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Machine learning assisted design of γ′-strengthened Co-base

superalloys with multi-performance optimization
Pei Liu1,2, Haiyou Huang 1,2✉, Stoichko Antonov 1,3, Cheng Wen1,2, Dezhen Xue4, Houwen Chen5, Longfei Li1,3, Qiang Feng1,3,

Toshihiro Omori 6 and Yanjing Su 1,2✉

Designing a material with multiple desired properties is a great challenge, especially in a complex material system. Here, we

propose a material design strategy to simultaneously optimize multiple targeted properties of multi-component Co-base

superalloys via machine learning. The microstructural stability, γ′ solvus temperature, γ′ volume fraction, density, processing

window, freezing range, and oxidation resistance were simultaneously optimized. A series of novel Co-base superalloys were

successfully selected and experimentally synthesized from >210,000 candidates. The best performer, Co-36Ni-12Al-2Ti-4Ta-1W-2Cr,

possesses the highest γ′ solvus temperature of 1266.5 °C without the precipitation of any deleterious phases, a γ′ volume fraction of

74.5% after aging for 1000 h at 1000 °C, a density of 8.68 g cm−3 and good high-temperature oxidation resistance at 1000 °C due to

the formation of a protective alumina layer. Our approach paves a new way to rapidly design multi-component materials with

desired multi-performance functionality.
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INTRODUCTION

As the key materials of the twenty-first century, aerospace alloys
are of great economic value and developmental potential. Among
them, superalloys are considered the most state-of-the-art, and
are used to manufacture aeroengine and industrial gas turbine
hot-end parts1. To safely operate in the harsh service environment,
various properties, such as the temperature capability, density,
high-temperature strength, as well as satisfactory resistance to
hot-corrosion and oxidation under severe service conditions are
highly desired2,3. Great efforts have been put forth to balance
different alloying elements such as Al, Ti, Fe, Cr, Nb, Mo, W, and Ta
in order to promote precipitation of stable γ′-Ni3(Al, Ti), or a
combination of γ′ and γ″-Ni3Nb, meanwhile optimizing different
aspects of the material performance4. However, these alloys are
reaching their temperature capability limits, and novel design
ideas are required to further improve engine performance and
efficiency.
In 2006, Sato et al.5 reported coherent, ordered L12 precipitate

(γ′) strengthening in the Co-Al-W system, which has sparked
interest in searching for novel γ′-strengthened Co-base super-
alloys with good performance to satisfy the aircraft and turbine
application requirements and replace Ni-base superalloys. In the
pursuit of higher temperature capability, many researchers have
attempted to design γ′-strengthened Co-base superalloys with a
higher γ′ solvus temperature. For example, Xue et al.6 reported a
quinary γ′-strengthened Co-base superalloy, Co-7Al-8W-4Ti-1Ta,
which has a γ′ solvus temperature of 1131 °C and maintains stable
γ′ precipitates after aging at 1050 °C for 1000 h. Furthermore, Lass
et al.7 reported the Co-30Ni-9Al-7W-4Ti-2Ta-0.1B alloy, which
possesses an even higher γ′ solvus temperature, 1218 °C, and is
devoid of any detrimental phase precipitation in the 900 °C to
1200 °C temperature range. However, lower density and improved

oxidation resistance still remain as a major hurdle for these alloys,
especially for long-term and higher temperature applications. As
these various properties often compete, improving one is often at
the expense of the other, and further improvement and
optimization is needed8.
One of the largest obstacles to the design of superalloys is the

complexity from its multiple components, each of which is added
with aim of improving a particular property. The design task is
even more difficult when the goal is to optimize multiple
properties simultaneously2. The traditional experimental alloy
design approach to search for novel advanced superalloys
through “trial and error” or intuition is thus inefficient1. Although
novel design ideas such as diffusion multiples9 and high-
throughput thermodynamic calculations7 have been introduced,
they are still not efficient enough to solve such a complicated
problem. What is needed is a high-efficiency method that enables
discovery of superior multi-component superalloys with satisfac-
tory multi-performance in an efficient and accelerated manner.
Statistical inference and machine-learning (ML) algorithms have

