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Entanglement not only plays a crucial role in quantum technologies, but is key to our understanding of
quantum correlations in many-body systems. However, in an experiment, the only way of measuring
entanglement in a generic mixed state is through reconstructive quantum tomography, requiring an
exponential number of measurements in the system size. Here, we propose a machine-learning-assisted
scheme to measure the entanglement between arbitrary subsystems of size NA and NB, with OðNA þ NBÞ
measurements, and without any prior knowledge of the state. The method exploits a neural network to learn
the unknown, nonlinear function relating certain measurable moments and the logarithmic negativity. Our
procedure will allow entanglement measurements in a wide variety of systems, including strongly
interacting many-body systems in both equilibrium and nonequilibrium regimes.
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Introduction.—Entanglement is a key property for many
emerging quantum technologies [1–6], but also is essential
for understanding the structure of strongly correlated many-
body systems [7,8]. Despite its paramount importance, only
for the very limited case of a bipartition of a pure state can
the entanglement, quantified by subsystem entropy, be
measured in an efficient and state-independent way [9].
There are multiple proposals to carry out such a scheme
in various physical systems, such as optical lattices [10,11],
quantum dot arrays [12] and Gaussian systems [13].
Recently, some of these have also been experimentally
realized in simulated spin chains, e.g., in cold atoms [14]
and photonic chips [15]. Nonetheless, pure states are very
rare: they are not only difficult to prepare in realistic
situations, but also difficult to maintain in the presence of
an environment. For example, just consider the entangle-
ment between (i) optical modes traversing fibers, crucial for
quantum communication, (ii) spatially separated parts of an
extended many-body pure state, important for characteriz-
ing long range entanglement [16–21], and (iii) two systems
in a thermal state—in none of the above cases, ironically,
can the entanglement entropy quantify the entanglement.
Witnesses do exist for specific forms of entanglement, but
these are state dependent and provide only a simple yes or
no answer [22–24] or bounds on the quantity of entangle-
ment [25–31]. However, the crucial task of being able to
accurately measure entanglement for mixed states in an
experimental setting remains open.
While for pure states bipartite entanglement is uniquely

defined by the entropy of the subsystems, for mixed states
the landscape is far more complex [32,33]. Aside from
isolated special cases such as two qubit states [34] and
bosonic Gaussian states [13,35], only the (logarithmic)
negativity [36–39] is a computationally tractable quantity

[40]. It bounds the distillable entanglement and teleportation
capacity [38], and is a pivotally important quantity to
estimate for both quantum technologies [32,33,41] and
condensed matter systems [42]. Nonetheless, there is no
state-independent observable that can measure the logarith-
mic negativity, and thus its experimental measurement
requires full state tomography [43]—demanding, in general,
an exponential number of measurements in the system size.
Recently, polynomial tomography schemes have emerged,
such as tensor networks for lowly entangled states [41,44], or
breakthroughs in neural network state reconstruction [45,46].
However, these may be insufficient for estimating entangle-
ment, since many entanglement measures, such as the
logarithmic negativity, are not continuous [47]. Namely, even
if reconstructed stateρr approximates actual stateρ closely, the
two may have significantly different negativities [48].
Here, we put forward a machine-learning-assisted

scheme for accurately estimating the logarithmic negativity
in a completely general and realistic setting, using an
efficient number of measurements—scaling polynomially
with system size. Our estimator works for a wide range of
states, and is remarkably accurate for highly entangled
states. Our method is based on measuring a finite number of
moments of a partially transposed density matrix [49–51]
from which we extract the entanglement negativity using
machine learning. This direct estimation of negativity
avoids approximate state reconstruction [41,44–46], and
represents a new front in applying classical machine
learning to quantum problems [8,52–55]. Moreover, we
propose a new method for measuring those moments,
beyond Refs. [49–51], which is experimentally feasible
in the many-body setting, since the individual building
blocks have already been demonstrated in solid state [56]
and cold atoms [14].
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LogarithmicNegativity.—Logarithmic negativity [36–39]
for a generic mixed state ρAB quantifies the entanglement
between subsystems A and B. It is defined as

E ¼ log2jρTA
ABj ¼ log2jρTB

ABj ¼ log2
X

k

jλkj; ð1Þ

with j · j the trace norm, ρTX
AB the partial transpose with

respect to subsystem X, and fλkg the eigenvalues of ρTX
AB.

