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Abstract

IMPORTANCE Machine learning algorithms could identify patients with cancer who are at risk of

short-termmortality. However, it is unclear how different machine learning algorithms compare and

whether they could prompt clinicians to have timely conversations about treatment and end-of-

life preferences.

OBJECTIVES To develop, validate, and compare machine learning algorithms that use structured

electronic health record data before a clinic visit to predict mortality among patients with cancer.

DESIGN, SETTING, AND PARTICIPANTS Cohort study of 26 525 adult patients who had outpatient

oncology or hematology/oncology encounters at a large academic cancer center and 10 affiliated

community practices between February 1, 2016, and July 1, 2016. Patients were not required to

receive cancer-directed treatment. Patients were observed for up to 500 days after the encounter.

Data analysis took place between October 1, 2018, and September 1, 2019.

EXPOSURES Logistic regression, gradient boosting, and random forest algorithms.

MAINOUTCOMES ANDMEASURES Primary outcomewas 180-daymortality from the index

encounter; secondary outcomewas 500-daymortality from the index encounter.

RESULTS Among 26 525 patients in the analysis, 1065 (4.0%) died within 180 days of the index

encounter. Among those who died, themean age was 67.3 (95% CI, 66.5-68.0) years, and 500

(47.0%)werewomen. Among thosewhowere alive at 180 days, themean agewas 61.3 (95%CI, 61.1-

61.5) years, and 15 922 (62.5%)werewomen. The populationwas randomly partitioned into training

(18 567 [70.0%]) and validation (7958 [30.0%]) cohorts at the patient level, and a randomly

selected encounter was included in either the training or validation set. At a prespecified alert rate of

0.02, positive predictive values were higher for the random forest (51.3%) and gradient boosting

(49.4%) algorithms compared with the logistic regression algorithm (44.7%). There was no

significant difference in discrimination among the random forest (area under the receiver operating

characteristic curve [AUC], 0.88; 95% CI, 0.86-0.89), gradient boosting (AUC, 0.87; 95% CI,

0.85-0.89), and logistic regression (AUC, 0.86; 95%CI, 0.84-0.88)models (P for comparison = .02).

In the random forest model, observed 180-day mortality was 51.3% (95% CI, 43.6%-58.8%) in the

high-risk group vs 3.4% (95% CI, 3.0%-3.8%) in the low-risk group; at 500 days, observedmortality

was 64.4% (95%CI, 56.7%-71.4%) in the high-risk group and 7.6% (7.0%-8.2%) in the low-risk group.

In a survey of 15 oncology clinicians with a 52.1% response rate, 100 of 171 patients (58.8%)who had

been flagged as having high risk by the gradient boosting algorithm were deemed appropriate for a

conversation about treatment and end-of-life preferences in the upcoming week.
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Abstract (continued)

CONCLUSIONS ANDRELEVANCE In this cohort study, machine learning algorithms based on

structured electronic health record data accurately identified patients with cancer at risk of short-

term mortality. When the gradient boosting algorithm was applied in real time, clinicians believed

that most patients who had been identified as having high risk were appropriate for a timely

conversation about treatment and end-of-life preferences.

JAMA Network Open. 2019;2(10):e1915997. doi:10.1001/jamanetworkopen.2019.15997

Introduction

Amongpatientswith cancer, early advance care planning conversations lead to care that is concordant

with patients’ goals andwishes, particularly at the end of life.1,2Nevertheless,most patientswith cancer

diewithout a documented conversation about their treatment goals and end-of-life preferences and

without the support of hospice care.3-6A key reason for the dearth of such conversationsmay be that

oncology clinicians cannot accurately identify patients at risk of short-termmortality using existing

tools.7,8Prognostic uncertainty and optimismbiasmay lead patients and clinicians to overestimate life

expectancy, which can delay important conversations.9-13While prognostic aidsmay inform better

prognoses, existing prognostic aids do not apply to all cancers,14,15 do not identifymost patientswhowill

diewithin 6 to 12months,16 and require time-consuming data input.17

Recent advances in computational capacity andmachine learning (ML) allowmore accurate

prognoses bymodeling linear and nonlinear interactions amongmany variables.18-20Machine

learning algorithms based on electronic health record (EHR) data have been shown to accurately

identify patients at high risk of short-termmortality in general medicine settings,21,22 and oncology-

specific ML algorithms can accurately predict short-term mortality among patients starting

chemotherapy (eTable 1 in the Supplement).19,20However, there are several concerns about

ML-based prognostic tools that limit clinical applicability in oncology. First, to our knowledge, no

study has assessed whether novel ML prognostic algorithms improve on traditional regression

models in the oncology setting. Second, it is unclear whether oncologists believe that patients

flagged byML algorithms are appropriate for conversations about goals and values.

We hypothesized that ML algorithms could accurately identify all patients with cancer who are

at risk of short-term mortality and that clinicians would believe that most patients who had been

identified as high risk by the algorithmwere appropriate for a conversation about goals and values.

We developed, validated, and compared 3MLmodels to estimate 6-monthmortality among patients

seen in oncology clinics affiliated with a large academic cancer center. We then assessed the

feasibility of using real-time ML predictions in a community oncology practice to flag patients who

may benefit from timely conversations about goals and values.