been recently applied to discover advanced materials10–15, and
can adaptively guide the synthesis and characterization to select
and optimize materials with desired properties. In the present
study, utilizing data from both thermodynamic calculations and
experiments, we combined ML with a global optimization algorithm
to search for an optimized composition of a γ′-strengthened
Co-base superalloy with desired multi-property performance.
Considering the efficient balance of the ambiguous interaction
among various elements and mutual inhibition between different
properties, a design strategy of sequential filters composed of
domain knowledge-driven empirical determination and ML
models for different properties is employed to screen candidates,
and an efficient global optimization (EGO) algorithm is then
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utilized to recommend potential target materials. The best alloy
obtained from only three rounds of new experiments, Co-36Ni-
12Al-2Ti-4Ta-1W-2Cr, outperforms many reported Co-base alloys
in terms of the overall performance of this study. Our approach is
general and applicable to various materials design problems
aimed at optimizing multiple properties.

RESULTS

Material design

Among all of the properties of the γ′-strengthened Co-base
superalloys, the γ′ solvus temperature is of the greatest
importance, as it determines the upper temperature capability
limit. Therefore, in order to develop advanced single crystal
materials, a high γ′ solvus temperature (>1250 °C) is needed.
Additionally, the processing window (ΔTp= Tsolidus – Tγ′-solvus ≥
40 °C), freezing range (ΔTf= Tliquidus – Tsolidus ≤ 60 °C), density (ρ ≤
8.7 g cm−3), and microstructural stability were also considered
simultaneously as targeted properties to be optimized by ML.
Owing to insufficient experimental-data in thermodynamic
databases, the oxidation resistance (giving priority to obtain
protective alumina layer) and γ′ volume fraction (Vγ′ ≥ 60%) are
considered empirically based on results of previous studies16–20,
i.e., by setting thresholds for associated elements.
The CoaAlbWcNidTieTafCrg family was chosen as the system to

be optimized. The potential composition space was defined as
follows (the concentration of elements are in atomic percent):
30% ≤ a ≤ 100%, 10% ≤ b ≤ 15%, 1% ≤ c ≤ 8%, 20% ≤ d ≤ 50%,
1% ≤ e ≤ 8%, 1% ≤ f ≤ 4%, 2% ≤ g ≤ 10%, and each alloy in this
space is constrained by a > d and a+ b+ c+ d+ e+ f+ g=
100%. The beneficial effect of Al and Cr on the environmental
resistance of superalloys is most potent among the selected
elements16. In order to meet the requirements for adequate
oxidation resistance, and based on the study of Stewart et al.17,
the lower and upper limits of the Al content in the composition
space were set as 10 at.% and 15 at.%, respectively. Despite the

negative effect of Cr on the γ′ solvus temperature, Cr still plays an
irreplaceable role in the oxidation resistance of the alloy at
elevated temperatures by stabilizing the Al2O3 oxide

18. Therefore,
we set the Cr content to be no <2 at.% and no >10 at.%. To ensure
an appropriate γ′ volume fraction19,20, while ensuring lower
density, the lower limits of the other γ′-forming elements—W, Ta,
and Ti—were all set as 1%. In this composition space, we
calculated the number of candidates that satisfy these two
constraints exhaustively with a computer program. A composition
variation step of 1 at.% for each element gives a total of 210792
unknown compositions to be evaluated.

Machine-learning strategy

The material design strategy for multi-performance optimization
in Co-base superalloys is shown in Fig. 1, and includes three parts:
sequential filters, EGO, experimental verification and feedback.
The sequential filters comprise of domain knowledge-driven
empirical determination (we define the rational composition
space by the summarized experiences from predecessors to
control the properties of compositions without available data),
computational-data driven phase classification and experimental-
data driven performance regression. Prior to any property
optimization, the first consideration is the high-temperature and
long-term microstructural stability of the alloys, as the precipita-
tion of β, μ, and other related topologically close-packed (TCP)
phases poses negative effects on the mechanical properties, and
should be avoided as much as possible21. Thus, a ML classification
model can be built and applied to obtain a potential composition
space, which contains only γ and γ′ two-phase microstructures.
However, as there is insufficient experimental-data, and the
thermodynamic database could be a better choice. Li et al.22

used the thermodynamic database-Pandat™ to design multi-
component Co-base superalloys without deleterious phases after
aging at 1100 °C for 1000 h. Zhuang et al.23 also designed a novel
γ′-strengthened Co-base wrought superalloy with desired