Because of the nontrivial dependence of E on ρAB, there
is no state-independent observable that can measure it—
generally demanding full state tomography. The fλkg
are the roots of the characteristic polynomial, PðλÞ ¼
detðλ − ρTB

ABÞ ¼
P

ncnλ
n, where each cn is a polynomial

function of the partially transposed moments:

μm ¼ Tr½ðρTB
ABÞm� ¼

X

k

λmk : ð2Þ

In this way, full information about the spectrum fλkg is
contained in fμmg. It is known that measuring these
moments is technically possible using m copies of the
state and controlled swap operations [49]. However, even if
these experimentally challenging operations were avail-
able, the problem of extracting fλkg from the moments is
notoriously ill conditioned [57], with a closely related
problem being described as numerically catastrophic.
Alongside this, an exponential number of moments res-
pective to the size of AB are needed to exactly solve the
equations. On the other hand, to estimate the logarithmic
negativity, a precise knowledge of all λk is not required.
Since − 1

2
≤ λk ≤ 1 for all k [58] and

P
kλk ¼ 1, generi-

cally, the magnitude of the moments quickly decreases
with m, with the first few carrying the most informa-
tion. Backing up this intuition, we will show that the
moments required, fμm∶m ≤ Mg, to accurately estimate

the entanglement can number as few as M ¼ 3. We do this
by employing machine learning to directlymap moments to
logarithmic negativity, avoiding reconstruction of the
spectrum or state. Note that μ0 is simply the dimension
of the systems Hilbert space, while μ1 ¼ 1 in all cases.
Additionally, it can be easily shown that μ2 is equal to the
purity of the state ¼ Tr½ρ2AB�, and as such,M ≥ 3 is needed
to extract any information about E. In this sense our method
is optimal in terms of number of copies.
Measuring the moments of ρTB

AB—.The method for
measuring the moments proposed in Ref. [49] based on
three-body controlled swaps is practically challenging in a
many-body setup where natural interactions are two-body.
A simpler protocol, for 4 moments only, was provided in
Ref. [51]. Here, we show that any moment in Eq. (2) can
be measured using only SWAP operators between the
individual constituents of the m copies of the state ρAB,
namely, ρ⊗m

AB ¼⊗m
c¼1 ρAcBc

. This general setup is shown in
Fig. 1(a), where the mixedness of ρAB arises from possible
entanglement with a third system C, such that ρAB ¼
TrCjΨABCihΨABCj with jΨABCi being a pure tripartite state.
The first step is to write the matrix power as an expectation
of a permutation operator, similar to Refs. [9,59], but here
on the partially transposed copies:

μm ¼ Tr

��
⊗
m

c¼1
ρ
TBc
AcBc

�
Pm

�

¼ Tr

��
⊗
m

c¼1
ρAcBc

�
ðPmÞTB

�
; ð3Þ

where Pm is any linear combination of cyclic permutation
operators of order m and the second line makes use of the
identity TrðρTB

ABOÞ ¼ TrðρABOTBÞ, valid for any operatorO.
A schematic of the equality in Eq. (3) form ¼ 3 is shown in

Fig. 1(b). In the Supplemental Material [48] we provide a

(a) (b)

FIG. 1. Schematics. (a) Example measurement setup for the moments, μm ¼ Tr½ðρTB
ABÞm�, here for m ¼ 3, from which one can extract

the logarithmic negativity E between A and B. The generic mixedness of ρAB could arise from entanglement with environment C. Here
the subsystems contain NA, NB, and NC particles, respectively. The scheme involves three copies of the original system, and two
counterpropagating sets of measurements on A and B, ordered by the shown numbers, with direction depicted by the filled arrows.
(b) Diagrammatic proof (for m ¼ 3) of the equivalence between the moments μm and expectation of two opposite permutations
(decomposed as swaps) on A and B—from which a measurement scheme can be derived.
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choice of Pm with a neat operational meaning, both for spin
and bosonic systems. For spin lattices, our choice of Pm to
measure the moments μm results to the following steps in
practice: (i) prepare m copies of the state ρAB; (ii) sequen-
tially measure a “forward” sequence of adjacent swaps,
Sc;cþ1
A between neighboring copies of system A from c ¼ 1

tom − 1; (iii) sequentially measure a “backward” sequence
of adjacent swaps, Sc;c−1B between neighboring copies of
system B from c ¼ m to 2; (iv) repeat these steps in order to
yield an expectation value. This procedure is also depicted
for m ¼ 3 in Fig. 1(a). For bosonic lattices, our procedure
corresponds to the following steps: (i) prepare m copies of
the state ρAB; (ii) perform forward Fourier transforms
between modes in different copies for each site in A—this
can be achieved using a series of beam splitters [71];
(iii) perform backwards (reverse) Fourier transform
between modes in different copies for each site in B, via
reverse beam splitter transformations; (iv) measure the
boson occupation numbers nj;c on all sites j ∈ fA; Bg
and all copies c to compute ϕ ¼ ei

P
j∈fA;Bg;c2πcnj;c=m.

