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Machine-learning-assisted discovery of polymers with high

thermal conductivity using a molecular design algorithm
Stephen Wu 1,2, Yukiko Kondo3, Masa-aki Kakimoto3, Bin Yang4, Hironao Yamada1, Isao Kuwajima3, Guillaume Lambard3,

Kenta Hongo 3,5,6, Yibin Xu3, Junichiro Shiomi3,7, Christoph Schick4,8, Junko Morikawa3,9 and Ryo Yoshida 1,2,3

The use of machine learning in computational molecular design has great potential to accelerate the discovery of innovative
materials. However, its practical benefits still remain unproven in real-world applications, particularly in polymer science. We
demonstrate the successful discovery of new polymers with high thermal conductivity, inspired by machine-learning-assisted
polymer chemistry. This discovery was made by the interplay between machine intelligence trained on a substantially limited
amount of polymeric properties data, expertise from laboratory synthesis and advanced technologies for thermophysical property
measurements. Using a molecular design algorithm trained to recognize quantitative structure—property relationships with
respect to thermal conductivity and other targeted polymeric properties, we identified thousands of promising hypothetical
polymers. From these candidates, three were selected for monomer synthesis and polymerization because of their synthetic
accessibility and their potential for ease of processing in further applications. The synthesized polymers reached thermal
conductivities of 0.18–0.41W/mK, which are comparable to those of state-of-the-art polymers in non-composite thermo-plastics.
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INTRODUCTION

The ability of machine intelligence trained on massive amounts of
data to match or even outperform humans has been demon-
strated in intellectually demanding tasks across various fields.1–3

As such, there is growing interest in the use of machine learning
(ML) to reap substantial time and cost savings in the development
of new materials.4,5 In particular, remarkable advances have
recently been made in ML for de novo molecular design.6–10 The
goal of computational molecular design is the identification of
new promising molecules whose physicochemical properties meet
arbitrary given requirements. Despite the growing potential of ML
in materials science, its practical impacts have not been fully
verified. To the best of our knowledge, the emphasis of recent
studies has largely been on algorithmic developments, whereas
much less work has been done on the experimental verification of
computationally designed materials (except for a few works11,12).
In the particular case of polymers, it is unprecedented that
designed polymers were synthesized and experimentally con-
firmed. Major challenges in polymer informatics, for example, arise
from the lack of data on polymeric properties and from the
structural complexity/diversity of polymers.13–15 In this study, we
demonstrate the successful discovery of new polymers with high
thermal conductivity that were designed by our ML algorithm,
referred to as Bayesian molecular design.16 This proof-of-concept
study intended to highlight a promising new example of polymer
informatics and to raise several issues that should be addressed to
enable the widespread use of ML.

This study focused on the design of a chemical structure in the
repeat unit of a polymer. The objective of molecular design is to
generate promising hypothetical chemical structures that exhibit a
set of desired properties. The chemical space of small organic
molecules is known to consist of as many as 1060 potential
candidates,17 whereas the total number of currently known
compounds is at most 108.18 The emergence of ML algorithms,
which can exhaustively search this very large space, can
contribute significantly to expanding the frontier of the vast
chemical universe. In the history of chemical informatics, there
have been extensive studies into computational molecular design.
Their origin dates back to the pioneering work by Venkatasu-
bramanian et al.19 Most such studies have focused on the use of a
limited number of chemical fragments and their stochastic
recombination to sequentially transform starting compounds into
desired targets.20,21 However, this approach significantly narrows
the design space. To broaden the search space, more advanced
ML techniques using probabilistic language models have
appeared in recent years.7,10,22,23 The Bayesian method developed
in our previous work has also contributed to technological
advancement in this stream.16

Despite remarkable methodological innovations in computa-
tional molecular design, there are still barriers to achieving a
successful proof of concept. Such barriers arise mainly from the
substantially limited amount of polymeric properties data, in
addition to the synthetic difficulty of designed candidates,
disagreements between expert knowledge and machine-acquired
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intelligence and the difficulty of meeting stringent requirements in
practical applications. Indeed, the experimental data set on
thermal conductivity that we used was limited in size, as it
consisted of only 28 training instances. The limited amount of
training data rendered ordinal ML methods impractical for
prediction, as demonstrated. In addition, as a second-rank tensor,
thermal conductivity can vary substantially across polymer
processing operations, such as laminating films and spinning
fibres, where anisotropic molecular orientation is introduced. Most
of these variations have not been recorded in the current
database. Therefore, we failed to derive practically useful
prediction models directly from the given data.
Our ML workflow was designed to overcome the issue of

