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Abstract

Despite recent advances in the development of machine learning
potentials (MLPs) for biomolecular simulations, there has been lim-
ited effort in developing stable and accurate MLPs for enzymatic re-
actions. Here, we report a protocol for performing machine learn-
ing assisted free energy simulation of solution-phase and enzyme
reactions at an ab initio quantum mechanical and molecular me-
chanical (ai-QM/MM) level of accuracy. Within our protocol, the
MLP is built to reproduce the ai-QM/MM energy as well as forces
on both QM (reactive) and MM (solvent/enzyme) atoms. As an
alternative strategy, a delta machine learning potential (∆MLP) is
trained to reproduce the differences between ai-QM/MM and semi-
empirical (se) QM/MM energy and forces. To account for the effect
of the condensed–phase environment in both MLP and ∆MLP, the
DeePMD representation of a molecular system is extended to incor-
porate external electrostatic potential and field on each QM atom.
Using the Menshutkin and chorismate mutase reactions as exam-
ples, we show that the developed MLP and ∆MLP reproduce the
ai-QM/MM energy and forces with an error on average less than
1.0 kcal/mol and 1.0 kcal/mol/Å for representative configurations
along the reaction pathway. For both reactions, MLP/∆MLP-based
simulations yielded free energy profiles that differed by less than
1.0 kcal/mol from the reference ai-QM/MM results, but only at a
fractional computational cost.

1 Introduction

To accurately model solution-phase and enzyme reactions, it would
be desirable to perform direct ab initio quantum mechanical and
molecular mechanical (ai-QM/MM) free energy simulations. 1–11

In a typical ai-QM/MM free energy simulation, the ai-QM/MM
potential is evaluated for each configuration of the system of inter-
est, in which a quantum mechanical (QM) reactive region (typically
containing up to 150 atoms) is embedded in thousands of or more
molecular mechanical (MM) atoms (i.e. the rest of enzyme or sol-
vent atoms). 12,13 In practice, the ai-QM/MM potential needs to be

computed for 105 or 106 configurations in umbrella sampling cal-
culations14 or other enhanced samplings (such as metadynamics),
before the mean free energy pathway and corresponding reaction
free energy profile can be obtained. As such, direct ai-QM/MM free
energy simulations are rather compute-intensive, requiring O(105)
CPU hours,15–18 and thus have yet to gain wide use.

To avoid such steep costs of direct ai-QM/MM free energy sim-
ulations, Gao,19 Warshel20 and others 21–25 developed indirect free
energy simulations, where sampling is carried out using a refer-
ence semi-empirical QM/MM (se-QM/MM) potential and then the
free energy result is corrected with a se-QM/MM�!ai-QM/MM
thermodynamic perturbation or with an interpolation between the
two levels of potential, for example along the energy minimized
reaction path.26,27 Alternatively, one can adopt the multiple time-
step simulation methodology from Tuckerman, 28–31 Schlick,32,33

Nam, 34 Roux,35 Rothslisberg,36 and others,37 where se-QM/MM
trajectory propagation at regular/inner timesteps is coupled with ai-
QM/MM trajectory corrections at outer timesteps. Needless to say,
the accuracy of both indirect and multiple-timestep simulations is
controlled by the quality of the se-QM/MM potential in use. In
many cases, it is beneficial to re-optimize the se-QM/MM parame-
ters 23,38 or directly modify the internal forces39 to ensure a proper
thermodynamic perturbation or interpolation correction or to main-
tain a stable multiple-timestep trajectory.

Recently, Yang,40–42 Gastegger,43 York,44 Riniker45 and
coworkers have proposed machine learning (ML) as a new strategy
to address the computational cost of direct ai-QM/MM free energy
simulations. Specifically, for configurations of interest, artificial
neural network (ANN) models were designed and trained to re-
produce either the ai-QM/MM potential, i.e., the machine learning
potential (MLP), or the difference between the ai-QM/MM and
se-QM/MM potentials, hereafter, referred to as the delta machine
learning potential (∆MLP). Thus developed MLP or ∆MLP was
then employed (in lieu of the ai-QM/MM potential) to drive the
dynamical sampling of the enzyme system. These MLPs/∆MLPs
led to fairly accurate free energy barriers, with errors of around
1.0 kcal/mol, for several solution-phase reactions. 40–42,44 In these
approaches, however, the effects of solvent on the reacting system
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were rather homogeneous, and their applicability to reactions in
a heterogeneous solvent environment, such as in enzyme, has not
been fully explored.

When compared to the construction of MLPs for gas-phase and
small periodic systems, these are substantial achievements because
the training of MLP for reproducing the ai-QM/MM potential is
more challenging. Naively adding thousands of MM atoms to
commonly-used ML descriptors of a gas-phase molecular system
[such as symmetry functions for constructing high-dimensional
neural network potentials (HDNNP) descriptors,46–48 Coulomb
matrix,49 Faber-Christensen-Huang-Lilienfeld (FCHL) representa-
tion,,50 tensor representation, 51 and embedding matrix52,53] would
lead to an explosively large number of inputs for the ANN model,
thus jeopardizing the convergence (in training) and affordability
(for both training and production).