Fig. 1 A material design strategy for multi-performance optimization in multi-component Co-base superalloys by machine learning.
Based on the potential composition space determined by the domain knowledge, the thermodynamic calculation data are used for the phase
classification model, and the experimental-data for density, γ′ solvus temperature, solidus and liquidus are used for the corresponding
performance regression models. According to the sequential filters, these predictions are applied to screen the potential composition space
for optimization. Machine learning with the optimization algorithm is used to guide this workflow and to find promising candidates with high
γ′ solvus temperature. Four predicted alloys with the largest expected improvement (EI) values are selected to experimentally synthesize and
characterize. The experimental results (γ′ solvus temperature, solidus, liquidus and density) of successfully processed new alloys were fed back
to the regression models to refine them, and the optimization was iterated again until to find the alloys with targeted properties.
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microstructure by CALPHAD method. They mean good reliability
of this thermodynamic database in controlling phase equilibrium.
Therefore, we utilized thermodynamic computations to generate a
training dataset for the ML classification model. Specifically, we
used Pandat™ with the Co-base thermodynamic library
PanCo2018 to produce 1000 phase fraction plots to be used as
data. Within the desired temperature window between 900 °C and
1300 °C, there were 500 compositions corresponding to a γ/γ′ two-
phase microstructures, which are labeled as “0”, and another 500
compositions exhibiting the precipitation of detrimental phases,
which are labeled as “1”. In order to improve the adaptability and
robustness of the phase classification model, the chemical
compositions together with the composition-weighted mean
value of three physical parameters (valence electron number, first
energy ionization and effective charge nuclear (Clementi)) were
used as the material descriptors. The four different classification
algorithms were compared to obtain the optimal phase classifica-
tion model. Receiver operating characteristic (ROC) curves
revealing the classification capability are employed to select the
optimal model. A large area under the ROC curve (AUC) ensures a
better classifier. The mean value of 100 AUC for the gradient tree
boosting (GTB) classification model is 0.96, as shown in Fig. 2a. The
value is larger than the other models, indicating that a high
accuracy and good classification performance (details of AUC for the
four classification models are shown in the Supplementary Table 1).
Therefore, the GTB classification model was chosen as the classifier
for each alloy in the potential composition space to predict whether
it possesses only a γ and γ′ two-phase microstructure.
Regression models were built to predict the γ′ solvus

temperature, solidus, liquidus and density based on an experi-
mental dataset assembled from the literature6,7,16,18–22,24–54 and
our own experiments. The number of data points in the original

dataset for the γ′ solvus temperature, solidus, liquidus, and density
was 134, 94, 68 and 31, respectively. We built six different
regression models, and used the chemical compositions as the
descriptors. The mean-squared error (MSE) was used to evaluate
the quality of the regression models, and the model with the
minimal MSE was selected. Among the six typical models, as
shown in Fig. 2(b–e), the best model corresponding to the γ′ solvus
temperature, solidus, liquidus and density were the GTB, random
forest (RF), GTB and GTB, respectively (details of MSE values for
each regression model are shown in the Supplementary Table 2).
Then, the sequential filters were fully assembled by domain
knowledge-driven empirical determination, computational-data
driven phase classification and experimental-data driven perfor-
mance regression for the optimization of multi-property perfor-
mance. Owing to this rigorous screening by sequential filters, the
composition space originally consisting of 210,792 unknown alloys
was reduced to <6000 compositions.
In order to avoid the prediction result of the regression model

trained by small data into local extremum, we adopt a global
optimization algorithm EGO55 to search for desired alloys with
high γ′ solvus temperature (the main targeted property). We
utilized bootstrap sampling to attain the prediction value and the
associated uncertainty. In detail, we generate a bootstrap training
set by resampling the data from the original training data with
replacement. We trained 1000 models based on 1000 boot-
strapped datasets to obtain 1000 predictions of γ′ solvus
temperature for each alloy in the unexplored composition space.
The mean predicted value and standard deviation can be
estimated from the 1000 predictions to obtain the expected
improvement (EI) for each alloy (details are presented in
“Methods”). In order to select a batch of alloys as the experimental
group, the alloy with the largest EI value is selected to put into the

