efficacy versus
drug combination surface is smooth thereby allowing FSC to
converge in 10–15 iterations. Lastly, the optimal drug combination
identified by DE and evaluated in vitro is further optimized to
eliminate redundant compounds or compounds having an
antagonistic effects. Importantly, FSC based approaches are not
limited in the number of drugs used in a given combination,
unlike many methods that are created specifically for pairs of
drugs. It might be possible to accelerate the convergence of FSC
methods by including genomic or chemical data since both
methods described above perform the optimization without
considering drug targets or drug similarities.

Deep learning methods for combination therapy prediction

The most extreme prediction scenario is to not use drug response
data at all when building a model. This is done by Preuer et al.76

where the authors only leverage transcriptomic data and drug
structure data to predict Loewe score which quantifies the excess
over the expected response if the two drugs used in a
combination were the same compound. What further differenti-
ates this work from previous works is that the authors use deep
learning to achieve state-of-the-art performance compared to
baseline models such as gradient boosting machines, random
forests, and support vector machines. Xia et al.77 used deep
learning as a means of simultaneously extracting and integrating
features from multiple data types to predict the efficacy of drug
pairs. Combination response data as well as gene expression,
microRNA, and protein abundance from the NCI-ALMANAC
dataset was used78. Additionally, drug features were obtained
using Dragon software79 which provides chemical fingerprints and
other properties. Each data type was passed through its own
submodel where a submodel is just a deep fully connected neural
network in order to obtain useful features and perform
dimensionality reduction. Then, these features for the different
data types were concatenated and passed through a final
submodel that uses residual connections in order to predict the
drug combination score. Ultimately, the authors were able to
obtain impressive results with R^2 of 0.92, and much of that
explained variance was due to the drug descriptors. These
approaches reinforce the importance of newer deep learning
methods such as molecular graph convolution to extract task-
specific molecular fingerprints. A summary of tools related to drug
combinations is provided in Table 5. In terms of the availability,
there are more synergy visualization tools rather than synergy

prediction tools available to date. We hope that this trend will
change as more researchers work on this important area and
provide their tools in publicly available packages.

DRUG COMBINATION DISCOVERY USING SINGLE-CELL
SEQUENCING

The development of single-cell sequencing technologies has
given researchers a new set of tools to interrogate tumor
heterogeneity. Single-cell DNA sequencing (scDNAseq), can be
used to more directly investigate the clonal structure of a tumor. It
works by isolating individual cells and performing whole genome
amplification to increase the amount of DNA present in order to
be detectable by a DNA sequencer80. These data can be used to
directly reconstruct the unique genotypes as well as to estimate
the clonal fraction within the sample. Bulk DNA sequencing does
not have these abilities, so simply identifying populations of cells
with different mutations can already significantly improve
treatment plans (Table 3). However, scDNAseq data suffers from
increased noise—each cell has only two copies of each genomic
locus, requiring amplification before sequencing81. The amplifica-
tion process can introduce errors into the sequenced reads, and
amplification can be uneven across the genome as well as
between cells, introducing bias into the observed reads.
Computational approaches estimating tumor clonal composition
while taking into account these sources of error have been
developed82–84. For a thorough discussion of the methods used to
analyze snDNAseq data, we refer the reader to the work by Qi
et al.85. Interestingly, single-cell RNA sequencing (scRNAseq) is
starting to be used to design novel drug combinations through
identifying druggable subclones86,87. Unlike DNA, where each cell
contains only one copy of each allele (to a total of 6 pg of DNA),
there is approximately 30 pg of RNA in a single cell. With the
advent of the Chromium platform it is also now possible to
sequence the RNA across 100,000s of cells in a single experimental
run88. Predictive models of drug response could be developed and
trained using high-throughput preclinical pharmacogenomic data,
and an optimization framework to predict the most efficient and
the least toxic combination treatment could be established.
One of the first analyses to examine the influence of treatment

on the transcriptome of cancer cells at single-cell resolution was
conducted by Suzuki et al.89. They first performed single-cell
sequencing on four different cell lines derived from lung
adenocarcinoma to compare the relative divergence in their gene
expression profiles. Even though the average gene expression
levels were generally similar, the relative divergences between cell
types were pronounced. To investigate how targeted therapy
affects individual cells, they treated LC2/ad cell line and the
derived resistant version of it with vandetanib, a multi-tyrosine
kinase inhibitor. The comparison of single-cell profiles of treated
cells versus parental cells identified a wide variety of genes
overexpressed by drug stimulation. Particularly in case of LC2/ad,
the diversity level of gene abundances between cells was

Table 4. Drug combination datasets.