Methods

Data Source

Wederived our cohort frompatients receiving care atmedical oncology clinics at theUniversity of

PennsylvaniaHealth System (UPHS)whowere listed in Clarity, an Epic reporting database that contains

individual EHRs for patients, including data on demographic characteristics, comorbidities, and

laboratory results. Health insurance claimdatawere not available for this study. Our study followed the

Transparent Reporting of aMultivariable PredictionModel for Individual Prognosis or Diagnosis (TRIPOD)

reporting guideline for predictionmodel development and validation.23 This projectwas determined to

qualify as quality improvement by the University of Pennsylvania institutional review board; need for

informed consentwaswaived.
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Study Population

To develop our model, the cohort consisted of patients 18 years or older who had outpatient

encounters with the listed specialties of oncology or hematology/oncology at 1 of 11 UPHS outpatient

sites between February 1, 2016, and July 1, 2016. Patients were not required to have received

cancer-directed treatment to be included in this study.

Features

Our data set included 3 broad classes of variables (ie, features) that are commonly available in EHRs:

(1) demographic variables (eg, age and sex); (2) Elixhauser comorbidities,24 and (3) laboratory and

select electrocardiogram data. To transform raw EHR data into variables in our predictionmodel, we

collected a complete history of every diagnosis code assigned to the patient prior to the encounter

in question. Using International Classification of Diseases, Ninth Revision (ICD-9) and ICD-10, all

diagnosis codes were categorized into 31 Elixhauser comorbidities (eMethods in the Supplement);

1 991 473 of 3 814 582 ICD-9 and ICD-10 diagnosis codes (52.2%) were classified as an Elixhauser

comorbidity. For each encounter, we generated counts of the number of times each Elixhauser

condition was ever coded (ie, total count) before the index encounter date. The purpose of

generating a total count was to account for long-standing comorbidities before the index encounter

that may have prognostic significance. To account for differential presence in the UPHS system and

the development ofmore acute conditions, we generated counts of Elixhauser codes in the 180 days

before the index encounter date (ie, recent count).

We analyzed all laboratory data in the 180 days before the index encounter date; only the 100

most common laboratory result types (listed by result name) were used in the models. For each

laboratory result type, the following features were generated: proportion of results that were

ordered as stat (range, 0-1), count of unique results, minimum andmaximum values, SD of values,

first recorded laboratory result, and last recorded laboratory result. No comorbidity or laboratory

data after the index encounter date were included in model predictions.

All missing variables in the training set were imputed as 0 for count variables and usingmedian

imputation (ie, missing values were replaced by the median of all values) for noncount variables.25

The primary outcome of death was not included in the predictionmodel.

For all variables, we used several standard feature selection strategies, including dropping

0-variance features and highly correlated variables (eMethods in the Supplement). This process

arrived at 559 features to include in all models (eTable 2 in the Supplement).

Outcome

The primary outcomewas 180-daymortality from the date of the encounter at an oncology practice.

Date of death was derived from the first date of death recorded in either the EHR (from the Clarity

database) or the Social Security Administration (SSA) Death Master File, matched to UPHS patients

by social security number and date of birth. The SSA Death Master File contains information on the

death of anyone holding a social security number as reported by relatives, funeral directors, financial

institutions, and postal authorities.26 In a secondary analysis, we analyzed 500-day mortality from

the encounter to determine the validity of the algorithms in identifying risk of long-termmortality.

Machine Learning Algorithms

The study population was randomly split into a training cohort, in which themortality risk algorithms

were derived, and a validation cohort, in which the algorithmswere applied and tested. The training

cohort consisted of 70% of the UPHS cohort, and the validation cohort consisted of the remaining

30%.We randomly split our cohort at the patient level so that patients could not appear in both the

training and validation sets. After random assignment, we selected 1 encounter per patient at

random so that there was only 1 observation per patient in the training and validation sets. Patients

were observed for up to 500 days after the index encounter. We derived 3 ML algorithms from the

training data: a logistic regressionmodel and 2 ensemble tree-basedML algorithms, ie, random forest
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and gradient boosted trees. We chose to use random forest and gradient boosting algorithms

because they have been shown to identify patients at risk of short-termmortality based on

structured EHR data and were easily trained using UPHS health records.19,21We derived the logistic

regression model using stepwise variable selection with backward elimination, resulting in a final

model with 34 variables (eMethods in the Supplement). For the random forest and gradient boosting

algorithms, hyperparameters were determined by using a grid search and 5-fold cross-validation on

the training cohort to determine the values that led to the best performance. Further details on the

MLmodels are presented in the eMethods in the Supplement. We did not recalibrate models after

validation. All data and code are publicly available.27

Variable Importance

Variable importancewas determined by the coefficient absolute value for the logistic regressionmodel

and selection frequency for the random forest and gradient boostingmodels. The technique of using

selection frequency to determine variable importance inMLmodels has been described previously.22

Clinical Feasibility Assessment

To determine the feasibility of anMLmodel prompting conversations about goals and values, we

created weekly lists of patients with 30% or greater risk of 6-monthmortality based on predictions

from the gradient boosting algorithm for 1 UPHS community-based general hematology/oncology

practice. We chose to present the gradient boosting model a priori because previous analyses have

suggested that such models have high area under the receiver operating characteristic curve (AUC)

and positive predictive value (PPV) for predicting 6-month mortality.19 To generate real-time

predictions, we used an older version of the gradient boosting model that did not incorporate robust

feature selection or hyperparameter optimization butwas part of our initial clinical feasibility testing;

performance characteristics of this oldermodel are reported in eTable 3 in the Supplement.We chose

the 30% risk threshold based on expert consensus from the clinicians in the study and a previous

analysis of a similar algorithm used to help direct inpatient palliative care consults.28 For 4

consecutive weeks in October 2018, we provided 15 clinicians with printed lists of high-risk oncology

patients in the practice who had been identified as having high risk by the algorithm and had

appointments in the upcoming week. At a weekly practice meeting, clinicians indicated yes or no for

each patient appointment in the upcoming week to indicate whether that patient was appropriate

for a conversation about goals and end-of-life preferences. For clinicians who completed the survey,

we calculated proportions of patients identified as having high risk who were indicated as

appropriate for such conversations. TheWilcoxon rank sum test was used to compare predicted

6-monthmortality risk between patients deemed as appropriate vs others on the high-risk lists.

