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Abstract: Background: breast cancer (BC) is the world’s most prevalent cancer in the female popula-
tion, with 2.3 million new cases diagnosed worldwide in 2020. The great efforts made to set screening
campaigns, early detection programs, and increasingly targeted treatments led to significant im-
provement in patients’ survival. The Full-Field Digital Mammograph (FFDM) is considered the gold
standard method for the early diagnosis of BC. From several previous studies, it has emerged that
breast density (BD) is a risk factor in the development of BC, affecting the periodicity of screening
plans present today at an international level. Objective: in this study, the focus is the development of
mammographic image processing techniques that allow the extraction of indicators derived from
textural patterns of the mammary parenchyma indicative of BD risk factors. Methods: a total of
168 patients were enrolled in the internal training and test set while a total of 51 patients were enrolled
to compose the external validation cohort. Different Machine Learning (ML) techniques have been
employed to classify breasts based on the values of the tissue density. Textural features were extracted
only from breast parenchyma with which to train classifiers, thanks to the aid of ML algorithms.
Results: the accuracy of different tested classifiers varied between 74.15% and 93.55%. The best results
were reached by a Support Vector Machine (accuracy of 93.55% and a percentage of true positives
and negatives equal to TPP = 94.44% and TNP = 92.31%). The best accuracy was not influenced by
the choice of the features selection approach. Considering the external validation cohort, the SVM,
as the best classifier with the 7 features selected by a wrapper method, showed an accuracy of 0.95,
a sensitivity of 0.96, and a specificity of 0.90. Conclusions: our preliminary results showed that the
Radiomics analysis and ML approach allow us to objectively identify BD.

Keywords: breast cancer; mammography; breast density; machine learning; radiomics

1. Introduction

Breast cancer (BC) is the most common cancer among women in the world; about
one in eight women will develop breast cancer in their lifetime. Breast cancer survival
rates have increased in recent years, and the number of deaths associated with this disease
has been steadily declining, largely due to factors such as early detection and personal-
ized treatment approaches. Screening for the early detection of breast cancer is of great
interest, as it significantly increases the patient’s chances of survival. It is important to
develop techniques to identify key risk factors to benefit from further screening and pre-
ventive therapies [1–3]. An important role is played by mammography, introduced in the
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1960s, which remains the gold standard for breast cancer screening [4]. Over the years,
we have witnessed the total replacement of radiographic films with solid-state detectors
capable of transforming X-rays into electrical signals to produce the final image directly
in a digital format. This technique is called full-field digital mammography (FFDM). Pro-
cessing and analyzing digital mammograms are significant challenges and can provide
quantitative results on breast characteristics. In particular, indices derived from textural
patterns of the breast parenchyma can be associated with risk factors. It is established that
women with dense breasts have a double risk of developing BC [5,6]. Furthermore, for
women with dense breasts, mammography suffers from a loss of sensitivity [7,8]. Breast
density (BD) is currently assessed only on a qualitative method by radiologist, there-
fore based only on a visual assessment, according to the international standard Breast
Imaging—Reporting and Data System (BI-RADS) in four classes [9]. However, this qualita-
tive evaluation is subject to intra and inter observer variability. Most of the inter-reader
agreement is in the two classifications at the extreme ends of the spectrum (almost entirely
fatty and extremely dense), with considerable variation in the agreement between the two
middle-density classes.

Therefore, it is desirable to implement a radiomics approach [10], to obtain a quantita-
tive evaluation in order to increase diagnostic accuracy.

The radiomic analysis includes several phases: segmentation of the target region or
volume of interest; feature extraction; reduction in the number of characteristics extracted;
analysis with the construction of a predictive model and the validation of the results [11–19].
The characteristics can be morphological and of a first, second, and higher statistical order.

Such radiomic feature extraction approaches, widely applied in the field of medical
imaging [20–60], can be combined with the use of regression and classification techniques,
with particular regard to machine learning (ML) algorithms, which have been widely
used in the medical and biomedical fields for various purposes, ranging from the study of
bio-signals and bioimaging [61–69] to the analysis of health processes [70–73].