In the development of the above mentioned MLPs/∆MLPs, two
approaches have been proposed to efficiently include MM atoms in
the ANN models. The first is an “implicit” approach, where MM
atoms are implicitly accounted for through their collective perturba-
tion to the electronic structure of the QM region. For example, Yang
and coworkers 40,41 used semi-empirical QM Mulliken charges as
perturbed by all the MM charges or the total MM electrostatic po-
tential on each QM atom, 42 whereas Gastegger and coworkers 43

captured the effect of MM atoms through their net dipolar field on
each QM atom. The second is an "explicit" approach, in which any
MM atom within a "cutoff" distance (such as 6.0Å) from the QM
region is included in the computation of ML descriptors. This ap-
proach was proposed by York and coworkers 44 for the QM/MM
expansion to the embedding matrix within the DeePMD coding
framework,53,54 and also utilized by Riniker and coworkers45 to
extend the HDNNP descriptors to QM/MM calculations.

Inspired by these approaches to include MM environment in the
MLP development, in this work, we aimed to develop a more robust
protocol for training MLPs/∆MLPs for free energy simulations of
enzyme reactions by incorporating the effects of long-range MM
electrostatic interactions, such as, under the periodic boundary con-
ditions. Anticipating some amino acid side chains and/or solvent
molecules to move in and out of the cutoff boundary with the pro-
gression of the reaction, we opted not to follow the “cutoff” ap-
proach, because the number of MM atoms retained in the cutoff
might change, for example, between neighboring umbrella sam-
pling windows and thus additional smoothing 55,56 might be needed
to ensure a continuous potential energy surface. Furthermore, in
enzymatic reactions, the long-range electrostatic interactions play a
critical role in many catalytic reactions as well as in the stability of
the molecular dynamics (MD) simulations. In addition, within the
“implicit” approach, we opted not to utilize semi-empirical Mul-
liken charges on QM atoms, which would not be available if we
aimed to directly produce the ai-QM/MM-quality MLP to propa-
gate the MD trajectories. In the end, our approach would resemble
that of Yang and coworkers42 and of Gastegger et al, 43 but the de-
tails differed significantly as described briefly below.

Compared to previous efforts, three key features differentiate our
approach from those of other groups. Firstly, long-range electro-
static effects of the MM environment is incorporated rigorously in
the training of the MLP models. As will be demonstrated in Sec-
tion 2, this is achieved by representing the enzyme/solvent environ-
ment as MM electrostatic potential and field (ESPF) within our re-
cent QM/MM with augmentary charges (QM/MM-AC) scheme. 57

Secondly, a more reliable sampling/collection of training configu-
rations is acquired by calibrating the se-QM/MM Hamiltonian. In
the case of ∆MLP, it reduces the magnitude of the Hamiltonian dif-
ferences and thus lessens the need of iterative training of the MLP
model. Finally, standalone MLP and ∆MLP are developed side-
by-side, thanks to the construction of a single set of ML descrip-

tors, thereby allowing a direct comparison of the two potentials
for reactions of interest. With this development, we have simu-
lated the catalytic reaction of an enzyme, chorismate mutase, which
can be considered to be the first realistic and successful application
of MLP/∆MLP to model enzyme reactions under the full periodic
boundary conditions.

In a separate manuscript from us,58 a different ai-QM/MM-
based machine learning approach was employed to improve free
energy simulations of condensed-phase reactions. Specifically,
ANN was trained to produce a set of chaperone polarizabilities that
augment the insufficient polarizability of the AM1 semi-empirical
Hamiltonian for modeling the Menshutkin reaction. With the corre-
sponding polarization energy correction, accurate free energy bar-
rier and reaction free energy were also obtained for the reaction.

This article is organized as follows. Section 2 introduces our
overall methodology (incorporation of electrostatic embedding po-
tential into the MLP, description of long-range QM/MM electro-
statics, umbrella sampling), while more computational details for
the training and free energy simulations are presented in Section
3. Results for solution-phase Menshutkin reaction and chorismate
mutase-catalyzed Claisen rearrangement are presented in Section 4,
with concluding remarks made in Section 5.

2 Machine Learning Potential

2.A Descriptors for the QM atoms

Our current MLP/∆MLP implementation is based on Deep Poten-
tial - Smooth Edition (DeepPot-SE),52,53 where each QM atom i is
represented by its local environment matrix to capture the internal
interactions within the QM region (with N QM atoms). Specifically,
for the i-th atom in the QM region at position Ri, its has n = N �1
neighbors. The corresponding environment matrix (n-by-4) is
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where s(R ji) = 1/R ji = 1/
�

�R j �Ri

�

� contains the Coulomb inter-
action. No screening was applied to the Coulomb interaction, due
to the small size of the QM region. Next, an embedding neural
network, G i, maps a single value, s(R ji), through multiple hidden
layers into m1 outputs
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The encoded feature matrix D i is m1-by-m2

D i =
⇣

G
1
i

⌘T
RiR

T
i G

2
i , (3)

where G
1
i is the same as G i and G

2
i is a matrix that consists of

the first m2 columns of G i with m2  m1. Both m1 and m2 are
hyperparameters of the model.

