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EDITORIAL 

Machine Learning as an Experimental Science 

The role of experiments in machine learning 

Machine learning is a scientific discipline and, like the fields of AI and com- 
puter science, has both theoretical and empirical aspects. Although recent 
progress has occurred on the theoretical front (see Machine Learning, volulne 
2, number 4), most learning algorithms are too complex for formal analysis. 
Thus, the field promises to have a significant empirical component for the 
foreseeable future. And unlike some empirical sciences, machine learning is 
fortunate enough to have experimental control over a wide range of factors, 
making it more akin to physics and chemistry than astronomy or sociology. 

In any science, the goal of experimentation is to bet ter  understand a class of 
behaviors and the conditions under which they occur. Ideally, this will lead to 
empirical laws that  can aid the process of theory forlnation. In our field, the 
central behavior is learning, and tile conditions involve the algorithm employed, 
the (tomain knowledge, and the environment in which learning occurs. An 
ilni)lelnented learning algorithn~ is necessary but not. sufficient: one should 
also at tempt  to specify when it operates well and the reasons for that behavior. 
Lacking theoretical evidence, experimentation is the natural alternative. 

As normally defined, an experiment involves systematically varying one or 
more independent variables and exanfining their effect on some dependent vari- 
ables. Thus, a machine learning experiment requires more than a single learn- 
ing run; it requires a number of runs carried out. under different conditions. In 
each case, one must measure some aspect of the system's behavior for compar- 
ison across the different conditions. Below we consider some dependent and 
independent variables that. are relevant to machine learning. 

Dependent measures of learning 

Most definitions of learning rely on some notion of improved performance. 
Thus, various performance measures arc tile natural dependent variables for 
machine learning experiments, just as they are for studies of human learning. 
Other measures, like 'understandability'  of the acquired structures, may also be 
informatiw~, but these are not relevant unless accompanied by an improvement 
in performance. In some cases, intuitively plausible learning methods actually 
lead to worse performance (Mint.on, 1985), so performance measures arc central 
to evaluating ahnost any learner's behavior. 

Many measures of performance are possible. For supervised concept-learning 
tasks, the most obvious metric is the percentage of correctly classified instances 
(Quinlan, 1986). One cannot use this metric for unsupervised learning tasks 
like conceptual clustering, but (me can generalize this measure as tile average 
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ability to predict a t t r ibutes '  values (Fisher, 1987). For problen~-solving do- 
mains, one can examine the number  of nodes considered during search (Minton, 
1985) or the quality of the resulting solution paths. For grannnar-acquisition 
tasks, one can measure the percentage of correctly parsed sentences and tile 
percentage of correctly rejected non-sentences. 

Given a part icular  performance eriterion, one must implement this measure 
in some fashion. In nonincremental settings, one can present the learning 
system with a training set and then evaluate its performance on a separate 
test set. Preferably, these sets should be disjoint and selected randomly fl'om 
the available data.  For incremental systems, one presents instances one at a 
t ime and, after every nth  instance, turns learning off and runs the system on 
a test set. Alternatively, one can treat  each instance as both a training and 
a test datum. In either case, the result is a learning curve that  shows change 
in performance as a function of the number  of instances encountered. Such 
curves can be very informative, but one can also condense this information 
into more succinct smmnary  measures, such as the asymptotic performance 
and the number of instances required to reach this asymptote.  

Varying the learning method 

Unlike psychology, machine learning is fortunate in that, it can experimen- 
tally study the relative effects of "nature' versus 'nurture. '  Tile simplest way 
to examine the influence of ' innate '  system features on behavior is to compare 
entirely different learning inethods on the same tasks (Schlimmer & Fisher. 
1986). Such comparat ive studies are rare in the literature, but they have an 
important  role to play in our developing science and their frequency should 
increase with tile advent of s tandard databases. 

Even when studying an individual learning method, it is best to place that  
method 's  behavior in context. One can usually compare the system's  pertbr- 
mance to that  of a 'straw man '  using a simple-minded strategy. In classification 
domains, one might simply predict the most frequently occurring class; if this 
covers 90% of the instances, then a learner that  achieves 91% accuracy is not 
impressive. In artificial domains, one can often specify optimal performance as 
well. For instance, given noisy data  with 30% mislabeled instances, a learner 
that  achieves 69% predictive accura 'y  is actually doing well. Such lower and 
upper  bounds help one calibrate tile quality of system behavior. 

Given the complexity of most learning methods, finer-grained studies can 
also examine tile effect of specific components.  For instance, if a system con- 
tains user-specified parameters,  one can determine the effect of varying their 
settings on system behavior (Lebowitz. 1987). Ideally, behavior will be "ac- 
ceptable '  within a wide range of parameter  values, and the same range will 
work for different domains. Similarly. one can examine the impact of differ- 
ent biases on an inductive learning algorithm or different domain theories on 
an explanation-based system. Again. negative results can be informatiw~; the 
system may behave well given any ~reasonable' bias or domain theory. 