Dataset Name Type #
Combinations

# Drugs # Patients/
cell Lines

URL Ref

Drug Combination
Database

Clinical 1363 904 ~140,000 http://www.cls.zju.edu.cn/dcdb/ 125

Merck In vitro 583 38 39 http://mct.aacrjournals.org/highwire/filestream/53222/
field_highwire_adjunct_files/3/156849_1_supp_1_w2lrww.xls

126

AstraZeneca-Sanger Drug
Combination Dataset

In vitro 910 118 85 https://www.synapse.org/#!Synapse:syn4231880/wiki/235645 30

NCI ALMANAC In vitro 5,000+ 105 60 https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-ALMANAC 78
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significantly reduced after treatment so authors hypothesized that
cells lose diversity in response to treatment. Interestingly, target
genes of vandetanib, EGFR and RET, were not as affected by the
treatment as some of the other off-target genes possibly due to
the rigid transcriptional controls over these targets.
Kim et al.90 sequenced the transcriptome at single-cell

resolution of a primary renal cell carcinoma (pRCC) and its lung
metastasis (mRCC) from a patient and paired PDX models to
design a combination therapy that would address the hetero-
geneous nature of the tumor. Whole exome sequencing of the
metastatic sample and its PDX model indicated the preservation
of major tumor features in the PDX model. In order to predict
single-cell response of the RCC to the clinically approved drugs,
activity of drug target pathways was estimated by conducting
gene set enrichment analysis. Subsequently, cell lines derived
from the PDX models were screened with the drugs. Predictive
drug response models, based on ridge regression, were built using
expression profiles of cancer cell lines from a publicly available
drug screening dataset91,92 to predict response to the drugs.
Authors used ComBat to remove the technical variation between
the cell line dataset used for training, the drug response
predictors, and single-cell RNA-seq data. Predicted drug response
values were substantially correlated with measured sensitivity
values (0.65). Accordingly, by considering high sensitivity predic-
tion of cells to Afatinib and Dasatinib and mutually exclusive
patterns in the activation status of their signaling pathways in
cells, the authors suggested a combination of these two
compounds as an efficient therapeutic strategy. In vitro validation
in 2D and 3D cultured mRCC cells and in vivo validation in
subcutaneous xenografts validated the expected additive effect of
the drug combination over monotherapy responses. The admin-
istration of this combinatorial therapy is inducing superior growth
inhibition by co-targeting mutually exclusive EGFR and Src
signaling pathways.
One of the major weaknesses of Kim et al.’s90 work is the low

number of single cells sequenced. The captured cells may not
reflect the true clonality of the patient tumor and might even lead
to false discoveries. Recent technological advances in single-cell
sequencing made it feasible to capture large numbers of single
cells in one experiment. New computational pipelines and
approaches have been developed to improve all the steps in
processing of the single-cell sequencing data93,94, including
tackling noise and dropout in these experiments, normalization
techniques, dimensionality reduction95–97 and clustering
approaches98,99. These rapidly evolving methodologies provide
remarkable opportunities for the discovery of biomarkers, predic-
tion of efficient therapies, and the study of mechanisms of
acquiring resistance to treatments.

Anchang et al.100 were the first to use single-cell perturbation
experiments to optimize drug combinations. Their model DRUG-
NEM required the specification of lineage, intracellular commu-
nication, and apoptosis markers that were measured in drug
perturbation experiments using Mass Cytometry Time-of-Flight
(CyTOF). The objective of the model is to select the minimum
number of drugs that creates the maximum perturbation effect on
the markers of interest using perturbation data from single-drug
experiments. Drug effects were measured using a Bayesian linear
model to compute the probability that an intracellular commu-
nication marker is differentially expressed between treatment and
control. A graphical model is then created from these probabilities
using a nested effects model, and all the possible drug
combinations are ranked. This approach is limited by having to
know ahead of time which markers to use, and this in turn
requires knowing the mechanisms of action for the drugs, which
in many cases is not available. Nevertheless, this direction for drug
response prediction is very promising and will be greatly aided by
the burgeoning single cell and drug clonality research.

OPPORTUNITIES AND CHALLENGES: DATA AND DEEP
LEARNING

The only standardized metric to date for cancer response is
RECIST, and it relies on imaging data, mainly CT and MRI, to
determine how tumors grow or shrink in patients. RECIST can
handle up to 10 lesions in the patient, prioritized based on the
largest lesions, and uses the sum of the lesion diameters (LD)
when first measured as the baseline value. In subsequent scans,
response is categorized into 4 different categories based on how
much the sum of LDs has changed: complete response, partial
response, stable disease, and progressive disease. There is no such
international standard used to measure response for in vitro
preclinical models and RECIST is usually not used in in vivo
preclinical models due to costs, thus prohibiting fair comparisons
between response prediction methods. Furthermore, some drug
response prediction studies frame the task as regression where
continuous values such as IC50 are predicted, and others frame
the task as classification where a binary value which indicates
inhibition or growth is predicted. Reproducibility between cell line
based drug response studies remains a challenge due to
differences in viability assays, drug concentrations, and cell
seeding density101. There is also a need for better data sharing
as technical replicates are necessary for estimating within-study
variability, yet are sometimes not publicly released102. Addition-
ally, the studies use a variety of datasets, thereby making
quantitative comparisons even less feasible. Instead, qualitative
comparisons are made between the methods that consider data

Table 5. Tools for visualizing, evaluating, and predicting synergistic drug combinations.