Fig. 2 Machine-learning models and iteration results. a The ROC curve is used to evaluate the merit of classification models. The values of
abscissa and ordinate axes are false-positive rate and true positive rate, respectively. The gray area represents the standard deviation of 100
ROC curves, and the pink dashed line represents a random classification such as coin tossing. b–e The performance of best regression model
on the testing dataset for the γ′ solvus temperature, solidus, liquidus and density, respectively. Experimental (axis of abscissa) and ML
predicted (axis of ordinate) values represent each property in the respective original dataset. The error bars are the standard deviation from
the predictions of 1000 regression models corresponding to each property, and the pink dotted line represents the same predictions from ML
models as the experimental values. f The experimental values as a function of iteration number. We iterate our experiment group for a total of
three times, and a flat tendency emerges among the highest values. The pink dashed line represents the target value.
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training data with its predicted value, then the model is refined
and another alloy with the largest EI value is chosen in the next
iteration. We repeat this procedure until we obtain a recommen-
dation of four candidate alloys as the experimental group. These
alloys are synthesized and characterized, and the results are fed
back to augment the training dataset. The loop is executed
iteratively until the alloys with good targeted performance are
discovered. As shown in Fig. 2f, we iterate our experimental group
for a total of three times until the newly made alloy’s γ′ solvus
temperature reaches >1250 °C, and the γ′ solvus temperature of
the experimental alloys no longer increases significantly.

Multi-performance optimization

The synthesized alloys from the iterative loop are given in Table 1
(more experimental results are collected in the Supplementary
information). We conducted a total of three rounds of new
experiments, fabricating four alloys each round (as for the
abbreviation of each alloy, the first number gives the iteration
round, and the second represents alloy with the highest EI value in
the respective computational loop, e.g., Alloy 1–2 is the alloy with
the highest EI value in the second computational loop of the first
round). Based on the aim of optimizing multiple properties in this
study, Alloy 1–2 is the preferred composition with the highest γ′
solvus temperature that simultaneously meets the demands of all
targeted properties. The microstructure of Alloy 1–2 is shown in
Fig. 3a. The γ′ volume fraction of the alloy is 74.5%, and it doesn’t
exhibit any detrimental phase after aging at 1000 °C for 1000 h.
The differential scanning calorimetry (DSC) heating curve of Alloy
1–2 is shown in Fig. 3b. Alloy 1–2 has a γ′ solvus temperature of
1266.5 °C, and the processing window and freezing range are
49.1 °C and 46.8 °C, respectively, which are suitable for practical
manufacturing. The density of Alloy 1–2 is 8.68 g cm−3, which is
less than the threshold set by the ML model and also less than the
density of some advanced Ni-base single crystal superalloys (e.g.,
René N6 and CMSX-10)56. This is beneficial for reducing the weight
of aero-engines and improving the overall aircraft efficiency.
Owing to the lack of high-quality experimental-data with a unified
standard, a prior knowledge approach was used to ensure good
high-temperature oxidation resistance of the superalloy, by
controlling the content of Al and Cr in the composition space
based on the valuable experiences from previous studies16–18. The
representative microstructure of the oxides and the oxidation
mass gain curves of three selected alloys (Alloy 1–2, Alloy 3-3, and
Alloy 3–4) after oxidation at 1000 °C are shown in Fig. 3(c–d). The
oxidation mass gain of Alloy 1–2 is around 1.99 mg cm−2 which is
the lowest in the three selected alloys. A protective layer of
alumina formed after isothermal oxidation, representatively
shown in Fig. 3d for Alloy 1–2.
Only three alloys did not precipitate detrimental phases after

aging at 1000 °C for 1000 h, whereas for the other recommended
alloys, all of the properties except the microstructural stability are
acceptable. Based on the experimental results, the higher the γ′
solvus temperature, the higher the needed alloying content to
achieve it, and hence the greater the propensity for precipitation
of detrimental phases. Therefore, the predicted alloy compositions
are likely located at the phase classification boundary. As it is not
trivial to make an accurate phase classification model in a multi-
component system using only thermodynamic calculation data
where phase boundaries are often not known to a high degree of
accuracy, most synthesized alloys precipitated deleterious phases.
This can be alleviated with the use of more accurate thermo-
dynamic data, or through improved fabrication techniques
utilizing vacuum induction melting and electro-slag remelting
for tight compositional control and reduction of tramp elements.
We used just three rounds of experiments to find new desired