Statistical Analysis

We used descriptive statistics to compare the characteristics of the study population, stratified by

death status (ie, alive or deceased) at 6months. Algorithms were developed from the training cohort

and assessed on the independent validation cohort, which played no role inmodel development, by

calculating the PPV and AUC. As the PPV varies by risk threshold, we set the alert rate (ie, the

proportion of patient encounters flagged in the validation set) to 0.02 for each model and derived

the PPV and all other threshold-dependent performance metrics at this alert rate. Because PPV is

threshold dependent, we also compared models using the AUC, ie, the probability that a randomly

selected patient who dies during the follow-up period will have a higher risk score than a patient who

did not die. We chose to present the AUC because it is a threshold-independent measure of

discrimination. A 95% CI for each AUCwas estimated using bootstrapping.29 To compare AUCs

amongmodels, we used a permutation test with pairwise comparisons,30 using the Bonferroni

method to adjust for multiple comparisons. Statistical significance for primary analysis was set at

P < .05; following Bonferroni correction, it was set at P < .017. All tests were 2-tailed.
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To further describe model performance, we also constructedmodel calibration plots and

calculated secondary metrics of clinical predictionmodels, including accuracy and specificity. All

analyses were conducted using the Sklearn version 0.15.2 package31 in Python (Python Software

Foundation) and occurred between October 1, 2018, and September 1, 2019.

Results

Cohort Characteristics

There were a total of 62 377 encounters during the study period among 26 525 patients, which

represented the analytic cohort. The training and validation cohorts consisted of 18 567 (70.0%) and

7958 (30.0%) unique patients, respectively (eFigure 1 in the Supplement).

Study Population Characteristics

Of 26 525 patients in the training and validation cohorts, 1065 (4.0%) died during the 180-day

follow-up period. Patients alive at 6months were significantly more likely to be female (15 922

[62.5%] vs 500 [47.0%]; P < .001) and younger (mean age, 61.3 [95% CI, 61.1-61.5] years vs 67.3

[95% CI, 66.5-68.0] years; P < .001) than patients who died at 6months, although there was no

significant different in race. All characteristics, including selected comorbidities and laboratory

values, are presented in Table 1. Full distributions of comorbidities and laboratory values are

presented in eTable 4 and eTable 5 in the Supplement.

Table 1. Patient Characteristics, Stratified by Death StatusWithin 6Months of the Index Encounter

Characteristic

No. (%)

Alive at 6 mo (n = 25 460) Died at 6 mo (n = 1065)

Age, mean (95% CI), y 61.3 (61.1-61.5) 67.3 (66.5-68.0)

Race/ethnicity

White 18 920 (74.3) 767 (72.0)

Black 4163 (16.4) 191 (17.9)

Asian 535 (2.1) 16 (1.5)

Hispanic, white 346 (1.4) 14 (1.3)

Hispanic, black 96 (0.4) 3 (0.3)

East Indian 83 (0.3) 1 (0.1)

Pacific Islander 38 (0.1) 2 (0.2)

American Indian 28 (0.1) 2 (0.2)

Other 584 (2.3) 30 (2.8)

Unknown 659 (2.6) 39 (3.7)

Women 15 922 (62.5) 500 (47.0)

Selected comorbidities

Hypertension 8600 (33.8) 472 (44.3)

Renal failure 1891 (7.4) 151 (14.2)

COPD 3631 (14.3) 227 (21.3)

Congestive heart failure 1536 (6.0) 141 (13.2)

Fluid and electrolyte disorders 4526 (17.8) 417 (39.2)

Most recent laboratory values, mean (95% CI)

Hemoglobin, g/dL 12.2 (12.1-12.2) 11.0 (10.9-11.1)

Platelets, ×103/μL 227.1 (226.1-228.1) 229.8 (222.4-237.3)

White blood cells, /μL 7.0 (6.9-7.1) 8.0 (7.6-8.4)

Creatinine, mg/dL 0.95 (0.93-0.98) 1.03 (0.98-1.08)

Total calcium, mg/dL 9.3 (9.3-9.3) 9.2 (9.1-9.2)

ALT, U/L 20.0 (19.7-20.2) 26.7 (24.3-29.0)

Total bilirubin, mg/dL 0.55 (0.55-0.56) 0.83 (0.70-0.97)

Alkaline phosphatase, U/L 77.1 (76.6-77.7) 122.3 (114.5-130.0)

Albumin, g/dL 4.0 (4.0-4.0) 3.7 (3.6-3.7)

Abbreviations: ALT, alanine aminotransferase; COPD,

chronic obstructive pulmonary disease.

SI conversion factors: To convert hemoglobin to g/L,

multiply by 10.0; platelet count to ×109/L, multiply by

1.0; white blood cell count to ×109/L, multiply by

0.001; creatinine to μmol/L, multiply by 76.25; total

calcium to mmol/L, multiply by 0.25; ALT to μkat/L,

multiply by 0.0167; total bilirubin to μmol/L, multiply

by 17.104; alkaline phosphatase to μkat/L, multiply by

0.0167; and albumin to g/L, multiply by 10.
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AlgorithmVariable Importance

The top 10 variables in terms of variable importance for the 3 algorithms are shown in the Box. The

top predictors shared across all models were most recent albumin and alkaline phosphatase levels

and number of recent and total diagnostic codes for solid tumor without metastasis and metastatic

cancer. Sex, total or direct bilirubin, creatinine, and hemoglobin did not have high importance in any

model. A broader listing of variable importance can be found in eTable 6 in the Supplement.