Name Implementation Purpose Features URL

SynergyFinder Web
Application

Evaluating
Combo Efficacy

Has 4 different drug interactivity models Computes single-
agent effects Computes synergy scores

https://synergyfinder.fimm.fi/

Combenefit Desktop
Application

Evaluating
Combo Efficacy

Has 3 different drug interactivity models Meant to handle
large batch experiments

https://www.cruk.cam.ac.uk/
research-groups/jodrell-group/
combenefit

CImbinator Web
Application

Evaluating
Combo Efficacy

Has 1 drug interactivity model http://cimbinator.bioinfo.cnio.es/
CombinationIndex

DIGREM Web
Application

Evaluating
Combo Efficacy

Models response curve and gene expression changes after
treatment

http://lce.biohpc.swmed.edu/
drugcombination/

RACS R Package In-Silico Synergy
Prediction

Leverages drug target networks and transcriptomic profiles https://github.com/
DrugCombination/RACS

DeepSynergy Web
Application

Predicts
Synergy Scores

Selects novel synergistic drug combinations http://www.bioinf.jku.at/software/
DeepSynergy/
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requirements, generalization ability, and capacity to model
complex biological interactions and chemical interactions. These
comparisons are of great practical use as they provide context and
scenarios in which one method is likely better than another.
The success of deep learning across scientific fields followed the

collection of large standardized datasets. An additional factor
important to broad utilization of deep learning was the growth in
available computational power for training these models. Simi-
larly, successful applications of deep learning in predictive
oncology followed the growth of high-throughput preclinical
datasets. This suggests that with additional data from studies that
are more reproducible, deep learning could provide significant
improvements over traditional machine learning methods in drug
response prediction and drug combination prioritization. Specifi-
cally, the end-to-end nature of deep learning allows for extremely
effective feature extraction and also enables the integration of
multiple distinct data modalities. Additionally, encoding prior
biological knowledge in neural networks can be done via several
mechanisms such as graph-convolution networks103, or condi-
tional scaling which allows for multiplicative relations between
features such as a mutation being required for gene expression
levels to be relevant. The nonlinear nature of deep neural
networks, combined with their inductive bias that allows them
to generalize even though they have many more parameters than
samples, suggests that promising applications are possible in
pharmacogenomics where complex correlation structures exist
among features and between features and labels. For example,
graph convolutional networks are a promising new way of
encoding structural information from molecular graphs104 and
can give application-specific chemical fingerprints that are more
specialized for drug response or combination therapy discovery.
Another fruitful direction is the use of transfer learning to leverage
an abundance of omics data already available. The main obstacle
for transfer learning is the large discrepancies between the
techniques and experimental protocols used for different studies
which lead to batch effects that violate the assumptions on which
deep learning relies to generalize to new datasets. The creation of
domain adaptation techniques, similar to computer vision105,
specific for omics data will be of immense help in enabling
transfer learning. Still, creating architectures with an effective
inductive bias for processing omics data is difficult since it is not
possible to just rely on the human brain for inspiration like in
image analysis. Thus, neural architecture search techniques which
remove humans from the design loop by automating the creation
and testing of architectures are of key importance in making deep
learning more successful in drug response prediction106. It has
recently been shown that the success of architecture search
techniques depends significantly on careful design of the search
space107. This requires encoding prior knowledge about poten-
tially effective architecture choices which is certainly less difficult
than specifying an entire architecture, but still remains challen-
ging. Deep learning can certainly help in better understanding
cancer biology by predicting binding sites or discovering new
biomarkers by analyzing RNA transcripts47,108,109. In fact, deep
learning has also been used to predict protein-protein interac-
tions109 which are of increasing interest as potential targets for
cancer therapies110, so deep learning will have an impact on both
drug discovery and drug response prediction.
The problem of predicting the optimal treatment or combina-

tion of treatments for a cancer patient remains unsolved. The
approaches reviewed above seek to bring recent advances in
machine learning to bear on this challenge, leveraging the
growing high-throughput preclinical screening data and new
technologies allowing the profiling of tumors on a single-cell level.
Promising results in this area should encourage both the
investigators working on developing cheaper and more precise
high-throughput screens to enable further data collection as well
as ML method developers to develop novel tools incorporating

peculiarities of cancer biology. While there remains much work to
be done, the field is nascent and offers a path to a truly
personalized approach to oncology.
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