2



2.B Descriptors for the MM environment

For QM/MM interactions, our model closely resembles the regu-
lar QM/MM models, where the MM atoms are represented as point
charges with no atomic identities for the QM-MM electrostatic in-
teractions, and the QM-MM van der Waals (vdW) interactions are
treated at the MM level.4,7,59–61

In regular QM/MM models, there are three general schemes
to treat the QM-MM electrostatic interactions, namely, the con-
tinuous, the surrogate, and the hybrid schemes, 57 depending on
whether the continuous electron density or its surrogate charges or a
combination interact with the MM atomic charges. Since electrons
are not described explicitly in most MLPs, it is natural to adopt a
surrogate-like scheme in MLP where QM atoms interact with MM
atoms through the electrostatic potential and field generated,

φi = ∑
B2MM

qB

|Ri �RB|
, (4)

Ei = ∑
B2MM

qB(Ri �RB)

|Ri �RB|3
, (5)

or higher-order Taylor expansions at the QM atomic sites. In con-
trast to normal QM/MM calculations, where one either evaluates
the core Hamiltonian contribution associated with φi and Ei or de-
rives multipole moments on each QM atom to interact with them,
we choose to add the electrostatic potential φi and field Ei on each
QM atom directly to the list of the input features of the MLP.

Specifically, the contributions of the local electrostatic potential,
φi, and field, Ei, are fed into embedding neutral networks similar
to Eq. 2, leading to additional feature matrices, D

φ
i and D

F
i , to

capture the effect of the MM environment. For example, for the lo-
cal electrostatic potential, a single value φi is mapped to m0

1 outputs
through multiple hidden layers, which is used as the feature matrix
D

φ
i , i.e.,

D
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The electric field on each QM atom is projected onto the vectors
pointing toward its neighbors and scaled by the distance, i.e.,

F
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Then, each element of the projected local field FF
i is mapped to

m00
1 outputs through multiple hidden layers, i.e.,

G
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The final feature matrix is a m00
1-by-m00

2 matrix, which can be calcu-
lated as

D
F
i =

⇣

G
F1
i

⌘T
G

F2
i , (9)

where G
F1
i is the same as G

F
i and G

F2
i is a matrix that consists of

the first m00
2 columns of G

F
i . In Eqs. 6 and 9, m0

1, m00
1 , and m00

2 are
hyperparameters of the model.

2.C Fitting Neural Network

Figure 1: Workflow for the training of MLP and its use to generate
energy and forces for MD simulations.

After the three sets of feature matrices (i.e., Eqs. 3, 6 and 9) are
obtained from the embedding neural networks, they are fed into a
fitting neural network (NN) to obtain the total energy,

E = ∑
i

NN(D i,D
φ
i ,D

F
i ). (10)

With a differentiable neural network model, the analytical energy
derivatives in Fig. 1 are also obtained. During the standalone MLP
model training, the loss function combines the error in total energy,
forces on QM atoms, as well as ESP potential/field values on MM
atoms,
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, (11)

where the learned forces on QM atoms, � ∂E
∂Ri

, and ESP poten-

tial/field values, ∂E
∂qB

and � 1
qB

∂E
∂RB

, are obtained from the differen-
tiable NN model in use. The same feature matrices can be applied
to the development of ∆MLP model, in which the energy, force, and
ESP differences between ai-QM/MM and se-QM/MM models are
used as the reference values in Eq. 11. In both MLP models, λ1,
λ2, λ3, and λ4 are tunable prefactors and can be adjusted during the
model training.
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2.D Long-Range QM/MM Interactions

For a condensed-phase reaction, the MM environment contains
thousands of (or more) atoms. An explicit account of all these
atoms in the MLP training becomes very inefficient, if feasible at
all. A common strategy around this is to completely ignore the
long-range electrostatics due to MM atoms beyond a cutoff dis-
tance.44,45 In the context of ∆MLP-learning, this strategy means
that the long-range electrostatics of ∆MLP is approximated at the
low-level method. However, a systematic analysis has yet to be
carried out to gauge the impact of solvent/enzyme atoms moving
across the cutoff boundary during the simulation on the developed
ML potentials, as it can contribute to a discontinuity on the poten-
tial energy surface.

In lieu of this approximation, we have decided to adopt our re-
cent QM/MM with Augmented Charges (QM/MM-AC) model57 to
accurately capture long-range QM/MM electrostatics in this work.
Specifically, only inner MM atoms, namely those within a cutoff
distance (10Å in this work) from the QM region, are explicitly in-
corporated into the training of MLP and ∆MLP. This can be easily
achieved by replacing the MM charges in Eqs. 4 and 5, with

qB �! q
<,C
B +qAC

B , (12)

where q
<,C
B refer to the “continuous” portion of charges on inner

MM atoms and qAC
B are the augmentary charges projected on the

inner MM atoms from all outer MM charges and the “surrogate”
portion of charges on the inner MM atoms. We refer to Ref. 57 for
details of the QM/MM-AC model and how the projection is carried
out.

Thus, the QM/MM-AC charges, qAC
B in Eq. 12, are pre-

computed for inner MM atoms of each configuration before our
training of MLP and ∆MLP. After these models are constructed,
the electrostatic potential on inner MM atom positions, φB = ∂E

∂qB
,

is used to fit ESP charges on all QM atoms. As shown in Fig. 1,
these charges are then used to provide the electrostatic potential to
update the forces on outer MM atoms, through the procedure de-
scribed in Ref. 57.

2.E Implementation and Training Details

Our method, which combines the Deep Potential – Smooth Edition
(DeepPot-SE)52 descriptors for QM atoms and QM/MM-AC-based
descriptors for the MM environment, was implemented in PyTorch.