Some learning systems contain a number of independent operators or com- 
ponents, and one can study each operator ' s  useflllness through 'lesions. 'i In 

IThis is a common approach in neuroscience, where researchers excise a well-defined area 
of the brain to determine its role in behavior. 



MACHINE LEARNING AS EXPERIMENTAL SCIENCE 7 

()tiler words, one (:an rml the system with and without a given component,  
measuring the difference in performance (Sehlimmer, 1987). If a component  
does not aid the overall learning process, then it. can be safely omitted. 

Although much ext)erimental learning work has focused on inductive meth- 
ods, one ('an apply the same methodology to analytic or explanation-based 
methods. In addition to varying the learning method, one can also control 
tile type and amount of domain knowledge. For instance, more specific do- 
main theories would presuinably lead to less transfer and thus slower learning. 
Future studies should examine the eifect of such factors on t)erfonnance. 

Varying the domain characteristics 

To study the effect of 'nurture '  on a leanfing system, one must vary tile 
environment or domain in which it learns. Natural  domains, such as Stepp's  
(1984) soybean data. are the most obvious because they show real-world rele- 
vance. Also, successful runs on a number of different natural  domains provide 
eviden(.e of generality. However, such enviromnents give little aid in under- 
standing tile effects of domain characteristics on learning, since they do not 
M one independently vary different ast)ects of the envh'onment. For this. 
experiments with artificial domains are essential. 

For example, noise is an important factor in classification tasks such as 
learning from examples. Having decided on the 'correct" concept description 
or decisioi1 tree. one can generate instance sets with varying amounts of noise 
in either the ('lass or a t t r ibute  infornmtion (Quinlan, 1986). Similarly, one can 
control the ('omt)lexity of the target  concet)t (e.g., the mmlber of disjmlcts) 
in the given representation language. In the same mamwr,  one can vary the 
structure inherent in data given to a conceptual ('lustering system (Fisher, 
1987) or the regularity of the prol)lem space given to a heuristics learner. Such 
domain characteristi(s may affect learning behavior in significant ways. and 
mMoul)tedly other influential features remain to t)e discovered. 

For incremental methods,  Ill(' order in which one presents instances can be 
another import.ant factor. Learning curves reflect this influence by treating 
the mlml)er of instances processe(t as an ext)lMt in(tet)endent variable. Thus. 
one way t.o study or(ter effects is to examine the learning curves that result. 
from differettt orders. Even when not focusing ou such effects, it. is important  
to i'elHelllber that they may still ()('('Ill'. 111 these c;lses,  Olle should collect a 
sample of rai~(tomly seh'('I('d leanfing ('m've,~ and reI)ort an average curve. 

Designing experiments with learning systems 

Basic experilnental methodology dictates varying the value of one indepei1- 
dent ternl whih' holding others constant, ttowever, one can apply this t)rocess 
iteratively to obtain 'fa('torial" designs in which one observes t.he dependent 
measure(s) under all combinathms of in(tepetldellt values. This lets one move 
beyond isolated effects and look fl)r interaction., between independent vari- 
ables. For hlstan('(', one might find that  learning meth<)(t A behaves l)etter 
than method B in <>he envh 'onment ,  whereas B fares bet ter  than A in another. 
Alt.ernativeIy~ (me migllt find int.era.clions t)etwee~i two compoimnts of a learn- 
ing method or lwo domain characlerislics. We believe the most unexpected 
and interestinR empirical results in machine learning will take this form. 
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In the natural sciences, one can never control all possible variables. As a 
result, researchers must collect multiple observations for each cell in their ex- 
perimental design, average the resulting values, and use statistical techniques 
to efisure that the differences between cells are justified by the data. As a 
science of the artificial (Simon, 1969), machine learning (:an usually avoid such 
complications. Given complete control over the learning algorithm and the 
environment (if using artificial domains), there is no need for repeated obser- 
vations or statistical tests. In some cases, as with instance order, practical 
concerns forbid one fi'om examining all combinations and thus repeated sam- 
piing and significance tests are required. However, these are exceptions rather 
than the rule. 

In other words, machine learning occupies a fortunate position that makes 
systematic experimentation easy and profitable. However, this does not mean 
empirical researchers should report gratuitous experiments any more than the- 
oreticians should publish vacuous proofs. Whether they lead to positive or 
negative results, experiments are worthwhile only to the extent that they illu- 
minate the nature of learning mechanisms and the reasons for their success or 
failure. Although experimental studies are not the only path to understand- 
ing, we feel they constitute one of machine learning's brightest hopes for rapid 
scientific progress, and we encourage other researchers to join in this evolution. 

Pat Langley 
University of California, Irvine 
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