limited data. A solution to mitigate this barrier was to exploit
proxy properties related to thermal conductivity as alternative
design targets. In the Bayesian molecular design process that
generated a library of virtual chemical structures, we specified a
higher region of glass transition temperatures and melting
temperatures as alternative design targets, for which sufficient
data were given to obtain reliable prediction models. We know
empirically that polymers with higher glass transition tempera-
tures tend to be achieved by rigid structures, which result in
higher thermal conductivity. In addition, taking into account the
ease of processing of polymers, we selected designed candidates
by eliminating those with exceedingly high glass transition
temperatures. Furthermore, an ML framework referred to as
“transfer learning” was introduced to obtain a thermal conductiv-
ity model with the given small data set. For the given target
property to be predicted from the limited supply of data, models
on physically related proxy properties were pre-trained using an
adequate amount of data, which captured common features
relevant to the target task of predicting thermal conductivity. Re-
purposing such machine-acquired features for the target task
produced an outstanding achievement in the prediction accuracy

even with the exceedingly small data set. We used the transferred
thermal conductivity model to screen promising candidates over
the virtual library that was produced by targeting the glass
transition and melting temperatures, and then proceeded with
laboratory synthesis and experimental characterization of the
thermophysical properties. Figure 1 outlines the analytic workflow
of this study. R codes to reproduce key results are available at
https://github.com/stewu5/HighTCond_Polymer_iqspr.
Finally, three chemical structures were selected from a list of

1000 designed candidates on the basis of criteria involving
synthetic accessibility (SA) and ease of processing, which are
required for the practical use of enhanced newly designed
polymers with high thermal conductivity. Then, the monomers of
these candidates were synthesized and polymerized using retro-
synthetic routes designed by synthetic chemists. The synthesized
polymers exhibited a glassy state, and two of them were
crystallized by annealing. We also observed the change in the
crystal system resulting from additional chemical reaction during
annealing. Their thermal conductivities reached 0.18–0.41 W/mK
within non-composite thermo-plastics in amorphous and semi-
crystalline states.

RESULTS

Data

PoLyInfo24 has recorded approximately one hundred kinds of
polymeric properties of chemical structures in terms of the
constitutional repeat units. Narrowing the focus to 14,423 unique
homopolymers in the database, we generated ML models that
describe a set of properties as a function of the chemical
structures. We extracted a total of 38,310 structure–property
relationships with respect to thermal conductivity (λ), glass
transition temperature (Tg), melting temperature (Tm) and density

Fig. 1 Machine learning (ML)-assisted de novo design and experimental validation of new polymers. a The objective of forward prediction is
to derive a model that describes polymeric properties (e.g., glass transition temperature (Tg) and melting temperature (Tm)) as a function of
chemical structures in the constitutional repeat units. The forward model trained on the data set from PoLyInfo was inverted to obtain a
backward model, which was conditioned by desired property regions (UTg and UTm ). The backward model produced a library of hypothetical
chemical structures that exhibit the desired properties. In addition, we developed a prediction model of thermal conductivity, which was
utilized in the post-screening of the produced library. Here, an ML framework called transfer learning was used to overcome the issue of
limited data on thermal conductivity: prediction models of proxy properties were pre-trained on given large data sets from PoLyInfo and QM9,
and then the pre-trained models were fine-tuned using the limited data on the target property. We did not use the transferred models directly
for the molecular design calculation because their generalization capability would likely be restricted on the design space spanned by the few
training polymers. b Analytic workflow consisting of four internal steps towards materials discovery
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(ρ), as summarized in Table 1. When multiple property values were
recorded for a polymer under the same experimental condition,
they were reduced to the mean value.
The volume of data varies significantly across different proper-

ties. For example, PoLyInfo recorded multiple values of Tg and Tm
for 5917 and 3234 unique homopolymers, respectively. In contrast,
there were 322 observations for only 28 homopolymers with
respect to λ around room temperature (10–35 °C). Moreover, λ
varied considerably even within the same polymer, as shown in
Fig. 2a (unreliable data were removed by curation). Such within-
polymer fluctuations could arise from differences in processing
operations, higher-order molecular structures or any other
measurement conditions that varied in different studies. Unfortu-
nately, such information was mostly not recorded in the database.
Consequently, supervised learning directly using the given data
on λ failed to reach desirable levels of prediction accuracy
(Fig. 3d).
The lack of data in terms of both quantity and quality prompted

us to pursue a strategic solution based on the use of Tg and Tm as

proxy target properties in the de novo design calculation, as
described later. In addition, we applied transfer learning to obtain
a prediction model on λ, which was used in the post-screening
process. In the construction of pre-trained models for transfer
learning, we utilized the four data sets from PoLyInfo and the QM9
data set25,26 that records the computational data of specific heat
capacity at constant volume (CV) for 133,805 small organic
molecules, which were calculated at the B3LYP/6-31G(2df,p) level
of quantum chemistry.