In this work, the hyperparameters were not fully optimized,
where the recommended values from the DeePMD-kit package
were adopted where applicable. For each of the local embedding
networks, three hidden layers with 25, 50, and 100 (m1) neurons,
were used. For each of the electrostatic potential embedding net-
works and the electric field embedding networks, three hidden lay-
ers with 5, 10, and 20 (m0

1 and m00
1) neurons were used. For the local

embedding networks and the electric field embedding networks, the
size of the axis filters were chosen to be 4 (m2 and m00

2). For the fit-
ting networks, three hidden layers, each of which has 240 neurons,
were used.

The (standalone) MLP model was trained using the Adam opti-
mizer. During the training, the batch size was set to 32, and the
initial learning rate was set to 10�4. Following DeePMD-kit, 53 the
prefactor for the energy error in the loss function in Eq. 11 was
much smaller than the other three at the beginning, and they gradu-
ally evolved to the same value towards the end of the training. The
learning rate decayed exponentially by a factor of 0.95 every epoch.
A total of 100 epochs were performed for each system. A separate
∆MLP model was also trained to reproduce the difference between
the PM3*/MM and B3LYP/6-31G*/MM models using the same ar-
chitecture and hyperparameters as the standalone MLP model.

For each of the two reactive systems (i.e., the solution-phase
Menshutkin reaction system and the chorismate mutase reaction
system), 40,000 frames were collected from the PM3*/MM sim-
ulations (see the next Section for details) and then randomly split
into sets of 38,400 and 1,600 samples for training and validation,
respectively. The testing set consisted of 2,000 additional configu-
rations sampled along the reaction pathway from the ai-QM/MM
simulations. For each sample in the training/validation sets,
B3LYP/6-31G*/MM single point calculations were performed. The
QM/MM-AC method 57 was used to project the MM charges that
were more than 10 Å away from any QM atom and all the charges
from the periodic images onto the MM atomic sites within the 10 Å
cutoff. Besides the energies and the gradients of the QM atoms,
the electrostatic potentials and fields on the inner MM atomic sites
were also collected.

3 Simulation Details

3.A System Setup and Equilibration

In this work, we started with the Menshutkin reaction, a widely-
used model system for solution chemistry, for developing the pro-
tocol of training the MLP and ∆MLP. Then the protocol is applied
to the chorismate mutase reaction, which is a popular system to test
new enzyme simulation methods because of its small QM region
(24 QM atoms) and because the QM region is not covalently linked
to the MM region.

Figure 2: Schemes for (a) Menshutkin and (b) chorismate mutase
reactions.

For the Menshutkin reaction (Figure 2a), the solutes (ammonia
and chloromethane) were solvated in a cubic box of 723 TIP3P 62

waters, and modeled by the general Amber force field (GAFF). 63

For the chorismate mutase reaction (Figure 2b), the initial struc-
ture was prepared based on the X-ray crystal structure (PDB ID:
2CHT64) of Bacillus subtilis chorismate mutase complexed with a
transition state analog, which was modified to the substrate cho-
rismate manually, and solvated in a cubic box of 13,067 TIP3P 62

waters. 8 sodium counter ions were added to neutralize the system.
The substrate and the enzyme were modeled using GAFF 63 and the
AMBER ff14SB force field,65 respectively.

Both systems were equilibrated at 300 K and 1 atm us-
ing Langevin dynamics with a friction coefficient of 5 ps�1 and
Berendsen barostat with a relaxation time of 1 ps under the pe-
riodic boundary conditions. The solutes were restrained to their
initial positions by a weak harmonic potential for the Menshutkin
reaction, whereas no restraints were applied for the enzymatic sys-
tem. The particle mesh Ewald (PME) summation method 66,67 was
used to treat the electrostatic interactions, while the van der Waals
interactions were turned off to zero smoothly at a cutoff of 10
Å. The SHAKE algorithm 68 was used to constrain all bonds in-
volving hydrogen atoms, and a time step of 2 fs was used for the
MD integration using the leapfrog integrator. After equilibration,
the sizes of the simulation boxes were ⇠28Å⇥ 28Å⇥ 28Å and
⇠76Å ⇥ 76Å ⇥ 76Å for the Menshutkin and chorismate mutase
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reactions, respectively, which were used for the subsequent simu-
lations in the NVT ensemble. The classical MD simulations were
performed using the PMEMD program from the Amber20 pack-
age.69

3.B QM/MM Calculations

To simulate the bond breaking/forming process, a QM/MM de-
scription of the system was needed. To sample at the target level
of theory within a moderate amount of computer time (<500,000
CPU hours), the B3LYP functional70–72 and 6-31G* basis set73 (in
conjugation with the MM force field) were chosen as the reference
ai-QM/MM method for the two test systems in this study. On the
other hand, the PM3*/MM model, where the parameters of the stan-
dard PM3 method 74 were recalibrated through force-matching,23

was used to simulate the reactions under study. We note that de-
spite the same notation, the PM3* model parameters are different
between the two reaction systems. For the Menshutkin reaction, the
parameters were directly taken from our previous study, 23 whereas
for the chorismate mutase reaction, an improved version of the pa-
rameter set were used (Table S1).