Model Performance

Algorithm discrimination and other performancemetrics in the validation set are presented for each

model in Table 2. At the prespecified alert rate, the random forest and gradient boostingmodels had

higher PPVs (51.3% and 49.4%, respectively) than the logistic regression model (44.7%). After

adjusting for multiple comparisons, there was no significant difference in AUC among the random

forest (0.88; 95% CI, 0.86-0.89), gradient boosting (0.87; 95% CI, 0.85-0.89), and logistic

regression (0.86; 95% CI, 0.84-0.88) models (P for comparison = .02). All models had accuracy of

95% or higher and specificity of 98.9% or higher. Despite hyperparameter tuning, the random forest

Box.Variable Importance in DescendingOrder of Coefficient Effect Size for Logistic RegressionModel or

Feature Importance for RandomForest andGradient BoostingModelsa

Logistic Regression

Albumin, last laboratory value

Solid tumor, recent count of diagnostic codes

Metastatic cancer, recent count of diagnostic codes

Patient age

Alkaline phosphatase, last laboratory value

Gender

Solid tumor, total count of diagnostic codes

Blood loss anemia, total count of diagnostic codes

Red blood cells, last laboratory value

MCHC, last laboratory value

RandomForest

Metastatic cancer, recent count of diagnostic codes

Albumin, last laboratory value

Alkaline phosphatase, last laboratory value

Albumin, minimum laboratory value

Patient age

Alkaline phosphatase, maximum laboratory value

Solid tumor, total count of diagnostic codes

Solid tumor, recent count of diagnostic codes

Metastatic cancer, total count of diagnostic codes

Lymphocytes, %, minimum laboratory value

Gradient Boosting

Albumin, last laboratory value

Solid tumor, recent count of diagnostic codes

Metastatic cancer, total count of diagnostic codes

Metastatic cancer, recent count of diagnostic codes

Alkaline phosphatase, last laboratory value

Lymphocytes, %, last laboratory value

Neutrophils, %, last laboratory value

Albumin, minimum laboratory value

Alkaline phosphatase, maximum laboratory value

Lymphocytes, %, minimum laboratory value

Abbreviation: MCHC, mean corpuscular hemoglobin concentration.

a Variable importance is ranked by absolute value of coefficient for logistic regressionmodel and by selection frequency for

the random forest and gradient boosting models.

Table 2. PerformanceMetrics ofMachine LearningModelsa

Algorithm Positive Predictive Valueb AUCb Accuracy Specificity

Random forest 0.513c 0.88c 0.96c 0.99c

Gradient boosting classifier 0.494 0.87 0.96c 0.99c

Logistic regression 0.447 0.86 0.95 0.99c

Abbreviation: AUC, area under the receiver operating characteristic curve.

a Positive predictive value, accuracy, and specificity were determined by setting the alert rate in the test set for each

algorithm to 0.02. At this prespecified alert rate, the 6-monthmortality risk threshold was 0.27 for the random forest

model; 0.15 for the gradient boosting model; and 0.33 for the logistic regressionmodel.

b Coprimary performancemetric.

c Refers to the best-performingmodel(s) for each performancemetric.
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and gradient boosting algorithms both displayed evidence of overfitting, with AUCs in the training set

of 0.98 and 0.94, respectively.

Model calibration plots for the 3models appear in eFigure 2 in the Supplement. The logistic

regression and random forest models were well calibrated for patients with low probabilities of

death. When the probability of death was greater than 30%, logistic regression generally

overestimated the risk of death and random forest significantly underestimated risk of death. The

gradient boosting model systematically underestimated risk of death.

The observed survival in the 180 days after the initial encounter appears in the Figure, stratified

by patients at high risk vs patients at low risk, as identified by the random forestmodel. In sensitivity

analyses, patients at high risk had amuch lower observed 180-day survival across varying thresholds

of predicted risk (eFigure 3 in the Supplement). At a prespecified alert rate of 0.02 in the random

forest model (corresponding to a 180-daymortality risk of 27%), observed 180-daymortality was

51.3% (95% CI, 43.6%-58.8%) in the group at high risk vs 3.4% (95% CI, 3.0%-3.8%) in the group at

low risk. These differences persisted even when observing patients 500 days after the index

encounter: observed 500-daymortality was 64.4% (95% CI, 56.7%-71.4%) in the group at high risk

vs 7.6% (95% CI, 7.0%-8.2%) in the group at low risk (eFigure 4 in the Supplement).

Feasibility of Informing Conversations

In a survey of 15 providers at a community-based hematology/oncology practice, clinicians assessed

171 of the 328 potential high-risk encounters identified by an older version of the gradient boosting

algorithm. Of the 15 clinicians, 2 completed the survey all 4 weeks assessed; 9 completed the survey

2 to 3 of the 4 survey dates; and 4 completed the survey once during the 4weeks (survey response

rate, 52.1%). Of 171 patients assessed, 100 unique patients (58.8%) were indicated as appropriate for

a conversation about goals and preferences in the upcoming week. Themean predicted 6-month

mortality risk of all high-risk encounters was 0.65. There was no difference in mortality risk between

patients identified as appropriate vs others on the high-risk list (mean 6-monthmortality risk, 0.67

vs 0.64; P = .15).

Discussion

In this cohort study, MLmodels based on structured EHR data accurately predicted the short-term

mortality risk of individuals with cancer from oncology practices affiliated with an academic cancer

center. The gradient boosting and random forest models had good PPV at manageable alert rates,

and all MLmodels had adequate discrimination (ie, AUC, 0.86-0.88) in predicting 6-monthmortality.