alloys that satisfy our design targets under the ML guidance, and
the γ′ solvus temperatures of these alloys are higher whenTa
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compared with previously reported alloys7,22, without exhibiting
detrimental phases after high-temperature long-term aging, as
shown in Fig. 3e. Compared with oxidation-resistant alloy SB-CoNi-
10 that has a low density (8.65 g cm−3) and a high γ′ solvus
temperature (1196 °C)57, the γ′ solvus temperature of Alloy 1–2 is
about 70 °C higher than that of alloy SB-CoNi-10. The different
properties optimized in this study (using Alloy 1–2 as an example)
are comparable to advanced Ni-base single crystal super-
alloys56,58–60, such as CMSX-10, as shown in Fig. 3f. Such rapid
optimization and ability to achieve well-balanced properties is a
breakthrough for this class of superalloys, although a small
amount of the γ′ solvus temperature, freezing range and oxidation
resistance were sacrificed, compared to CMSX-10, in order to

improve the other targeted properties. Therefore, the best
performer, Co-36Ni-12Al-2Ti-4Ta-1W-2Cr alloy, warrants further
research whether it meets other unstudied properties require-
ments to use as single crystal material, and to serve as a base for
further optimization and development.

DISCUSSION

In order to further understand the elemental distribution to the γ

and γ′ phases of the experimental alloys, elemental mapping was
performed with high-angle annular dark field (HAADF) scanning
transmission electron microscope (STEM) nanoprobe and accurate
phase compositions were measured using atom probe

Fig. 3 The multiple properties optimized for Alloy 1–2. a The typical microstructure consists of γ/γ′ phases without detrimental phase after
aging at 1000 °C for 1000 h. b The DSC heating curve of Alloy 1–2. c Mass gain per surface area during isothermal oxidation test of the three
TCP-free alloys 1–2, 3-3, and 3–4 performed at 1000 °C. d The microstructure and distribution of selected elements for the oxide scale of Alloy
1–2 oxidized at 1000 °C for 10 h, consisting of a protective alumina layer formed on the surface of the alloy. e The three of the ten synthesized
alloys that possess the highest Tγ′-solvus and are free of any detrimental phases after aging for 1000 h at or above 1000 °C. f The radar charts of
some representative properties (γ′ solvus temperature (°C), γ′ volume fraction (%), density (g cm−3), freezing range (°C), oxidation resistance
(mass gain (mg cm−2)), and processing window (°C)) of Alloy 1–2 and advanced Ni-base single crystal superalloy56,58–60, showing the balance
of multiple properties achieved for Alloy 1–2.
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tomography (APT) for Alloy 1–2. From this data, the partitioning
coefficients KX

γ0=γ ¼ CX
γ0=C

X
γ of each element, where CX

γ0 and CX
γ are

equilibrium concentrations of element X in the γ′ and γ phases,
were calculated. As shown in Fig. 4a, distinct cuboidal γ′
precipitates are distributed in the γ phase matrix, and elements
such as Ta, Ti, W, Al, and Ni preferentially partition to the γ′ phase,
while elements such as Co and Cr partition strongly to the γ phase.
Based on the quantitative APT results (Fig. 4(b–d)), the partitioning
coefficient of Ta is the largest (KTa

γ0=γ ¼ 5:90). Hence, it has the
greatest positive effect on the stabilization of the γ′ phase as a
γ′-forming element, and is also advantageous to increase the
Tγ′-solvus. This is further supported by the Ta content of the alloy,
which has reached the upper limit of our potential composition
space during the optimization by the ML model. As a γ phase
forming element, Cr mainly partitions to the γ phase, resulting in
the smallest partitioning coefficient (KCr