The setup of the QM/MM MD simulations was overall similar
to the classical ones. During the QM/MM MD simulations, the so-
lutes and the substrate were described by the QM method, while
the rest of the system (solvent or protein) was described by the
force fields used in the classical simulations. The QM/MM-AC
method57 was used to capture the long-range QM-MM electro-
static interactions. The SHAKE algorithm 68 was only applied to
the MM subsystem, and the integration time step was set to 1 fs.
The QM/MM MD simulations were performed using our QM/MM
interface QMHub (https://github.com/panxl/qmhub) and a modified
version of the SANDER program from the AmberTools20 pack-
age.69 All DFT/MM calculations were performed using Q-Chem
5.2. 75

3.C Umbrella Sampling

To achieve good coverage of all configurations relevant to the reac-
tive process, enhanced sampling MD simulations are needed. Um-
brella sampling14 is a method that can enhance the sampling of
the system along one or more predefined reaction coordinates by
adding harmonic biasing potentials to restrain the system to the re-
gion of interest of the reaction coordinate. Typically, a series of
restraint centers ξ 0

i are determined to cover the region of interest
of the reaction coordinate. Then, for each restraint center ξ 0

i (also
called window), separate simulations are conducted with the har-
monic biasing potential, in the form of,

Ebias,i(ξ ) = ki(ξ �ξ 0
i )

2, (13)

added to the Hamiltonian of the system, where ki is the force con-
stant of the harmonic potential at window i and ξ refers to the reac-
tion coordinate. In practice, the number and locations of windows
and the force constants are determined to ensure sufficient over-
lapping of the sampled configurations between neighboring win-
dows while minimizing the computational cost. In this study, we
also applied the Hamiltonian replica exchange molecular dynamics
(HREMD)76 technique to accelerate the convergence of the free
energy simulation, in which the exchanges of the biasing potentials
between the neighboring windows were attempted at a fixed inter-
val of steps set to 100 fs.

To generate the training/validation sets that cover all the relevant
configuration space for the reactions, the above-mentioned um-
brella sampling technique was used to collect configurations along
the predefined reaction coordinates, using the PM3*/MM poten-
tial. For both reaction systems, the reaction coordinates were de-

fined as ξ = dbreak � dform, where dbreak and dform were the bond
lengths of the breaking and forming bonds, respectively. Specifi-
cally, ξ = dC–Cl � dC–N for Menshutkin reaction and dC–O � dC–C
for chorismate mutase reaction (see Figure 2). For each reaction
system, a total of 80 windows were evenly distributed with an in-
terval of 0.05 Å to cover ξ ranged from �1.975 to 1.975 Å, and

the force constants were set to be 150 kcal/mol/Å
2

for all the win-
dows. For each window, 50 ps simulation was conducted, and the
configurations were saved every 0.1 ps, which resulted in 500 con-
figurations. Overall, 40,000 frames were collected for each reaction
system, and for each configuration saved, the B3LYP/6-31G*/MM
calculation was performed to generate the reference data.

After the ML model was trained, the same umbrella sampling
simulations were performed where PM3*/MM was replaced by the
MLP/MM or PM3*+∆MLP/MM model. Multistate Bennett accep-
tance ratio (MBAR)77 method as implemented in the pymbar pack-
age (https://github.com/choderalab/pymbar) was used to compute
the free energy profile.

4 Results and Discussion

4.A Energy Conservation During Microcanonical

Ensemble Simulations
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Figure 3: Conservation of the total energy in 100 ps NVE simulations
of the chorismate mutase reaction using A) PM3*, B) MLP, and
C) PM3*+∆MLP models. In each figure, the line shown in orange
indicates the drift of energy (see the values mentioned in the main
text for each model).

As a validation of the developed MLP and ∆MLP mod-
els, especially, the conservation of the total energy, we first
performed 100 ps microcanonical ensemble (NVE) MD sim-
ulations for the reactant of the chorismate mutase reac-
tion using the PM3*/MM, MLP/MM, and PM3*+∆MLP/MM
models. The results are presented in Figure 2. Over-
all, a good conservation of energy was observed, with
the energy drifts being 3.96±0.08⇥10�3 kcal/mol/ps,
�1.81±0.08⇥10�3 kcal/mol/ps, and 4.17±0.08⇥10�3 kcal/mol/ps
for the PM3*/MM, MLP/MM, and PM3*+∆MLP/MM models,
respectively. In addition, we compared the initial 500 fs trajec-
tories with an NVE trajectory using B3LYP/6-31G*/MM under
the same initial conditions (Figure S2). It showed that MLP and
PM3*+∆MLP models diverged less from the DFT/MM than the
PM3* model.

4.B Overall Free Energy Results

The overall free results for the two reactive systems studied
are summarized in Tables 1. For the aqueous Menshutkin
reaction, the B3LYP/MM free energy barrier was calculated
to be 15.5±0.1 kcal/mol and the free energy of reaction was
�26.9±0.1 kcal/mol, respectively. Despite extensive reparam-
eterization as outlined in Section 3.B, the PM3*/MM model
still substantially overestimated the barrier height with a value
of 23.3±0.1 kcal/mol. Similarly, the free energy of reac-
tion was overestimated by 18.6 kcal/mol. In contrast, much
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Table 1: Free Energy Barriers and Reaction Free Energies for Menshutkin (MEN) and Chorismate Mutase (CM) Reactions

Free Energy Barrier (kcal/mol) Reaction Free Energy (kcal/mol)

PM3* MLPa PM3* + ∆MLP B3LYP PM3* MLPa PM3* + ∆MLP B3LYP

MEN 23.3±0.1 16.1±0.1 15.1±0.1 15.5±0.1 �8.3±0.1 �25.9±0.1 �27.5±0.1 �26.9±0.1

CM 14.9±0.1 13.9±0.1 13.9±0.1 13.6±0.1 �15.5±0.1 �16.3±0.1 �16.6±0.1 �16.8±0.1

a For the chorismate mutase reaction, the reported results are from the 2nd iteration MLP.