Today, the main scenario is the oncological environment, since the characteristics of
radiomics provide data on the tumor microenvironment that could be related to the risk
of developing cancer, histological grade, prognosis, response to treatment and survival in
countless tumors [20–60].

Given the importance of breast density as a risk factor for BC and increasing attention
to screening strategies based on density and considering the low accuracy that could be
correlated with a qualitative assessment, due to the inter- and intra-reader variability in
radiologists’ interpretation, the aim of this study was to combine radiomics and ML in
order to explore the possibility of correlating statistical and textural characteristics of digital
images (such as interactions between pixels or gray levels) with BD [74–77], to obtain a
more objective evaluation. The accuracy of the classifiers on ML algorithms was then
evaluated to estimate the breast density class.

2. Methods
2.1. Study Population

This observational retrospective study was approved by the ethics committee of the
University “Luigi Vanvitelli”, Naples, Italy, with deliberation n. 469 of 23/07/2019 and,
informed consent was waived by the ethics committee. All methods were carried out
according to National regulations and guidelines.

We enrolled all consecutive women, who underwent mammography for breast cancer
screening programs, at the Breast Unit of the University Hospital “Luigi Vanvitelli”, Naples,
from June 2020 to November 2020.

A validation cohort, consisting of a total of 51 patients, obtained from the Breast Team
of “Villa Fiorita”, Capua, Italy, was considered in this study and enrolled.

Moreover, we assessed breast structures according to BI-RADS 5th [7].
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2.2. Digital Mammograms Acquisition

All the women from the internal cohort underwent two-view bilateral full-field digital
mammography according to the standard protocol, using Giotto Class (IMS GIOTTO S.p.A.,
Sasso Marconi, Bologna, Italy). All the women from the external cohort underwent two-
view bilateral full-field digital mammography according to the standard protocol, using
GE SENOGRAPHE ESSENTIAL (General Electric Company, Milano, Italy).

For both the internal and external cohort, patient images were acquired both in cranio-
caudal (CC) and medio-lateral-oblique (MLO) views, on the right and left sides.

The processing is carried out on the “FOR PRESENTATION” images, i.e., raw images,
because being proportional to the attenuation of the X-rays on the breast tissue, they retain
the original information on the attenuation of the X-rays and therefore are more suitable
for quantitative analyzes.

In total, four images are obtained for each patient. The images have a resolution of
2729 × 3580 (on average for all images) and a laptop with a 2.40 GHz Intel Core i5-9300H
CPU, 8 GB of RAM, and the NVIDIA GeForce GTX 1650 graphics card was used for the
image processing, training, and machine testing Learning algorithms.

2.3. Image Pre-Processing

Raw images undergo two main stages of preprocessing: image enhancement, to
improve the quality and information content of the original data, and breast segmenta-
tion, to identify the air-tissue interface and remove the pectoral muscle, mainly in the
MLO configuration.

In the first phase, the equalization of the histogram, which consists in applying a
logarithmic transformation in order to enhance the pixels of the image and display the
different structures of which the breast is composed, and a gray scale normalization with a
is used as a range of values between [0,1]. After seeing the image of the breast, three areas
can be distinguished: pectoral muscle, which appears whiter than the rest of the breast;
mammary tissues, consisting mainly of adipose and fibroglandular tissue; and the region
occupied by the air surrounding the breast, also called the bottom.

The purpose of the second step is to isolate only the breast tissue, i.e., the Region of
Interest (ROI), eliminating both the pectoral muscle and the background.

Segmentation was achieved using a software tool implemented in MATLAB R2007a
(The MathWorks, Inc., Natik, MA, USA), manually drawn by two expert radiologists (22
and 15 years of breast imaging experience, respectively); the segmentation was performed
by the two radiologists first separately and then together and in accordance with each other.