γ0=γ ¼ 0:40) among the
elements, hence it is not favorable for improving the γ′ phase
stability and Tγ′-solvus of the alloy. Consequently, in agreement with
the trends obtained by ML, the content of Cr in the alloy has
reached the lower limit in the composition space. Compared to
the partitioning coefficients reported by other studies in the
existing literatures61–63, the partitioning trend and extent of each

element is consistent even though these elements contained in
different Co-base alloys. Under the same aging conditions, the
partitioning of each element is mainly affected by the chemical
compositions and ambiguous interaction among various ele-
ments. These results of partitioning coefficients demonstrate the
black-box ML models could detect the inner partitioning
mechanism of each element, and provide the active guidance in
the optimization of multiple properties and compositions.
Comparing the Co and Ni contents in the two phases, Co is the
major element of the γ matrix (59.4 at.%), followed by Ni (25.6 at.
%), while their contents are nearly equal in the γ′ phase. A higher
Ni content in the alloy expands the γ-γ′ two-phase field and
increases the stability of the alloy22,64, which is clearly captured by
the ML approach. This also suggests that the future research
direction is likely the design of Ni-rich Co-base superalloys (also
known as CoNi-base superalloy) with desired multi-properties.
To summarize, a machine-learning framework was used to

efficiently obtain optimized γ′-strengthened Co-base superalloys
through three rounds of new experiments based on a multi-
performance criterion. These alloys are comparable with some
advanced Ni-base single crystal superalloys, and warrant further
research for additional properties that were not involved in this

Co200 nmHAADF Ni Al

Ti Ta W Cr

a

b

γ′ γ

10nm

dc

Fig. 4 The microstructure characterization of Alloy 1–2 after annealing at 1000 °C for 50 h. a STEM HAADF image and elemental mapping
for the γ/γ′ precipitate using an STEM nanoprobe. b APT three-dimensional reconstruction. c A proximity histogram concentration profile of
major elements across the γ/γ′ interface based from the APT sample reconstruction. d Partitioning coefficients of solute elements. The yellow
bars represent the elements that preferentially distribute in the γ′ phase (KX

γ0=γ > 1), and the purple bars represent the elements that partition

strongly to the γ phase (KX
γ0=γ < 1).
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study (e.g., creep and fatigue) to determine whether they meet
the requirements for industrial application. Benefiting from the
use of sequential filters and EGO algorithm, multiple optimized
properties are balanced efficiently, and the time and cost of
material discovery are greatly reduced. Specifically, the introduc-
tion of sequential filters driven by domain knowledge and
machine-learning models greatly narrows the vast composition
space to be optimized, resulting in the best performer, Co-36Ni-
12Al-2Ti-4Ta-1W-2Cr, obtained by only three rounds of new
experiments assisted with EGO. Our research provides a fast and
efficient machine-learning method to optimize multiple properties
of superalloys, which also showcases a typical case study for
utilizing machine learning in extremely complex material design
problems. This material design strategy driven by machine
learning is general and is not limited to the multi-performance
optimization of superalloys but also applicable to other multi-
component materials such as high-entropy alloys, superconduc-
tors, ceramics and perovskite-type materials, etc. It provides a new
material design method for the research and development of
advanced materials.

METHODS

Machine-learning models

The logistic regression, decision tree, AdaBoost and GTB classification
algorithms were used to train these classification models, and the
hyperparameters of each model were tuned by ten-fold cross-validation.
The ROC curve is very effective in evaluating the performance of the binary
classification model. The closer the curve is to the upper left corner, the
higher the reliability of the classification model. The AUC value is the area
under the ROC curve, and can be used to quantify the merit of the ROC
curve. The closer the AUC value is to 1, the better the performance of the
model. We utilized the method of hold-out to obtain a reliable AUC value,
90% of the original data were randomly chosen as training set to train the
model and 10% of the data were used as a testing set to verify the
predictive capability of the model. Thus, 100 models of four different
algorithms were obtained. The mean value of 100 AUC values was taken as
the metric to reflect the classification capability of the model. The method
of hold-out was also used to train the performance regression models of
solidus, liquidus and density. The 1000 models of the AdaBoost, decision
tree, support vector machine with a kernel of radial basis function, k-
nearest neighbors, RF and GTB regression algorithms were used to build
the regression models based on the original dataset. The MSE=Pn

i¼1 yi � ŷið Þ, (where (yi) is the true value and (ŷi) is the predicted value)
was used to evaluate the predictive capability of different regression
models, and the models with the minimal MSE (the mean MSE value of
1000 models) was selected for use.