Figure 4: Accuracy of MLP (top), PM3*+∆MLP (middle), PM3 and PM3* (bottom) energy, forces, electrostatic potential (φ) and electric
field (E ) for the 2,000 testing configurations for aqueous Menshutkin reaction. In each figure, the reference values are obtained from the
B3LYP/6-31G*/MM calculations. The root-mean-square error (RMSE) value is also shown for each method.

Table 2: CPU Time (in 103 h) for the Computation of Free En-
ergy Profiles for Menshutkin (MEN) and Chorismate Mutase (CM)
Reactionsa

PM3* MLP PM3* + ∆MLP B3LYP

MEN 0.3 0.8 1.3 12.4

CM 1.5 11.9b 8.2 379.5

a Umbrella sampling simulations were performed for 50 ps per
window for 80 windows. Thus, a total of 4 ns umbrella sampling
MD simulations were performed for each QM/MM model.
b Including time from two iterations. Thus, a total of 100 ps for
each umbrella sampling window.

improved free energy barriers and reaction free energies were
obtained with MLP sampling (16.1±0.1 kcal/mol for barrier
and �25.9±0.1 kcal/mol for the reaction free energy) and also
with PM3*+∆MLP sampling (15.1±0.1 kcal/mol for barrier and
�27.5±0.1 kcal/mol for the reaction free energy), both within
1.0 kcal/mol from the reference B3LYP values.

Similar improvements were found for the chorismate mutase re-
action. Both MLP and PM3*+∆MLP simulations reproduced the
barrier height of 13.6±0.1 kcal/mol and the free energy of reaction
of �16.8±0.1 kcal/mol, both with errors less than 0.5 kcal/mol
from the reference B3LYP values. Considering the length of the
sampling for each simulation, the three results can be considered
to be essentially the same. On the other hand, while remaining ex-
cellent, the PM3* model produced a barrier of 14.9±0.1 kcal/mol
and a reaction free energy of �15.5±0.1 kcal/mol, which were
only 1.3 kcal/mol higher than their corresponding B3LYP values.

We want to note that our standalone MLP and ∆MLP models
have not been fully optimized in terms of their computational cost.
With the current set of hyperparameters (as specified in Section
2.E), the MLP sampling of the Menshutkin reaction system took
about 800 CPU hours, which was 3-fold higher than the PM3*
sampling, but it was still 16 times faster than the B3LYP simu-
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Figure 5: Distribution of high-level (B3LYP/6-31G*) and low-level (PM3*, MLP, and PM3*+∆MLP energy differences for configuration
collected from B3LYP/MM MD trajectories (blue) or low-level MD trajectories (orange) of the aqueous Menshutkin reaction.

lation (Table 2). For PM3*+∆MLP, since both PM3* and ∆MLP
energy/force evaluation were performed for each configuration, its
cost increased to around 1,300 CPU hours, which was still 10 times
faster than the reference B3LYP simulation. It should be noted
that, our MLP and ∆MLP models were implemented using the Py-
Torch framework which supports both CPU and GPU paralleliza-
tion. However, the timing reported here was only based on CPU
calculations.

For the chorismate mutase system, the MLP sampling took
11,900 CPU hours, which was about 8 times slower than the PM3*
sampling. The higher MLP/PM3* timing ratio arose largely from
two rounds of MLP training performed to obtain a stable MLP
model around the reaction transition state region (see Section 4.D
for details). In comparison to the 379,500 CPU hours for the
B3LYP sampling, the MLP sampling offered a 32-fold speedup.
With PM3*+∆MLP, only one round of ML model training was
needed, which led to a net 8,200 CPU hours for the sampling. This
was 46 times faster than the reference B3LYP simulation.

Below we go over each reactive system in more detail, and show
how such speedups were obtained.

4.C Menshutkin Reaction

For Menshutkin reaction, the standard PM3 model (marked red),
which is shown in the bottom panels in Fig. 4, deviates
substantially from the reference B3LYP values. In terms of
the root-mean-square error (RMSE), PM3 energy differed by
6.24 kcal/mol, while the corresponding force error on QM atoms
was 12.90 kcal/mol/Å (Table S2). Similarly, the mean-unsigned-
error (MUE) for energy was 5.00 kcal/mol and for force was
9.62 kcal/mol/Å. The RMS errors in the QM electrostatic
potential and field on MM atom position were substantially
smaller at 1.33 kcal/mol/e and 0.95 kcal/mol/Å/e, respectively,
and their corresponding MUE values were 0.67 kcal/mol/e and
0.24 kcal/mol/Å/e. The maximum errors (MAXs) were largest for
PM3 among the test QM/MM models: 21.55 kcal/mol for energy,
54.32 kcal/mol/Å for force, 38.41 kcal/mol/e for electrostatic po-
tential and 49.39 kcal/mol/Å/e for the field, respectively.

Through our automated reparameterization (which placed a
larger weight on the force errors), the PM3* model (marked blue
in bottom panels in Figure 4) substantially reduced the force er-
ror to 4.42 kcal/mol/Å for RMSE and 3.21 kcal/mol/Å for MUE,
respectively. Meanwhile, the PM3* energy error remained at
6.38 kcal/mol for RMSD and 5.49 kcal/mol for MUE, which was
evident from Fig. 8A with a broad distribution of the energy differ-
ence between the PM3* and B3LYP models.