2.4. Features Extraction and Features Selection

A total of 229 features were extracted: 1–112 features of Haralick; 113–157 features of
Law; 158–185 features of Run Length; 186–215 features of Wavelet; 216–227 features of the
histogram; 228 Fractal dimensions; 229 Local binary patterns. The textural features were
calculated according to the Image Biomarker Standardization Initiative [78].

To eliminate redundant features, both a selection of filtering features based on corre-
lation and a selection of wrapper features were used in this study. Filter feature selection
is a method of applying statistical measures by assigning a certain score to each feature.
The characteristics are ranked by score and selected or removed from the dataset according
to the classification. Therefore, a filter characteristics selection method that searches for
correlation between characteristics using functions cor and find Correlation of the caret
package [79] with a cutoff set to 0.9 [80] was a performed.

The wrapper’s feature selection method is to set up the problem of selecting a suitable
set of features as a search problem between sets of different combinations of features. To
select the best set, you can use a predictive model in which you assign a score to each
combination. The research process can be carried out following different approaches, some
of these are for example methodical algorithms, such as “best-first” or stochastic methods
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such as “random-hill climbing” or heuristic methods. An example of a wrapper method is
Recursive Feature Elimination (RFE).

The implementation of the wrapper features selection was achieved using the rfe
and rfeControl functions of the caret package [79] by choosing an algorithm as a model
to evaluate the accuracy of a Random Forest (RF) and choosing equal to 100 the number
of features to be selected among the starting point. This value was chosen empirically,
evaluating that the maximum accuracy in relation to the number of features chosen is
already reached before the selected value, making it unnecessary to select multiple features.

2.5. Statistical and Machine Learning Analysis

A nonparametric Mann Whitney test was performed to identify statistically significant
differences in radiomic metrics among groups for age and BMI.

A p-value < 0.05 was considered significant.
The data obtained through the extraction of features and the application of a feature

selection algorithm are classified through different ML algorithms (support vector machine
(SVM), linear discrimination analysis (LDA), artificial neural network (ANN), decision tree
(DT), Random Forest Tree) [81].

To solve the problem of the unbalanced dataset, we transformed it into a binary
classification problem by associating patients with classes A and B and patients with classes
C and D [77]. The division into training and testing on the dataset was made by partitioning
the data and leaving 80% for training and 20% for model testing.

The performance of a classification can be summarized using the Confusion Ma-
trix, while for binary classification, it is also possible to add the ROC curves (Receiver
operation features).

Sensitivity, specificity, and accuracy were calculated. Sensitivity is the portion of
correctly identified true positives. Specificity is the portion of true negatives correctly
identified. Accuracy is the parameter that summarizes the effectiveness of the classification
by evaluating the proportion of correct predictions (both positive and negative) on the total
number of cases examined.

The classification analysis was cross-validated using the 10-fold cross-validation ap-
proach, and median values of AUC, accuracy, sensitivity, and specificity were obtained.

The best model was chosen considering the highest area under the ROC curve and
the highest accuracy. The McNemar test was used to assess the statistical significance of
dichotomous tables. A p-value < 0.05 was considered significant.

All analyses were performed with the R-Studio Version 1.3.959 (https://www.rstudio.
com/ Accessed date 14 March 2022) [82].

3. Results

A total of 168 patients from the internal cohort aged 38 to 84 were enrolled over a
5-month period from June 2020 to November 2020.

A total of 51 patients from the validation cohort aged 37 to 80 were enrolled over a
4-month period from January 2021 to April 2021. Patients’ characteristics are reported in
Tables 1 and 2.

To reduce the computational problem in the classification analysis considering the
small size for the four classes, we transformed the dataset into a binary dataset.

According to the binary classification, the internal dataset is transformed into
99 patients with densities A and B: fat breast; and 69 patients with densities C and D:
dense breast.