Overview of Bayesian molecular design

The objective of the de novo design calculation is to algorithmi-
cally create a chemical structure S in a polymer repeat unit, that is,
monomer, for which n polymeric properties Y= (Y1, …, Yn) lie in a
desired region U. The chemical structure S that represents a
configuration of atoms and chemical bonding is encoded as a
sequence of SMILES symbols (simplified molecular-input line-entry
system27) in which S= s1s2…sg forms a variable-length string, here
consisting of g letters. For example, a SMILES string representing

Table 1. Summary of the structure–property relationship data sets from PoLyInfo and QM9 and their classification by use

Use Database Property Number of structures Number of samples Max σ of within-polymer fluctuation Range of temperature

CMD, TLλ PoLyInfo Tg 5917 17,001 30 °C N/A

CMD, TLλ PoLyInfo Tm 3234 12,374 30 °C N/A

TLλ PoLyInfo ρ 1516 8613 0.50 g/cm3 10–35 °C

TLλ QM9 CV 133,805 133,885 0.97 cal/molK 25 °C

Post-screening PoLyInfo λ 28 322 0.10W/mK 10–35 °C

For the PoLyInfo data sets, only homopolymers that have linearly connected structures with no additives or fillers were selected: CMD, used for forward

modelling in the molecular design calculation; post-screening, used for transfer learning to obtain a screening model of λ; TLλ, used to obtain pre-trained

source models for transfer learning; σ, standard deviation; Tg glass transition temperature, Tm melting temperature

(°C)

(°C)

(g/cm3)

(W/mK)

a b

Fig. 2 Summary of PoLyInfo data. a Average properties of recorded polymers are plotted in ascending order with error bars indicating ±1σ (σ:
standard deviation). b Scatterplot matrix that summarizes the joint distribution of the five polymeric properties. CP denotes specific heat
capacity at constant pressure
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phenol (C6H6O) is C1=CC=C(C=C1)O, where C and O indicate the
aliphatic carbon and oxygen atoms, and = indicates the double
bond. The start and terminal of a ring closure are designated by a
common digit, 1 in this case, and the side chain is enclosed in
parentheses, “(” and “)”.
The Bayesian molecular design framework relies on the

statement of Bayes’ law:

pðSjY 2 UÞ / pðY 2 UjSÞpðSÞ; (1)

where p(A|B) denotes the conditional probability distribution of A
given B. ML models on n properties were trained with
structure–property relationship data sets that define the forward
model pðYjSÞ ¼

Qn
i¼1 pðYijSÞ. Imposing the desired region U on Y

provides p(Y∈ U|S) on the right-hand side of Eq. (1). This
probability evaluates the goodness of fit of S with respect to the
property requirements. The prior distribution p(S) serves to reduce
the occurrence of chemically unfavourable or unrealistic structures
in designed molecules as it assigns zero or lower probability
masses to invalid or unrealistic chemical structures. For a given p
(S), Bayes’ law inverts the forward model (S→ Y) to obtain the
backward model p(S|Y∈ U) (Y→ S). We then draw a random
sample of the SMILES string (S) from high-probability regions of
the backward model using a sequential Monte Carlo (SMC)
method28 to identify promising monomers that exhibit the
desired U. The R language library iqspr 1.016 (the latest version
is 2.4) that we developed was used to pipeline the forward and
backward calculations.
The SMC method shares a common algorithmic structure with

genetic algorithms. The prior p(S) constitutes the most important
factor that influences the structural features of the produced
sample. In the implementation of iqspr, the prior is modelled by a
probabilistic language model that we call the extended n-gram,
which takes the form pðSÞ ¼ pðs1Þ

Qg
i¼2 pðsijsi�1; ¼ ; s1Þ. The

occurrence probability of the ith letter, si, depends on the
preceding si−1, …, s1. The conditional probability p(si|si−1, …, s1)
is estimated by the frequencies of substring patterns in a training
set of existing chemical structures. The trained language model is
anticipated to successfully learn structural patterns of the existing
compounds or implied contexts of “chemically favourable or
realistic” structures. For a given randomly chosen substring si−1,
…, s1, the trained probabilistic model is used to modify the rest of
the components by recursively adding subsequent letters accord-
ing to the conditional probabilities, which encode the acquired
chemical reality. In this way, a currently given set {S1, …, SM} of M
chemical structures could be consecutively updated to a new

population. The fitness scores of the updated structures are
assessed based on the forward model. Structures with better
fitness have a better chance to survive in the next generation. This
process is iterated many times, and at the end, samples from the
targeted posterior are produced. The algorithmic details are
shown in Ikebata et al.16

As mentioned in the beginning, molecular design techniques
using probabilistic language models have appeared rapidly since
2017. The present method has some distinctive methodological
features, which are briefly noted here. One of the distinctive
features of our method is that it relies on the Bayesian framework,
which provides a natural way to pipeline the workflow between
the forward and backward prediction processes. In addition, the
Bayesian approach benefits from the principle-based handling of
“uncertainty” in the prediction models. A chemical structure S is
designed based on P(S|Y∈ U), the probability that for a given S, its
property Y lies in a desired region U in the presence of prediction
uncertainty in the trained forward model S→ Y. The design results
depend strongly on whether or not the uncertainty is considered.
Another feature lies in the architecture of probabilistic language