When ∆MLP was trained, it was designed to reproduce the
difference between the PM3* and B3LYP potentials. As shown
in the middle panels in Fig. 4, the energy error of the com-
bined PM3*+∆MLP model reached 0.78 kcal/mol for RMSE and
0.62 kcal/mol for MUE, which were below 1.0 kcal/mol error and
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2.0

2.5

3.0

3.5

d
C
−
C
l
(Å
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Figure 6: (A) Sampled pathway and (B) potential of mean force
for the aqueous Menshutkin reaction based on umbrella sampling
using PM3*+∆MLP and MLP potentials in comparison to PM3*
and B3LYP/6-31G* results.

lowest among the models tested. The reduction in the force error
was more impressive, reaching a RMSE value of 0.79 kcal/mol/Å
and a MUE value of 0.53 kcal/mol/Å. A moderate but more sys-
tematic improvement of the ESP and field values on MM atom po-
sition could also be noticeable. As a consequence, the distribution
of PM3*+∆MLP and B3LYP energy differences as shown in Fig.
5C became much narrower. The corresponding standard deviation
of energy difference was 0.7 kcal/mol, which fell within the 1.7–
2.5 kcal/mol threshold for a lower-level theory to accurately repro-
duce the sampling from a high-level model.78–80

Alternatively, MLP can be directly trained to reproduce the
B3LYP energy/force as well as the QM ESP and field on MM atom
positions. As shown in the top panel of Fig. 4, a standalone MLP
can reproduce the B3LYP energy with 1.03 kcal/mol RMSE and
0.79 kcal/mol MUE and the forces with 1.17 kcal/mol/Å RMSE
and 0.75 kcal/mol/Å MUE, respectively, which were only slightly
worse than PM3*+∆MLP. Therefore, it led to a narrow distribution
of energy differences in Fig. 5B, with a slightly larger standard
deviation of 1.5 kcal/mol than that of PM3*+∆MLP.
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Figure 7: Accuracy of MLP (top), PM3*+∆MLP (middle), PM3 and PM3* (bottom) energy and forces for the 2,000 testing configurations for
the chorismate mutase reaction.
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collected from B3LYP/MM MD trajectories (blue) or low-level MD trajectories (orange) of chorismate mutase reaction.

Due to their capability to reproduce B3LYP energy and forces,
both MLP and PM3*+∆MLP models led to proper sampling of the
pathway (shown in Fig. 6A) and thus accurate reaction free energy
profile for the Menshutkin reaction. In addition, we expect that the
conformational space sampled by both models would overlap very
well with that of B3LYP.

4.D Chorismate Mutase Catalysis

Similar to the case of Menshutkin reaction in an aqueous solution,
the chorismate mutase system was poorly described by the PM3
model, with an energy error of 12.08 kcal/mol and a force error of
13.59 kcal/mol/Å shown in the bottom panel of Fig. 7. A substan-
tial improvement to the PM3 model was achieved through reparam-
eterization, which reduced the energy error to 2.25 kcal/mol and
the force error to 4.88 kcal/mol/Å. The improvement of the PM3*
model is also noticeable from the comparison of MUE and MAXE
values in Table S3.

The modeling of the chorismate mutase system was brought

within 1.0 kcal/mol with PM3*+∆MLP, whose RMS energy er-
ror was found to be 0.69 kcal/mol and RMS force error was
0.88 kcal/mol/Å. This was also evident in the change of the
wide PM3*–B3LYP energy distribution in Fig. 8A to the nar-
row peaks for ∆MLP-corrected model in Fig. 8D. In addi-
tion, we point out the substantial reduction of MAXE for the
forces from 33.29 kcal/mol/Å for PM3* to 7.18 kcal/mol/Å for
PM3*+∆MLP, suggesting very robust improvement of the accuracy
of the PM3*+∆MLP model.

With standalone MLP, one round of training using the con-
figuration collected from the PM3*/MM MD trajectory did yield
a good agreement with the target B3LYP/MM energy (RMSE:
0.99 kcal/mol and MUE: 0.78 kcal/mol). However, the force error
was found to be 1.84 kcal/mol/Å for RMSE and 1.36 kcal/mol/Å
for MUE. The MAXE of 14.78 kcal/mol/Å was also noticeably
large. With such larger errors in the force, we observed some level
of instability of the MD simulations using this MLP, especially near
the transition state region. To address this issue, we constructed an
expanded pool of configurations combining the configurations used
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in the first MLP training and the configurations selected from this
round of MLP sampling, and performed a second round of MLP
training using the expanded configuration pool. Previously, Pu et

al. has shown that the iterative parameterization of the se-QM
model can systematically improve the accuracy of the (reparame-
terized) QM model 38 and the present second round of MLP train-
ing can be considered to be a second iteration of the MLP model
training. The resultant MLP model, referred here to as MLP(2nd),
further reduced the RMS force error to 1.10 kcal/mol/Å (and
MUE to 0.81 kcal/mol/Å), which was accompanied by a RMS
energy error of 0.73 kcal/mol and MUE of 0.58 kcal/mol, respec-
tively. More impressively, the MAX force error was reduced to
8.32 kcal/mol/Å, which was only 1.1 kcal/mol/Å larger than the
MAX force error of PM3*+∆MLP. The MLP(2nd) model also
demonstrated a much narrower MLP(2nd)–B3LYP energy distri-
bution than the one for MLP(1st)–B3LYP one as shown in Fig. 8.