The PPVs of the random forest and gradient boosting algorithms were much higher than historical

Figure. Observed 180-Day Survival for Random ForestModel
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estimates from clinician assessment alone.7,16Unlike standard prognostic tools, our models

incorporated variability in laboratory data andmany comorbidities into predictions. Moreover,

clinicians expressed reasonable agreement that the patients determined to have the highest

predicted risk of death by 1 of the MLmodels were appropriate for a conversation about goals and

end-of-life preferences, an early indication that ML-derived mortality predictions may be useful for

encouraging these discussions.

There are several strengths of this analysis. To our knowledge, this is the first investigation

comparingML classifiers, including regression-based classifiers, to predict mortality in a large general

oncology population.32Unlike previously developedML-based prognostic tools in oncology,19,20 our

models were trained on all patients seen at oncology or hematology/oncology practices regardless

of receipt of cancer-directed therapy. Because some patients could have received care outside of the

UPHS system and we did not have access to registry or claims data, we could not assess what

proportion of our cohort received systemic therapy after the index encounter. Furthermore,

compared with previously publishedML classifiers in oncology, our models used fewer variables, all

of which are commonly available in structured formats in real-time EHR databases. Thus, this model

is more efficient than previously trainedMLmodels in the general oncology setting. Finally, most

patients identified as having high risk by themodel were deemed appropriate for a conversation

about goals and end-of-life preferences by oncology clinicians. Our survey findings should be

interpretedwith some caution becausewe used an older version of the gradient boostingmodel with

less robust feature selection and hyperparameter optimization. Using the fully optimized version of

the gradient boosting or random forest models, which had a higher PPV than the version presented

to clinicians during the survey, may have improved results from the survey.

Machine learning classifiers, in contrast to regression-based classifiers, account for often

unexpected predictor variables and interactions and can facilitate recognition of predictors not

previously described in the literature.32,33 All models had excellent discriminative performance and

PPV for predicting 6-month mortality, particularly compared with other EHR-based gradient

boosting and random forest machine prognostic models published in the literature.19,21

In contrast to previous reports,21 there was no statistically significant difference in AUC among

the gradient boosting, random forest, and logistic regression algorithms after adjusting for multiple

comparisons, although the random forest model had an advantage compared with the logistic

regressionmodel. However, the gradient boosting and random forest models outperformed the

logistic regressionmodel in PPV, which is potentially more clinically relevant than AUC.34 Finally, all

models placed importance on variables with known prognostic implications, including age, diagnosis

of metastatic cancer, most recent albumin level, andmost recent alkaline phosphatase level. The

regressionmodel tended to place more importance on diagnosis codes and demographic

characteristics than the random forest or gradient boosting models, which placedmore importance

on recent laboratory values.

Accurate identification of patients at high risk of short-termmortality is important in oncology

given the release of recent guidelines advocating for early palliative care and advance care planning

for high-risk populations.3,4Our findings demonstrated that ML algorithms can predict a patient’s

risk of short-termmortality with good discrimination and PPV. Such a tool could be very useful in

aiding clinicians’ risk assessments for patients with cancer aswell as serving as a point-of-care prompt

to consider discussions about goals and end-of-life preferences. Machine learning algorithms can be

relatively easily retrained to account for emerging cancer survival patterns. As computational

capacity and the availability of structured genetic andmolecular information increase, we expect that

predictive performance will increase and there may be a further impetus to implement similar tools

in practice.

Limitations

There are several limitations to this analysis. First, even with robust feature selection and

hyperparameter optimization, the random forest and gradient boosting models were overfit or fit
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peculiarities in the training data that may not generalize to other data sources. Despite overfitting,

the gradient boosting and random forest models had excellent discrimination and good PPVs in the

holdout validation set, outperforming the logistic regressionmodel. Nevertheless, these models

should be validated in other oncology settings to determine generalizability.

Second, unlike previous analyses comparing ML approaches with routinely used predictive

tools,22,33 there was not a criterion-standard prognostic assessment tool for comparison, and it is

unclear whether our models outperformed other previously described tools in disease-specific

settings. A previous analysis found that ML predictions in specific subgroups outperformed

predictions from randomized clinical trials or registry data.19Our study was underpowered for these

subgroup comparisons.

Third, these tools were developed to be used in a general medical oncology setting andmay not

be generalizable to patients seen in radiation oncology, gynecologic oncology, or other oncology

specialty practices or health systems with different EHRs. However, the features used in our models

are all commonly available in structured data fields in most health system EHRs.

Fourth, our primary outcome relied in part on SSA data, which are commonly used to determine

mortality in health services research. It has recently been shown that the SSA DeathMaster File may

underestimate actual mortality rates.35We attempted to address this by supplementing SSA data

with EHR death information; however, somemisclassificationmay still exist.

Fifth, our survey only assessed the feasibility of anMLmodel prompting serious illness

conversations and was not a definitive validation of model performance. Clinicians may have had

practical reasons for indicating that high-risk patients were not appropriate for serious illness

conversations, including known patient and family preferences that would have precluded a

conversation that week. Furthermore, we only surveyed clinicians regarding patients identified as

having high risk and thus could have inadvertently biased clinicians toward responding that patients

were appropriate for a conversation about goals and end-of-life wishes.

Conclusions

This cohort study demonstrated that, in a large heterogeneous population of patients seeking

outpatient oncology care, ML algorithms based on structured real-time EHR data had adequate

performance in identifying outpatients with cancer who had high risk of short-termmortality.