models. One major difficulty of constructing a SMILES generator is
associated with the rules of grammar regarding the expression of
rings and branching components. To be specific, unclosed ring
and branch indicators must be prohibited. For instance, any
strings extended rightward from a given s1:6= CC(C(C should
eventually contain two closing letters, “)”. In addition, the issue of
“long-term dependency” must be addressed: neighbours in a
string are not always adjacent in the original molecular graph. For
example, the occurrence probability of the last carbon in a
structure expressed by CCCCC(CCCCC)C should be affected more
by the letters in the main chain, that is, the first five “C” in the
string, than by the adjacent letters because the substring in the
parentheses constitutes a branch from the main chain. It is quite
difficult for ordinal language models to capture such intrinsic
patterns in SMILES representations without any special operations.
Most recent works have relied on deep neural networks (DNNs) as
molecular generators, such as Recurrent Neural Networks7 or
Variational Autoencoder.8 In general, massive numbers of training
instances are needed for such DNNs to learn the underlying high-
level contexts of chemical rules and the grammatical rules of
SMILES in fully data-driven analysis without any prior knowledge.
However, the extended n-gram that we developed is a highly
engineered model specifically developed for the ML of the SMILES
language. It required significantly less data to train than the DNNs.
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Fig. 3 Performance of forward prediction models. a, b Five-fold cross-validation of trained linear models for glass transition temperature (Tg)
and melting temperature (Tm). All predicted values in the five validation sets are plotted against observed values, denoted by blue dots (red
for the training). The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R) are shown in each plot.
c, d Validation results for the prediction model on λ that exhibited the best transferability (MAE= 0.0204W/mK) out of 1000 pre-trained
models on Tm. The prediction results of the best transferred model and a random forest model trained directly using the 28 data points for λ
(MAE= 0.0327W/mK) are shown in c, d respectively
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Forward prediction on Tg and Tm
Forward models on Tg and Tm were used as the proxy targets in
the Bayesian design calculation. The chemical structure of a
monomer was encoded into a descriptor vector of binary digits
comprised of multiple molecular fingerprints, such as the
extended connectivity fingerprint.29 For Tg or Tm, a linear
regression model, which described the polymeric property as a
function of molecular fingerprints, was trained on a random
selection of 80% of the instances of the given data in PoLyInfo.
Figure 3a, b show the prediction performance of these models on
the validation data set.

Forward prediction on λ

For the post-screening, we developed neural network models for λ
using a transfer learning technique to break the barrier of the
exceedingly limited data. First, we generated 1000 pre-trained
neural networks for Tg, Tm and ρ using the data from PoLyInfo, as
well as 1000 models for CV with the QM9 data set. Each neural
network consisted of a fully connected pyramid structure in which
the size of layers and the number of neurons were randomly
chosen. For a given pre-trained model, we refined the weight
parameters using the small data set on λ, for which the initial
values of parameters were taken from the pre-trained neural
networks of the related tasks. Among the 1000 pre-trained models
of each property, we identified the best transferable model of
predicting λ that exhibited the highest generalization capability on
the five validation sets, each randomly constructed from 20% of
the given data. Figures 3c and 4b show the performance of two
models on λ that were transferred from Tm and CV, respectively.

The model that performed best in predicting λ was transferred
from a pre-trained model of the monomer-level CV. The prediction
accuracy of the transferred model reached 0.0204 W/mK of the
mean absolute error (MAE), as the MAE was reduced by 40%
compared with that of a random forest model trained directly
using the 28 data points (MAE= 0.0327W/mK) (see Fig. 3c, d).
Further details are described in the Supplementary Information
(SI), for example, a successful transfer from Tg to λ.

Design targets

Transfer learning has substantially improved the accuracy of
predicting λ. Nevertheless, we could not dispel uncertainty in the
generalization capability because the given model was validated
only on an input subspace spanned by the 28 training polymers,
which was rather small with respect to the entire materials space.
The use of such a unreliable forward model, in turn, could lead to
significant inaccuracy or bias in designed molecules. Thus, instead
of directly targeting λ in the design calculation, we decided to use
the relatively reliable models on Tg and Tm as intermediate targets,
and the transferred model on λ was used in the post-screening
step. Though the connection between λ and these surrogate
properties has not yet been fully understood, there is some
evidence to support our strategy.
It is widely known that increasing the rigidity of polymer chains

can increase the values of Tg and Tm, consequently leading to high
values of λ. For example, it has been reported that the maximum
value of λ in a glassy phase depends on the level of Tg.