These MLP(2nd) and PM3*+∆MLP models yielded an accurate
sampling of the reaction pathway shown in Fig. 9A. This is in con-
trast to the PM3* model, whose sampling was shown in Fig. 8d of
Ref. 23 to deviate substantially from the B3LYP pathway between
the transition and the product. As a result of the accurate energetics
and sampling, both MLP(2nd) and PM3*+∆MLP models produced
free energy profiles of the chorismate mutase reaction that matched
the B3LYP profile in Fig. 9B.
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Figure 9: (A) Sampled pathway and (B) potential of mean force for
the chorismate mutase reaction based on umbrella sampling using
PM3*+∆MLP and MLP (the 2nd iteration) potentials in comparison
to B3LYP/6-31G* results.

5 Conclusions

Inspired by the works from Yang, York, Gastegger, Riniker
and coworkers, we explored the construction of system-specific

machine-learning potentials (MLPs) to accelerate the generation of
ab initio-quality QM/MM free energy profiles of enzymatic reac-

tions. A couple of advances were made in this work:

• The deep-potential of E and coworkers (i.e., DeepPot-SE)
was combined with our QM/MM-AC electrostatic model
to provide descriptors for a QM reactive region embedded
in an enzyme or solution environment (described by MM
point charges).

• A reparameterized semi-empirical quantum model, PM3*,
was utilized to generate the configurations for training the
atomistic machine-learning potentials. The deep-potential
and QM/MM-AC descriptors of these configurations were
then used to train the embedding and fitting neural net-
works to provide MLPs or ∆MLPs to propagate MD tra-
jectories of condensed-phase reactive systems.

• The ∆MLP model, when combined with the PM3* model
in umbrella simulations, produced accurate reaction free
energies and barrier heights of two model reactions (aque-
ous Menshutkin reaction and chorismate mutase reaction)
within 1.0 kcal/mol. A 10–fold or 46–fold reduction in
CPU time, respectively, was achieved in comparison to ref-
erence B3LYP/6-31G*/MM free energy simulations.

• The standalone MLP, which sought to directly reproduce
the B3LYP energy/force on QM atoms and fitted electro-
static potentials and fields on MM atoms, could reproduce
the aqueous Menshutkin free energy profile with a 16-fold
CPU timing saving. For the chorismate mutase reaction,
however, two rounds of MLP training was found to be nec-
essary to ensure stable MD trajectories. With a larger QM
region in chorismate mutase reaction, the timing saving
was 32–fold.

On the other hand, several limitations need to be addressed in the
future:

• The hyperparameters for our MLP and ∆MLP (which were
fixed in this work) are needed to be systematically explored
to find an optimal set of hyperparameters for each machine
learning potential for efficiency and accuracy.

• In our current protocol, the samples from one or more itera-
tions were all labelled using the high-level method. Active
learning or concurrent learning44,54 as well as a more ro-
bust data clustering algorithm can be adopted to reduce the
cost of both data labelling and training.

• Our protocol for reparameterizing semi-empirical QM
models and for training MLPs needs to be tested on typi-
cal enzyme reactions, where the computational savings are
expected to be even more substantial with a larger QM re-
gion.

• Given the generality of our QM/MM electrostatics treat-
ment, a MLP trained with the wild-type enzyme should be
applicable to the mutants. The transferability of the trained
MLPs has yet to be tested and verified.

• More accurate ab initio QM/MM models beyond
B3LYP/6-31G*/MM should be adopted as the labelling
method for our MLP and ∆MLP training.

Work in these directions are currently being pursued.
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1 Improved Semi-Empirical QM Recalibration Protocol

In this work, the semi-empirical QM recalibration protocol was improved upon the one from

our previous paper1, which in turn is based on the Reaction Path Force Matching (RP-FM)

method2. Inspired by the ForceBalance method3, where the objective function is defined as

the weighted sum of a set of scaled properties of the system, such as energies, forces, and

dipole moments, we defined the objective function in this work to include errors in energies

E, bond forces Fa, residual Cartesian forces with bond forces removed Fb, and a quadratic

penalty term with a strength of λ that restrains the parameters to their initial values. The

final form of the objective function is

X 2(x) =WE
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i,b |
2

P
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i,b |
2

+ λ|x� x0|
2,

where WE, WF , and W 0

F are the weights for the errors in energies, bond forces, and residual

Cartesian forces. wa is the weight of force error for bond a. Instead of optimizing the

semi-empirical QM parameters directly, we defined x as the relative deviations from the

standard semi-empirical QM parameter set. In this way, the initial parameters x0 is a

vector containing only zeros. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as

implemented in the SciPy package was used to perform the minimization, without any bounds

on the parameters. The first derivatives with respect to the parameters were calculated using

the finite difference method.

1Pan, X.; Li, P.; Ho, J.; Pu, J.; Mei, Y.; Shao, Y. Phys. Chem. Chem. Phys. 2019, 21, 20595–20605.
2Zhou, Y.; Pu, J. J. Chem. Theory Comput. 2014, 10, 3038–3054.
3Wang, L.-P.; Chen, J.; Voorhis, T. V. J. Chem. Theory Comput. 2013, 9, 452–460.
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Figure S1: The total energy (top) and the energy difference with respective to DFT/MM (bottom)
during the initial 500 fs of the NVE simulations. For each model, the energies were shifted for clarity.
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