According to clinician surveys, most patients flagged as having high risk by one of theMLmodels

were appropriate for a timely conversation about goals and end-of-life preferences. Our findings

suggest thatML tools hold promise for integration into clinical workflows to ensure that patients with

cancer have timely conversations about their goals and values.

ARTICLE INFORMATION

Accepted for Publication:October 4, 2019.

Published:October 25, 2019. doi:10.1001/jamanetworkopen.2019.15997

OpenAccess: This is an open access article distributed under the terms of the CC-BY License.© 2019 Parikh RB et al.

JAMA Network Open.

Corresponding Author: Ravi B. Parikh, MD, MPP, Department of Medicine, Perelman School of Medicine,

University of Pennsylvania, 423 Guardian Dr, Blockley 1102, Philadelphia, PA 19104 (ravi.parikh@pennmedicine.

upenn.edu).

Author Affiliations:Department of Medicine, Perelman School of Medicine, University of Pennsylvania,

Philadelphia (Parikh, Manz, Schuchter, Shulman, Navathe, Patel, O’Connor); Abramson Cancer Center, University

of Pennsylvania, Philadelphia (Parikh, Manz, Braun, Schuchter, Shulman, O’Connor); Penn Center for Cancer Care

Innovation, University of Pennsylvania, Philadelphia (Parikh, Manz, Schuchter, Shulman); Department ofMedical

Ethics and Health Policy, University of Pennsylvania, Philadelphia (Parikh, Navathe); Corporal Michael J. Crescenz

VAMedical Center, Philadelphia, Pennsylvania (Parikh, Navathe, Patel); PennMedicine, University of Pennsylvania,

JAMANetworkOpen | Oncology Machine Learning Approaches to Predict 6-MonthMortality Among Patients With Cancer

JAMA Network Open. 2019;2(10):e1915997. doi:10.1001/jamanetworkopen.2019.15997 (Reprinted) October 25, 2019 9/12

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.15997&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
https://jamanetwork.com/journals/jamanetworkopen/pages/instructions-for-authors#SecOpenAccess/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
mailto:ravi.parikh@pennmedicine.upenn.edu
mailto:ravi.parikh@pennmedicine.upenn.edu


Philadelphia (Chivers, Regli, Draugelis).

Author Contributions:Drs Parikh and Chivers had full access to all of the data in the study and take responsibility

for the integrity of the data and the accuracy of the data analysis. Drs Parikh and Manz contributed equally to

this work.

Concept and design: Parikh, Manz, Chivers, Regli, Draugelis, Shulman, O’Connor.

Acquisition, analysis, or interpretation of data: Parikh, Manz, Chivers, Braun, Schuchter, Shulman, Navathe, Patel,

O’Connor.

Drafting of the manuscript: Parikh, Manz, Chivers.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Parikh, Manz, Chivers.

Obtained funding: Parikh.

Administrative, technical, or material support: Parikh, Manz, Chivers, Regli, Draugelis, Shulman, Patel, O’Connor.

Supervision: Parikh, Regli, Braun, Schuchter, Shulman, Navathe, O’Connor.

Conflict of Interest Disclosures:Dr Parikh reported receiving personal fees fromGNS Healthcare; grants from

Conquer Cancer Foundation, the Veterans Affairs Center for Health Equity Research and Promotion, and the Penn

Center for Precision Medicine; and support from theMedical University of South Carolina Transdisciplinary

Collaborative Center in PrecisionMedicine andMinority Men’s Health outside the submitted work. Dr Navathe

reported receiving grants fromHawaii Medical Services Association, Anthem Public Policy Institute, the

Commonwealth Fund, Oscar Health, Cigna Corporation, the Robert Wood Johnson Foundation, and the Donaghue

Foundation; serving as an advisor for Navvis Healthcare and Agathos Inc; serving as an advisor and receiving travel

compensation fromUniversity Health System (Singapore); receiving an honorarium fromElsevier Press; receiving

personal fees from Navahealth; receiving speaker fees and travel from the Cleveland Clinic; and serving as an

uncompensated boardmember for Integrated Services, Inc outside the submitted work. Dr Patel reported being

the owner of Catalyst Health LLC, a consulting firm; having stock options from and serving on the advisory board of

LifeVest Health; having stock options from, serving on the advisory board of, and receiving personal fees from

HealthMine Services; and receiving personal fees from and serving on the advisory board of Holistic Industries

outside the submitted work. No other disclosures were reported.

Funding/Support: This work was supported by grant 5-T32-CA009615 to Dr Parikh from the National Institutes of

Health and grant T32-GM075766-14 to Dr Manz from the National Institutes of Health. Drs Parikh andManz were

supported by the Penn Center for PrecisionMedicine.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection,

management, analysis, and interpretation of the data; preparation, review, or approval of themanuscript; and

decision to submit themanuscript for publication.

Meeting Presentation: This article was presented at the Supportive Care in Oncology Symposium of the American

Society of Clinical Oncology; October 25, 2019; San Francisco, California.

REFERENCES

1. Wright AA, Zhang B, Ray A, et al. Associations between end-of-life discussions, patient mental health, medical

care near death, and caregiver bereavement adjustment. JAMA. 2008;300(14):1665-1673. doi:10.1001/jama.300.

14.1665

2. Brinkman-Stoppelenburg A, Rietjens JAC, van der Heide A. The effects of advance care planning on end-of-life

care: a systematic review. Palliat Med. 2014;28(8):1000-1025. doi:10.1177/0269216314526272

3. Ferrell BR, Temel JS, Temin S, et al. Integration of palliative care into standard oncology care: American Society

of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(1):96-112. doi:10.1200/JCO.2016.