30,31

Theoretically, lattice heat conduction in crystals can be conceived
in terms of the kinetics of propagating phonons, where thermal
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Fig. 4 Summary of screening results. a Repeat units of 24 screened polymers. The synthesized polymers are numbered in red. A zoomed
version is available in SI (Fig. S3) b The predicted and observed values of λ for the 28 existing polymers recorded in PoLyInfo (grey) and the
three synthesized polyamides (coloured and numbered). c Predicted properties are shown on λ vs. SA scores. Grey dots denote the 1000
designed candidates, and the 24 screened candidates are colour coded as described in the legends on the right-hand side. The numbers are
assigned to the newly synthesized polyamides
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conductivity is determined by the heat capacity, group velocity
and mean free path (or velocity times lifetime) of phonons. Here,
velocity can be related to harmonic interatomic/intermolecular
force constants (IFCs) and the lifetime of anharmonic IFCs. Of
course, polymers are often disorderly in structure, which reduces
the mean free path so that phonons no longer propagate, and
their thermal conductivity can be expressed by the heat capacity
and mode diffusivity obtainable by harmonic IFCs.32 However, this
does not mean that disorder terminates the propagation of all
phonons. Even in amorphous polymers, some phonons can still
propagate depending on the frequency. In both scenarios
(harmonic and anharmonic), the strength of intermolecular forces
affects thermal conductivity. Therefore, we expect to see some
correlation, either directly or indirectly, between thermal con-
ductivity and Tg and Tm, which are also strongly affected by the
strength of intermolecular forces, as transition fundamentally
involves the breaking of bonds or a cooperative mode change,
where harmonic and anharmonic forces correspond to small and
large intermolecular displacements.
The observed data also showed weak positive correlations

between Tg, Tm and λ, as shown in Fig. 2b. Indeed, the success of
the model transfer from Tg or Tm to λ constitutes evidence in
favour of using Tg and Tm as proxy design targets (Fig. 3c, d and
SI). We have chosen a target design range of 200–500 °C and
300–600 °C for Tg and Tm, respectively.
High λ is produced not only by rigid polymer main chains with

high Tg or Tm but also by the highly oriented molecular chain that
is often observed in ultra-drawn fibres, axially oriented thin films
and injection-moulded pieces.33 In addition, processing ease is
indispensable for the practical use of polymeric materials to shape
them as films, fibres, moulding and so on. From the perspective of
further developments and industrial applications, we targeted
liquid-crystalline polymers (LCPs) in both the de novo design
calculation and the post-screening process. We chose this
particular target because of its practical importance in effective
thermal management applications, heat exchangers and energy
storage. In general, polymers have quite low thermal conductivity,
typically 0.1–0.2 W/mK, because of their semi-crystalline, electri-
cally insulating structures. The side chains or main chains of LCPs
make up a family of thermoplastics that exhibit high heat
resistance and tolerance, high electrical resistance and high
chemical resistance.34–36 The ordered stacked orientation along
one direction of LCPs significantly increases their thermal
conductivity in the direction of the molecular orientation. In this
study, LCP likeliness was set as a design objective because of the
intrinsic processability and rigidity of LCPs to enhance thermal

conductivity in further applications. We compiled a list of LCP-like
substructures (Fig. 5) based on expert knowledge. During the de
novo design calculation, sequentially generated structures were
scored higher if they contained one or more fragments in the list
so as to create a library of LCP-like structures. Thus, the forward
model in Eq. (1) takes the form
pðY 2 UjSÞ / pðYTg 2 UTg jSÞpðYTm 2 UmjSÞθ

1ðYf ðSÞ\Uf≠ϕÞ, where 1(⋅)
denotes the indicator function, which takes the value one if the
argument is true and zero otherwise. In addition to the
probabilities that Tg and Tm of S lie in the desired regions, UTg

and UTm , the additional score θ > 1 is assigned to S if its
substructures Yf(S) coincide with at least one fragment listed in
the LCP-likeliness filter Uf. Furthermore, in the post-screening step,
we once again screened out LCP-like candidates that contained
one or more fragments while assessing the predicted values of λ
and SA.

Backward prediction: generation of candidates

The iqspr package consists of two main modules: (1) ML
algorithms to train the forward prediction models and the prior
distribution and (2) the Monte Carlo generation of de novo
molecules from the backward model. The preparation of the
forward model has already been described. The prior distribution
p(S) takes the form of a probabilistic language model. We then
trained the model on the SMILES strings of the 14,423 unique
homopolymers recorded in PoLyInfo. The trained prior implicitly
encoded frequently appearing atomic configuration and chemical
bonding in the existing polymers with the given instances of the
SMILES character sequences. Monte Carlo samples drawn from
this prior are anticipated to recognize implied contexts in the
chemical language such as exclusion rules of invalid chemical
bonding, SA and chemical stability.
With the prior and the forward model to form the backward

model, the SMC calculation was executed to successively refine
SMILES strings of seed molecules such that their resulting
properties lay in the desired property region. The iqspr script
that we used is provided at the GitHub repository, https://github.
com/stewu5/HighTCond_Polymer_iqspr, along with the models
trained on Tg and Tm, and the chemical language model. We
generated 1000 promising synthetic targets with predicted
polymeric properties lying in the prescribed ranges of Tg and
Tm. Examples of the generated chemical structures are depicted in
Fig. 4a. Supplementary Movie S1 shows the process of transform-
ing chemical structures and refining the target properties.