While the external validation cohort included 27 fat breast and 24 dense breast.
The results related to the features selection correlation method was a subclass of

35 textural characteristics, as shown in Table 3. No statistically significant difference
(p-value > 0.05 at Kruskal Wallis test) was found in the median values of these 35 se-
lected textural features for age subgroups (15–44; 45–54; 55–64; 65–78; ≥78 years). More-
over, no statistically significant difference (p-value > 0.05 at Kruskal Wallis test) was

https://www.rstudio.com/
https://www.rstudio.com/
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found in median values of these 35 selected textural features for BMI subgroups (Normal
(<25 kg/m2); Overweight (25–29 kg/m2); Obese (≥30 kg/m2)).

Table 1. Number of patients across breast density and age group.

Age Group (yrs)
Breast Density

A B C D

Internal Cohort

15–44 0 6 2 7

45–54 4 18 25 9

55–64 8 41 5 15

65–78 5 14 0 5

>78 0 3 1 0

Sum 17 82 33 36

Validation Cohort

15–44 0 1 1 2

45–54 1 2 2 1

55–64 1 4 3 3

65–78 2 8 5 2

>78 2 6 3 2

Sum 6 21 14 10

Table 2. Number of patients across breast density and BMI.

Age Group (yrs)
Breast Density

A B C D

Internal Cohort

Normal (<25 kg/m2) 12 15 9 8

Overweight (25–29 kg/m2) 9 17 16 10

Obese (≥30 kg/m2) 11 35 13 13

Sum 32 67 38 31

Validation Cohort

Normal (<25 kg/m2) 4 2 3 4

Overweight (25–29 kg/m2) 6 3 4 5

Obese I (≥30 kg/m2) 6 6 3 5

Sum 16 11 10 14

Following the application of the Wrapper feature selection, a subclass of 7 features
was obtained and reported in Table 4. No statistically significant difference (p value > 0.05
at Kruskal Wallis test) was found in the median values of these 7 selected textural features
for age subgroups (15–44; 45–54; 55–64; 65–78; ≥78 years). Moreover, no statistically
significant difference (p value > 0.05 at Kruskal Wallis test) was found in the median values
of these 7 selected textural features for BMI subgroups (Normal (<25 kg/m2); Overweight
(25–29 kg/m2); Obese I (≥30 kg/m2)).
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Table 3. 35 features selected with the filter features selection method.

Variable Number Variable Name

V687 Fractal dimensions

V685 95th percentile Hist feat

V684 mean 5th percentile Hist feat

V682 Entropy Hist feat

V679 Std Hist feat

V678 Min histogram value

V677 Max histogram value

V674 Kurtosis Diagonal comp. Wavelet 5◦ iteration

V672 Kurtosis Vertical comp. Wavelet 5◦ iteration

V671 Variance Vertical comp. Wavelet 5◦ iteration

V670 Kurtosis Horizontal comp. Wavelet 5◦ iteration

V669 Variance Horizontal comp. Wavelet 5◦ iteration

V669 Kurtosis Diagonal comp. Wavelet 4◦ iteration

V668 Kurtosis Vertical comp. Wavelet 4◦ iteration

V666 Variance Vertical comp. Wavelet 4◦ iteration

V665 Kurtosis Horizontal comp. Wavelet 4◦ iteration

V664 Kurtosis Diagonal comp. Wavelet 3◦ iteration

V662 Kurtosis Vertical comp. Wavelet 3◦ iteration

V660 Kurtosis Horizontal comp. Wavelet 3◦ iteration

V656 Kurtosis Diagonal comp. Wavelet 2◦ iteration

V654 Kurtosis Vertical comp. Wavelet 2◦ iteration

V652 Kurtosis Horizontal comp. Wavelet 2◦ iteration

V646 Kurtosis Horizontal comp. Wavelet 1◦ iteration

V641 Run Percentage RL 180 degrees

V636 Low Gray Level Run Emphasys RL 90 degrees

V633 Run Percentage RL 90 degrees

V631 Short Run Emphasys RL 90 degrees

V618 Short Run Emphasys RL 0 degrees

V607 Mean Map8 Law

V598 Standard Deviation Map6 Law

V569 Haralick D120 Measure of correlation I

V530 Haralick D30 Energy

V518 Haralick D15 Correlation

V473 Maximal Correl. Coeff. (Mean 0◦, 45◦, 90◦, 135◦)

V469 Haralick Entropy (Mean 0◦, 45◦, 90◦, 135◦)
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Table 4. 7 features selected with the wrapper features selection method.