70.1474

4. National Quality Forum. Palliative and end-of-life care: 2015-2016. http://www.qualityforum.org/Projects/n-r/

Palliative_and_End-of-Life_Care_Project_2015-2016/Draft_Report_for_Comment.aspx. Accessed August 12, 2018.

5. Schnipper LE, Smith TJ, Raghavan D, et al. American Society of Clinical Oncology identifies five key

opportunities to improve care and reduce costs: the top five list for oncology. J Clin Oncol. 2012;30(14):1715-1724.

doi:10.1200/JCO.2012.42.8375

6. Schubart JR, Levi BH, Bain MM, Farace E, GreenMJ. Advance care planning among patients with advanced

cancer. J Oncol Pract. 2019;15(1):e65-e73. doi:10.1200/JOP.18.00044

7. Christakis NA, Lamont EB. Extent and determinants of error in doctors’ prognoses in terminally ill patients:

prospective cohort study. BMJ. 2000;320(7233):469-472. doi:10.1136/bmj.320.7233.469

JAMANetworkOpen | Oncology Machine Learning Approaches to Predict 6-MonthMortality Among Patients With Cancer

JAMA Network Open. 2019;2(10):e1915997. doi:10.1001/jamanetworkopen.2019.15997 (Reprinted) October 25, 2019 10/12

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.300.14.1665&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.300.14.1665&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
https://dx.doi.org/10.1177/0269216314526272
https://dx.doi.org/10.1200/JCO.2016.70.1474
https://dx.doi.org/10.1200/JCO.2016.70.1474
http://www.qualityforum.org/Projects/n-r/Palliative_and_End-of-Life_Care_Project_2015-2016/Draft_Report_for_Comment.aspx
http://www.qualityforum.org/Projects/n-r/Palliative_and_End-of-Life_Care_Project_2015-2016/Draft_Report_for_Comment.aspx
https://dx.doi.org/10.1200/JCO.2012.42.8375
https://dx.doi.org/10.1200/JOP.18.00044
https://dx.doi.org/10.1136/bmj.320.7233.469


8. Parkes CM. Commentary: prognoses should be based on proved indices not intuition. BMJ. 2000;320

(7233):473.

9. Hoffmann TC, Del Mar C. Clinicians’ expectations of the benefits and harms of treatments, screening, and tests:

a systematic review. JAMA Intern Med. 2017;177(3):407-419. doi:10.1001/jamainternmed.2016.8254

10. Weeks JC, Cook EF, O’Day SJ, et al. Relationship between cancer patients’ predictions of prognosis and their

treatment preferences. JAMA. 1998;279(21):1709-1714. doi:10.1001/jama.279.21.1709

11. Rose JH, O’Toole EE, Dawson NV, et al. Perspectives, preferences, care practices, and outcomes among older

and middle-aged patients with late-stage cancer. J Clin Oncol. 2004;22(24):4907-4917. doi:10.1200/JCO.2004.

06.050

12. Keating NL, LandrumMB, Rogers SO Jr, et al. Physician factors associated with discussions about end-of-life

care. Cancer. 2010;116(4):998-1006. doi:10.1002/cncr.24761

13. Liu P-H, LandrumMB,Weeks JC, et al. Physicians’ propensity to discuss prognosis is associated with patients’

awareness of prognosis for metastatic cancers. J Palliat Med. 2014;17(6):673-682. doi:10.1089/jpm.2013.0460

14. Fong Y, Evans J, Brook D, Kenkre J, Jarvis P, Gower-Thomas K. The Nottingham Prognostic Index: five- and

ten-year data for all-cause survival within a screened population. Ann R Coll Surg Engl. 2015;97(2):137-139. doi:10.

1308/003588414X14055925060514

15. Alexander M, Wolfe R, Ball D, et al. Lung cancer prognostic index: a risk score to predict overall survival after

the diagnosis of non-small-cell lung cancer. Br J Cancer. 2017;117(5):744-751. doi:10.1038/bjc.2017.232

16. Lakin JR, RobinsonMG, Bernacki RE, et al. Estimating 1-year mortality for high-risk primary care patients using

the “surprise” question. JAMA Intern Med. 2016;176(12):1863-1865. doi:10.1001/jamainternmed.2016.5928

17. Morita T, Tsunoda J, Inoue S, Chihara S. The Palliative Prognostic Index: a scoring system for survival prediction

of terminally ill cancer patients. Support Care Cancer. 1999;7(3):128-133. doi:10.1007/s005200050242

18. James G, Witten D, Hastie T, Tibshirani R. Introduction to Statistical LearningWith Applications in R. New York,

NY: Springer; 2013.

19. Elfiky AA, PanyMJ, Parikh RB, Obermeyer Z. Development and application of a machine learning approach to

assess short-termmortality risk among patients with cancer starting chemotherapy. JAMA Netw Open. 2018;1

(3):e180926. doi:10.1001/jamanetworkopen.2018.0926

20. Bertsimas D, Dunn J, Pawlowski C, et al. Applied informatics decision support tool for mortality predictions in

patients with cancer. JCO Clin Cancer Inform. 2018;2:1-11. doi:10.1200/CCI.18.00003

21. Sahni N, Simon G, Arora R. Development and validation of machine learningmodels for prediction of 1-year

mortality utilizing electronic medical record data available at the end of hospitalization in multicondition patients:

a proof-of-concept study. J Gen Intern Med. 2018;33(6):921-928. doi:10.1007/s11606-018-4316-y

22. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Canmachine-learning improve cardiovascular risk prediction

using routine clinical data? PLoS One. 2017;12(4):e0174944. doi:10.1371/journal.pone.0174944

23. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of amultivariable predictionmodel for

Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162(1):55-63. doi:10.