Fig. 5 List of fragments compiled on the liquid-crystalline polymer (LCP)-likeliness filter that were used in the de novo design and post-
screening process
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Selection of synthetic targets

To assist in the selection of synthetic targets, we imposed
screening steps on the 1000 designed candidates. First, to identify
LCP-like structures, candidates that exhibited one or more
components on the list in Fig. 5a were moved forward. Next, we

evaluated their synthesizability using Schuffenhauer’s SA scores.37

Finally, considering the ease of processing required in industry, we
prioritized candidates with Tg ≤ 300. As a result, 24 candidates
were identified for the further investigation of potential routes of
chemical synthesis (Fig. 4a). Eventually, the synthetic routes of

Fig. 6 Details of the three synthesized polymers. a Chemical structures of three synthesized polymers and b–e designed synthetic routes to
the targets (see SI for further details)
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three kinds of polyamides could be identified (Fig. 6a) and
successfully synthesized (see SI for more details), namely,
polyamides 4, 13 and 19, a wholly aromatic polyamide, an
aromatic polyhydrazide, and an aliphatic–aromatic polyamide,
respectively. Figure 4c shows the predicted values of λ with the SA
scores of the three polyamides. In the decision-making process,
we placed particular importance on the SA and the ease of
processing for the created polymers. As a consequence, the
predicted values of λ for the three selected polyamides were not
particularly high.

Experimental validation

As shown in Fig. 6b–e, polymers 4 and 13 were prepared by the
reaction between dicarboxylic acids (dicarboxyl chloride) and
diamines, whereas polymer 19 was prepared starting from a self-
condensation AB type monomer. In addition, an analogous
polyamide to 19, denoted as 19a, was prepared from asymmetric
dicarboxylic acid monomer M6 and m-phenylenediamine M7.
Polyamide 19a has three different sequences, as shown in Fig. 6e.
The monomers for 19 and 19a were newly synthesized, and the
preparative procedure is described in SI.
Among the three synthesized polyamides (4, wholly aromatic

polyamide; 13, aromatic polyhydrazide; 19 or 19a,
aliphatic–aromatic polyamide), 19 is a completely new substance.
Chemical analysis was carried out by elemental analysis, nuclear
magnetic resonance (1H NMR) and infrared (Fourier-transform
infrared) spectroscopy. The thermophysical properties of inherent
viscosity, thermal diffusivity, specific heat capacity at constant
pressure (CP), ρ, Tg and Tm were measured using an Ostwald
viscometer, the temperature wave method (TWA),38,39 differential
scanning calorimetry (DSC), Archimedes’ method and a fast
scanning calorimeter (FSC).40 Thermogravimetric analysis and
thermomechanical analysis suggested that the weight loss of
polymers 4 and 13 was as low as 5 and 20%, respectively, even at
500 °C, and heat resistance was high. By utilizing the FSC
technique, the Tg and Tm of all three polymers were observed;
the values were not detectable by conventional DSC except for Tg
of polymer 19 at 500 °C or less. We confirmed the crystallinity of
the polymers by X-ray diffraction measurements. For thermal
conductivity near room temperature, compressed polymers 4 and
13 reached 0.26 and 0.22 W/mK, respectively. Polymer 19 was
soluble in organic solvent; thus, film formation is possible. Polymer
19 could be categorized as an amorphous polymer with Tg 194 °C
clearly observed by conventional DSC; its thermal conductivity,
0.195W/mK, is notably high for an amorphous polymer. Polymers
13 and 4 reached thermal conductivities of 0.39 and 0.41 W/mK
after annealing at 370 or 420 °C, respectively. These values were
comparable to those of state-of-the-art polymers in non-
composite thermoplastics. As summarized in Table 2 and Fig. 4c,

the experimentally confirmed Tg, Tm and λ were highly consistent
with their predicted values for polymers 4, 13 and 19a. A full
summary of all the material properties tested is available in SI
(Table S2).

DISCUSSION

The high-level agreement between the predicted and experi-
mental thermal conductivities validates the ML protocols as the
first stage of molecular design in this study. The absolute
prediction errors in 4, 13 and 19a were 0.015, 0.001 and
0.017W/mK for λ and 65, 2 and 70 °C for Tg, respectively.
In addition, to evaluate the thermophysical properties of the

limited amount of synthesized new polymers, recent measure-
ment techniques have been introduced. Thermal diffusivity was
measured by the micro-scale temperature wave analysis (TWA)
originally developed for the small-scale measurement of polymers
(TWA,33 Fig. S13 in SI). Thermal conductivity was calculated from the
measured thermal diffusivity along with the measured density and
specific heat capacity (Table S2). The ultra-fast scanning nano-scale
calorimetric technique (FSC,36 Fig. S9 in SI) has been applied for the
measurement of Tg and Tm of aromatic polyamides for the first time,
as these temperatures have not been observed because of thermal
degradation when measured by conventional DSC. By using the
scan rate of 30,000 K/s, we could experimentally observe Tg, Tm, and
in the case of polymer 13, cold crystallization phenomena.
The thermal conductivity of new and existing polymers is