Variable Number Variable Name

V558 Energy Haralick D120

V552 Entropy Haralick D60

V544 Energy Haralick D60

V566 Sum Entropy Haralick D120

V530 Energy Haralick D30

V614 Skewness Map9 Law

V516 Energy Haralick D15

Only the Energy Haralick D30 structural feature was identified as a significant predic-
tor by the two different feature selection methods.

Tables 5 and 6 reported the preliminary results of the ML algorithms tested using
the two feature selection approaches: the filter feature selection correlation method and
the feature selection wrapper method. Figures 1 and 2 report ROC curves between fat
and dense breasts considering the 35 selected textural features by means of filter feature
selection correlation method and ROC curves between fat and dense breasts considering
the 7 features selected with the wrapper features selection method.

Table 5. Classification evaluation metrics between fat and dense breasts with elimination of correlate
features (filter feature selection correlation method).

Method Accuracy 95% CI Kappa Sensitivity Specificity p Value

SVM 0.93 0.79–0.99 0.86 1.00 0.85 <0.001

Random Forest Tree 0.91 0.79–0.99 0.86 1.00 0.85 <0.001

LDA 0.84 0.66–0.94 0.68 0.778 0.92 <0.01

ANN using the
nnet package 0.74 0.55–0.88 0.47 0.778 0.69 <0.01

Decision Tree using
the Rpart package 0.74 0.55–0.88 0.47 0.778 0.69 <0.01

Note. SVM: support vector machine, LDA: linear discrimination analysis, ANN: artificial neural network.

Table 6. Classification evaluation metrics between fat and dense breasts with RFE.

Method Accuracy 95% CI Kappa Sensitivity Specificity p Value

SVM 0.93 0.79–0.99 0.87 0.94 0.92 <0.001

LDA 0.90 0.74–0.98 0.80 0.94 0.85 <0.01

ANN using the
nnet package 0.68 0.49–0.83 0.34 0.83 0.46 <0.01

Decision Tree using
the Rpart package 0.87 0.70–0.96 0.73 0.89 0.85 <0.01

Note. SVM: support vector machine, LDA: linear discrimination analysis, ANN: artificial neural network.
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The accuracy varied between 74.15% and 93.55% using the filter feature selection
correlation method; while using a feature selection wrapper method, the range of accuracy
was 87.10% and 93.55%. In both cases, the SVM algorithm, with k = 0.8675, reached the
best results (accuracy of 93.55% and a percentage of true positives and negatives equal to
TPP = 94.44% and TNP = 92.31%). The F1 score for the SVM algorithm was equal to 0.86.
The training and prediction time was a few seconds.

Considering the external validation cohort, the SVM, including the 35 predictors
obtained from the feature selection correlation method, showed an accuracy of 0.94, a
sensitivity of 0.97, and a specificity of 0.88.

Considering the external validation cohort, the SVM, as the best classifier with the
7 features selected by the wrapper method, showed an accuracy of 0.95, a sensitivity of 0.96,
and a specificity of 0.90. The best SVM classifier had the following configuration setting:
Linear SVM; kernel function: linear; kernel scale: automatic; box constraint level: 1; multi-
class method: one-vs-one; standardize data: true; optimizer options; and hyperparameter
options disabled.

4. Discussion

Breast density is reflected as an independent increased risk factor for breast cancer,
and denser breasts can mask the presence of cancer, especially in the early stages, when it
is critically important to make the diagnosis to ensure a positive prognosis for the patient.
The purpose of the study is to define a quantitative analysis of mammographic images to
support the qualitative assessment of breast density by radiologists. Although evaluation
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of BD has shown several values for estimating BC risk, a qualitative or BI-RADS approach
is highly subjective to inter- and intra-observer variability [83–85]. In contrast, radiomics
evaluation of mammographic data could allow a more complex characterization of the
intricacy and morphologic organization of the parenchymal patterns.