7326/M14-0697

24. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data.Med

Care. 1998;36(1):8-27. doi:10.1097/00005650-199801000-00004

25. Batista GEAPA, MonardMC. An analysis of four missing data treatment methods for supervised learning. Appl

Artif Intell. 2003;17(5-6):519-533. doi:10.1080/713827181

26. National Technical Information Service. Limited Access DeathMaster File: final rule establishing certification

program for access to DeathMaster File in effect. https://classic.ntis.gov/products/ssa-dmf/#. Accessed August 28,

2019.

27. Github. Machine learning approaches to predict six-monthmortality among patients with cancer. https://github.

com/pennsignals/eol-onc. Accessed October 7, 2019.

28. Courtright KR, Chivers C, Becker M, et al. Electronic health recordmortality predictionmodel for targeted

palliative care among hospitalizedmedical patients: a pilot quasi-experimental study. J Gen Intern Med. 2019;34

(9):1841-1847. doi:10.1007/s11606-019-05169-2

29. Balaswamy S, Vishnu Vardhan R. Confidence interval estimation of an ROC curve: an application of

Generalized Half Normal andWeibull distributions. J Probab Stat. 2015:934362. doi:10.1155/2015/934362

30. Bandos AI, Rockette HE, Gur D. A permutation test sensitive to differences in areas for comparing ROC curves

from a paired design. Stat Med. 2005;24(18):2873-2893.

JAMANetworkOpen | Oncology Machine Learning Approaches to Predict 6-MonthMortality Among Patients With Cancer

JAMA Network Open. 2019;2(10):e1915997. doi:10.1001/jamanetworkopen.2019.15997 (Reprinted) October 25, 2019 11/12

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://www.ncbi.nlm.nih.gov/pubmed/10722295
https://www.ncbi.nlm.nih.gov/pubmed/10722295
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamainternmed.2016.8254&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.279.21.1709&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
https://dx.doi.org/10.1200/JCO.2004.06.050
https://dx.doi.org/10.1200/JCO.2004.06.050
https://dx.doi.org/10.1002/cncr.24761
https://dx.doi.org/10.1089/jpm.2013.0460
https://dx.doi.org/10.1308/003588414X14055925060514
https://dx.doi.org/10.1308/003588414X14055925060514
https://dx.doi.org/10.1038/bjc.2017.232
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamainternmed.2016.5928&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
https://dx.doi.org/10.1007/s005200050242
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2018.0926&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997
https://dx.doi.org/10.1200/CCI.18.00003
https://dx.doi.org/10.1007/s11606-018-4316-y
https://dx.doi.org/10.1371/journal.pone.0174944
https://dx.doi.org/10.7326/M14-0697
https://dx.doi.org/10.7326/M14-0697
https://dx.doi.org/10.1097/00005650-199801000-00004
https://dx.doi.org/10.1080/713827181
https://classic.ntis.gov/products/ssa-dmf/
https://github.com/pennsignals/eol-onc
https://github.com/pennsignals/eol-onc
https://dx.doi.org/10.1007/s11606-019-05169-2
https://dx.doi.org/10.1155/2015/934362
https://www.ncbi.nlm.nih.gov/pubmed/16134144


31. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;

12:2825-2830. http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf. Accessed October 9, 2019.

32. Waljee AK, Higgins PDR, Singal AG. A primer on predictive models. Clin Transl Gastroenterol. 2014;5(1):e44.

doi:10.1038/ctg.2013.19

33. Singal AG, Mukherjee A, Elmunzer BJ, et al. Machine learning algorithms outperform conventional regression

models in predicting development of hepatocellular carcinoma. Am J Gastroenterol. 2013;108(11):1723-1730. doi:

10.1038/ajg.2013.332

34. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of predictionmodels: a framework for

traditional and novel measures. Epidemiology. 2010;21(1):128-138. doi:10.1097/EDE.0b013e3181c30fb2

35. Navar AM, Peterson ED, Steen DL, et al. Evaluation of mortality data from the Social Security Administration

DeathMaster File for clinical research. JAMA Cardiol. 2019;4(4):375-379. doi:10.1001/jamacardio.2019.0198

SUPPLEMENT.

eMethods. Codes, Regression Output, andModel Parameters

eReferences.

eFigure 1. Cohort Selection Process

eFigure 2.Model Calibration Plots

eFigure 3.Observed 180-Day Survival by Varying Risk Thresholds for Random Forest Model

eFigure 4.Observed 500-Day Survival by Predicted Risk for Random Forest Model

eTable 1. Published Electronic Health Record-BasedMachine Learning Prognostic Tools

eTable 2. Variables Included inMachine Learning Algorithms

eTable 3. Performance Characteristics of Gradient BoostingModel Used for Clinician Surveys

eTable 4.Distribution of Coded Elixhauser Comorbidities

eTable 5. Baseline Laboratory and Electrocardiogram Values

eTable 6. Variable Importance byModel, Top 20 Predictors

JAMANetworkOpen | Oncology Machine Learning Approaches to Predict 6-MonthMortality Among Patients With Cancer

JAMA Network Open. 2019;2(10):e1915997. doi:10.1001/jamanetworkopen.2019.15997 (Reprinted) October 25, 2019 12/12

Downloaded From: https://jamanetwork.com/ on 08/27/2022

http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://dx.doi.org/10.1038/ctg.2013.19
https://dx.doi.org/10.1038/ajg.2013.332
https://dx.doi.org/10.1097/EDE.0b013e3181c30fb2
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamacardio.2019.0198&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.15997