compared in Table 3. The new polymers, three kinds of polyamide
containing mesogen groups, as depicted in Fig. 4a, were
compared with typical polyimide films utilized in electronic
applications. The typical polyimides, such as Kapton and Upilex,
in the amorphous state exhibited thermal conductivity values of
approximately 0.17–0.22W/mK, whereas the thermal conductivity
of the new polymers was 18–80% higher, in the range of
0.20–0.41 W/mK. The post-screening by LCP filter successfully
produced a liquid-crystalline-like polymer with the not-so-high
targeted Tg (<300 °C) based on the consideration of other
important factors, such as SA and the ease of processing required
in industry. A film-shaped polymer was realized for the
synthesized polymer 19a, which is soluble in organic solvent.
To conclude, we have demonstrated the discovery of new

thermally conductive polymers by the use of a series of ML
methods in combination with a comprehensive database of
polymer properties, expertise from organic synthesis and
advanced measurement technologies for thermal properties. In
particular, the experimentally confirmed properties of the
computationally designed polymers are highly consistent with
the predicted values from ML. We discovered a retrosynthesis
route to designed monomers, which have actually been synthe-
sized and polymerized. Some of the resulting polymers exhibited

Table 2. Experimental properties of the three newly synthesized polymers compared with predictions from ML models

Polymer 4 (pre) 4 (obs) 4 (anneal) 13 (pre) 13 (obs) 13 (anneal) 19 (pre) 19a (obs)

Tg (°C) (DSC) 286 N/Aa
– 228 N/Aa

– 121 194

Tg (°C) (FSC) 286 221 – 228 226 – 121 191

Tm (°C) (FSC) 404 513 – 426 494 – 321 303

λ (W/mK) 0.246 0.261 0.408b 0.225 0.224 0.387 0.218 0.195

Xc – 0.16 – – 0.30 0.30 – 0.09c

Compressed film-shaped samples were used in all cases except the X-ray diffraction of polymer 19a. We report values from prediction (pre), observation (obs)

and observation after annealing (anneal)

DSC differential scanning calorimetry, FSC fast scanning calorimetry, Tg glass transition temperature, Tm melting temperature
aTg values, and instead, FSC was introduced to determine Tg and Tm
bThermal conductivity of annealed polymer 4 was obtained using the heat capacity and density measured for non-heat-treated samples
cCrystallinity (Xc) of polymer 19a was measured in powder form

S. Wu et al.

8

npj Computational Materials (2019)    66 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



crystallinity, glassy states and promising thermal properties. Their
potential processability and ability to act as casting films provide
the basis for revealing further optimized properties.
To fully enjoy the great potential of ML-driven polymer

chemistry, there are still some hurdles to be overcome. A wide
variety of databases have been developed in various fields of
materials science, which provide the starting point for data-
intensive and ML-centric workflows (Materials Project,41 Atom-
Works,42 OQMD43 and so on). However, very little such work has
been done for polymers; there are no comprehensive databases of
polymeric properties other than PoLyInfo and Polymer Genome,44

at least in the public domain. In addition, where polymers are
concerned, high-throughput, automated computations such as
molecular dynamics simulations are currently difficult to execute.
In this study, the available data on thermal conductivity were too
sparse to obtain models generally applicable to a diverse set of
input materials. Even for the indeterminate target property Tg, the
available data set would be more or less uncertain, as it consists of
several thousand polymers spanning only a tiny fraction of the
vast polymer landscape. Therefore, our workflow was constructed
on the premise that predicted properties have a certain level of
discrepancy from reality, and computationally designed candi-
dates were used as a guideline for chemists’ decision-making.
Furthermore, this study focused only on considerably simplified
models that ignored any key covariates other than the chemical
structures of repeat units. The inability of the current models to
account for observed within-polymer fluctuations in polymeric
properties might be largely due to the lack of data on processing
parameters, higher-order molecular structures and so on. This lack
of data is one of the most fundamental issues in polymer
informatics.

Another issue concerns the lack of ML methods to facilitate
chemical synthesis. In this study, synthesized polymers were
selected by emphasizing synthetic accessibly over the novelty of
designed structures and thermal properties. In recent years,
several researchers have begun to develop ML methods for
chemical synthesis.45,46 Unfortunately, many chemists are still
unconvinced of the utility of such strategies, as well as of de novo
design methods, because their practical impacts remain unex-
plored in real-world applications. In future work, ML methods for
design and synthesis should be pipelined and practised.5 We hope
that this proof-of-concept study could contribute to the wide-
spread use of such ML platforms, opening up new opportunities in
the next generation of polymer chemistry.