Efficient global optimization

In the present study, we use a powerful optimization strategy called EGO,
which can balance the exploitation and exploration by an adaptive
iteration loop, shown in Fig. 1. Expected improvement (EI) is employed to
select the next experimental candidate, such as an alloy with higher γ′
solvus temperature. Subsequent alloy synthesis and experiments allow an
iterative improvement of the surrogate model by incorporating the
measured results into the training dataset. The calculation of EI is given by
EI= σ[φ(z)+zΦ(z)], where z= Tγ′-solvus– μ*)/σ and μ* is the maximum γ′
solvus temperature in the original dataset, φ(z) and Φ(z) are the standard
normal density and cumulative distribution functions, respectively. It can
be seen that the EI is not only related to the exploitation (model-predicted
value u), but also to the exploration (uncertainty of prediction σ).
Maximizing EI provides an optimization approach to balance these two
extremes and help to navigate to the target alloy efficiently. This machine-
learning procedure was implemented in Python using the publicly
available library of Numpy/Scipy and scikit-learn (version 0.19.1).

Experimental process

Raw metals with purity higher than 99.95% were used, and the oxides and
impurities on the surface of the raw metals were removed before
processing the alloy. In order to ensure the homogeneity of the alloy
composition and facilitate comparison, the alloy button ingots were

prepared by vacuum arc melting, where each 30 g alloy was melted at
least six times. The Archimedes displacement principle was applied to
measure the density of each alloy five times and the mean value was
taken. After ultrasonic cleaning, the as-cast ingot was sealed in quartz tube
filled with high purity argon, and then subjected to solution heat
treatment at 1200–1280 °C for 24 h followed by air cooling. All samples
were cut and subsequently aged at 1000 °C for 50 h followed by water
cooling. The γ′ solvus, solidus and liquidus temperatures were determined
by DSC (NETZSCH STA 449C) with high purity Ar flow. The samples for DSC
of size φ 3mm× 1mm were tested in a temperature range of 800–1400 °C
at a heating rate of 5 °C min−1. The line intercept method was used to
measure the transformation temperatures based on the DSC heating
curves. All samples were metallographically prepared using standard
techniques, and etched for a few seconds using a solution of HNO3: HCl:
H2O= 1: 1: 1. The microstructure was characterized with a Zeiss
GeminiSEM 300 field-emission scanning electron microscope (FE-SEM) in
secondary electron imaging mode, and equipped with energy-dispersive
X-ray spectroscopy (EDS) detector, used to measure the alloy composition.
The crucible used for isothermal oxidation was pre-fired at 1050 °C until
the weight change of the crucible was <2 × 10−4 g, and then considered to
be constant weight. Isothermal oxidation experiments were carried out at
1000 °C for 100 h. The weight of the sample and crucible was measured by
an electronic analytical balance with sensitivity down to 10−5 g before and
after oxidation. The oxidized samples Ni-plated to preserve the oxide
layers. The oxides microstructure was characterized with the FE-SEM in
backscattered electron imaging mode, and EDS was used to detect the
element distribution of the oxides. Thin foil specimens for the TEM
observation were prepared by ion-thinning. STEM observations and
energy-dispersive X-ray spectrometry (EDS) analysis were performed in a
Cs-corrected FEI Titan G2 60–300 ChemiSTEM, equipped with Super-X EDS
detectors and operated at 300 kV. Specimens for APT analysis were then
extracted and fabricated from select sites using a dual beam SEM/focused-
ion-beam instrument via an in-situ lift-out protocol. A final cleaning
procedure was carried out at 5 kV and 15 pA beam current to remove
regions severely damaged by the high-energy (30 kV) Ga ion beam. The
APT measurements were conducted using a LEAP™ 5000XR instrument
(Cameca Instruments). Laser pulsing mode operation was applied at a
pulse repetition rate of 125 kHz and a pulse energy of 40 pJ. The
specimen’s base temperature was kept at 30 K, and the target detection
rate was set to five ions detected every 1000 pulses. Data analysis was
performed using the software package IVAS™ 3.8.2. To further study the
microstructural stability of the alloy, the experimental samples were
subjected to long-term aging of 1000 h at 1000 °C, respectively. The γ′
volume fraction was obtained from the mean value of five different
microstructure images by Image-Pro plus 6.0 software.
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