Radiomics analysis is based on the conversion of medical images to higher dimensional
data by using computer-based algorithms. Several authors showed that Radiomics data,
when correlated with clinical-pathological outcomes, could allow a noninvasive and cost-
effective approach to favor precision medicine [86–96]. Preliminary studies showed that
radiomics features were correlated with BC independent of BD and, therefore, had the
potential to augment BD in assessing a woman’s risk of developing cancer [97–99].

The possibility of objectively identifying risk factors, such as BD, allows for better risk
stratification of the patient and better management. We assessed 168 patients, 99 patients
with fat breast and 69 patients with dense breast. A total of 229 features were extracted, and
after a selection correlation method, we obtained a subclass of 35 textural characteristics.
Thanks to the extraction of the texture characteristics from the image dataset, it was possible
to evaluate a binary classification using ML algorithms, which led to results that show a
good agreement with the radiologist’s report; a maximum accuracy of 93.55% was obtained
in the internal cohort with an SVM method and percentage of true positives and negatives
equal to TPP = 94.44% and TNP = 92.31%. Considering the external validation cohort, the
SVM, as the best classifier with the 7 features selected by the wrapper method, showed an
accuracy of 0.95, a sensitivity of 0.96, and a specificity of 0.90.

In line with our results, also Kantos et al. [99] assessed phenotypes of mammographic
parenchymal complexity by using radiomic features and evaluated their associations with
breast density and other breast cancer risk factors. They showed that an unsupervised
clustering identified four phenotypes with increasing parenchymal complexity that were
reproducible between training and test sets. Breast density was not strongly correlated
with the phenotype category. The low- to intermediate-complexity phenotype had the
lowest proportion of dense breasts, whereas similar proportions were observed across other
phenotypes. In the independent case-control sample, phenotypes showed a significant
association with BC, resulting in a higher discriminatory capacity when added to a model
with BD and body mass index.

Li et al. [100] combined the characteristics of normal parenchyma from the contralateral
breast with radiomic features of breast tumors to improve the accuracy in the diagnosis of
BC. They showed that the performance of the combined lesion and parenchyma classifier
was better than that of the lesion features alone. Overall, six radiomic features, such as
spiculation, margin sharpness, size, circularity from the tumor feature set, and skewness
and power law beta from the parenchymal feature set, were selected [100].

Being able to objectively assess the risk of BC would be an important step to reducing
the effects of this disease, along with its mortality rate. Yala et al. [101] tried to develop
a model that used mammograms as risk factors (BD and patient age) to predict the risk
of BC. They used 71,689 images for training (2732 positive vs. 68,957 negative), 8554 for
validation (316 positive vs. 8238 negative), and 8869 for testing (269 positive vs. 8282). The
authors proposed 3 models. The first is based on a logistic regression, containing only the
risk factors; the second is based only on images, using a ResNet18 architecture. The last, a
hybrid DL model that combines data from the previous two models. The hybrid model
achieved an AUC of 0.70 [101].

Our results may be considered preliminary, on a still limited dataset, but they highlight
the possibility of obtaining promising results with a larger dataset.

A future endpoint could be to correlate imaging metrics with clinical features, such as
the age of a patient that could influence breast tissue and the possibility to obtain a hybrid
model to predict the risk of BC.

The present study has several limitations. It was performed in a retrospective manner
at a single academic institution, and the results may not generalize to other practice settings.
We did not assess the interreader agreement for the BD assessment. In addition, we did
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not evaluate the BC rate considering BD categories. Future studies should be aimed at
evaluating better BC detection in the context of dense breasts.

5. Conclusions

Our results showed that the Radiomics analysis and ML approach can objectively
identify BD. Thanks to the extraction of the texture characteristics from the image dataset
and a binary classification using ML algorithms we obtained an accuracy of 93.55% with an
SVM method and a percentage of true positives and negatives equal to TPP = 94.44% and
TNP = 92.31%.
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