METHODS

Polymer design using iqspr
The 1000 candidates were generated using iqspr 1.0. The script available at
https://github.com/stewu5/HighTCond_Polymer_iqspr can be used to
reproduce the results of this study. To summarize, first, for the prior p(S),
we used the extended n-gram of order n= 10 as the chemical language
model for SMILES strings; this approach was developed in our previous
study.16 The language model was trained on 14,423 homopolymers
recorded in PoLyInfo. The forward models consisted of two Bayesian linear
models trained on 5917 and 3234 instances of Tg and Tm, respectively. The
training was performed with default hyperparameters. The descriptor was
calculated by combining seven different fingerprints implemented in iqspr:
standard, extended, hybridization, maccs, circular and pubchem (see https://
cran.r-project.org/web/packages/rcdk/rcdk.pdf for descriptions of these
fingerprints). One hundred structures randomly selected from the 14,423
existing polymers were sequentially modified over 500 iterations;
molecules created in the burn-in period (first 100 iterations) were
discarded. In the SMC run, annealing was scheduled to lower the

Table 3. Comparison of the thermal conductivity of new and existing polymers at approximately 300 K, as reported in the literature and as measured

by temperature wave analysis in this study

No. Film grad Manufacturer Chemical structures d (μm) λ (W/mK) in thickness Ref.

Kapton Toray PMDA/ODA 7.3 0.198 38

Toray PMDA/ODA 12.7 0.194 38

Toray PMDA/ODA 25 0.194 38

Toray PMDA/ODA 50 0.186 38

Toray PMDA/ODA 76.4 0.189 38

Toray PMDA/ODA 124.6 0.189 38

Toray PMDA/ODA 175 0.191 38

UPILEX-S Ube BPDA/p-PDA 7.5 0.168 48

Ube BPDA/p-PDA 12.6 0.211 48

Ube BPDA/p-PDA 20.5 0.216 48

UPILEX-R Ube BPDA/ODA 7.5 0.183 48

Ube BPDA/ODA 12.2 0.186 48

Ube BPDA/ODA 20.5 0.194 48

4 Predicted this study Fig. 4a – 0.246 This study

4 Observed this study Fig. 4a 97 0.261 This study

4 Annealed this study Fig. 4a – 0.408 This study

13 Predicted this study Fig. 4a – 0.225 This study

13 Observed this study Fig. 4a 112 0.224 This study

13 Annealed this study Fig. 4a – 0.387 This study

19 Predicted this study Fig. 4a – 0.218 This study

19 Observed this study Fig. 4a 103 0.195 This study

PMDA/ODA pyromellitic dianhydride and 4,4 -oxydianiline, BPDA/p-PDA 3,3, 4,4 -biphenyltetracarboxylic dianhydride and p-phenylenediamine, BPDA/ODA 3,3,

4,4 -biphenyltetracarboxylic dianhydride and 4,4 -oxydianiline, d thickness of the plate/film-shaped specimens
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temperature linearly from T= 30 to T= 1 at every step during the burn-in
period and maintain T= 1 after the burn-in. As described in the Results
section, we applied the LCP-likeliness filter, θ1ðYf ðSÞ\Uf≠ϕÞ , in every step of
the SMC run. The score was set to θ= 10. Note that iqspr 1.0 does not
permit the use of such additional filters. Therefore, we customized the
original execution command lines by simple scripting. Finally, we selected
1000 candidates with the highest values of pðYTg jSÞpðYTm jSÞ among all the
generated structures.

Transfer learning
We used the MXNet package47 to train the pre-trained neural networks
models for predicting Tg, Tm, ρ of polymers and CV of monomers. Then, a
pre-trained model was re-trained by fine-tuning it to the limited available
data on λ.
We started to build a “shotgun pre-trained model library” for Tg, Tm, ρ

and CV. For each property, we generated and trained 1000 neural networks
with randomly constructed different network structures. Each network
formed a fully connected pyramid in which the number of hidden layers
was randomly chosen from {3, 4}. The size of the input layer consisted of a
randomly selected subset of 400–600 of the descriptors composed entirely
of all the fingerprints. Then, the number of neurons was randomly reduced
by 20–80% in each of the following layers, and the number of neurons in
the last hidden layer was bounded by 10–30 (pre-determined randomly).
Neurons in all hidden layers were activated by ReLU (Rectified Linear Unit),
and a linear activation function was configured on the output layer. The
details of the predictive performance of the best transferred model for λ
among the 1000 fine-tuning trials are shown in SI.

Monomer and polymer synthesis
Details on the synthesis of monomers and polymers are provided in SI.

Measurement of thermophysical properties
Detailed procedures for the measurement of the polymer properties are
provided in SI. In particular, recent measurement techniques were
introduced to evaluate the limited number of new polymers with high
Tg and Tm. Thermal diffusivity was measured by micro-scale TWA38 (see Fig.
S13 in SI). Ultra-fast scanning nano-scale calorimetry (FSC,40 see Fig. S9 in
SI) was introduced to execute a 30,000 K/s temperature scan to observe Tg,
Tm and cold crystallization λ, which is unique among the semi-crystalline
polymers.
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