(v) Repeat these steps to obtain the expectation value μm
as an average of ϕ. Both procedures require OðNA þ NBÞ
measurements for each m between 2 and M, and are
explained in detail in the Supplemental Material [48].
This is in stark contrast to tomography, which generically
for qubit systems requires 22ðNAþNBÞ measurement settings.
It is worth emphasizing the difference between our

procedure and recently proposed operational methods for
measuring Renyi entropies [10,12,72]. First of all, Renyi
entropies only quantify entanglement for pure states, and
cannot be used in the more general mixed state scenario.
Second, while for entropies the operations are only per-
formed on a single subsystem, here, one performs both
forward and backward operations on two subsystems at
once, as explained above. Remarkably, even though par-
tially transposed density matrices are generically unphys-
ical, measurement of their moments is possible.
Machine learning entanglement.—We focus now on

estimating the logarithmic negativity from the information
contained in the moments, μm. One approach using only the
even moments has been proposed in the quantum field
theory literature [42,73] by exploiting numerical extrapo-
lation. However, this method neglects the odd moments and
generally requires a large number of moments and thus
copies. We have developed an alternative analytical method
based on Chebyshev functional approximation, detailed in
the Supplemental Material [48], which takes into account
these odd moments. Indeed with the same number of copies
we find it produces more accurate estimates, and thus
serves as a reference quantity. The Chebyshev expansion is
analytically tractable, and becomes accurate for large
enough M, as is shown in the Supplemental Material
[48]. Nonetheless, this expansion is based on a linear
mapping between the moments and the negativity, despite

this relationship being inherently nonlinear. Therefore
it is natural to think that a nonlinear transformation could
be more optimal, and thus more efficient for smaller
M—namely, fewer copies.
Machine learning has recently emerged as a key tool for

modeling an unknown nonlinear relationship between sets
of data. In the supervised learning paradigm, one trains a
model with a set of known inputs and their corresponding
outputs. Once trained, the model can then be used to predict
the unknown output of new input data. Here, we take the
moments μm as the input and the logarithmic negativity E as
the output. Training is performed by taking a large set of
states for which μm and E can be computed on a classical
computer. Thismodel can then be used to predict E from a set
of experimentally measured moments. The experimental
system under study motivates the choice of which training
states to use, so that they share, e.g., similar entanglement
features. Among the most successful machine learning
algorithms for nonlinear regression are supervised vector
machines [74], randomdecision forests [75], and deep neural
networks [76,77]. However, we have found that using the
same training set for each, neural networks are superiorwhen
it comes to predicting logarithmic negativity for awide range
of states beyond the training set. As we show with our
numerical results, neural networks provide a very accurate
method for extracting the logarithmic negativity with as few
as M ¼ 3 copies. The details of our neural network con-
struction can be found in the Supplemental Material [48].
Training with random states.—In order to train a neural

network, a set of suitable training states are required for
which both the moments and logarithmic negativities are
known. From an entanglement perspective, relevant states
in condensed matter physics can be classified as either area
law, or volume law. In the first case, the entanglement of a
subsystem A with the rest is proportional to the number of
qubits along their boundary. In the second, this entangle-
ment is instead proportional to NA, the number of qubits
in A. Area law states arise as low energy eigenstates of local
gappedHamiltonians,with logarithmic corrections in critical
systems. Volume law states, however, are associated with the
eigenstates found in the midspectrum, and as such arise in
nonequilibrium dynamics, e.g., quantum quenches [78,79].
Rather than concentrate on a training with a specific

model system, we initially consider the very general case of
random states. To encompass both area- and volume-law
states, we consider two classes of states jΨABSi: (i) random
generic pure states (R-GPS), e.g., sampled from the Haar
measure, which typically have volume-law entanglement
[80,81]; (ii) random matrix product states (R-MPS) with
fixed bond dimension, which satisfy an area law by
construction [8]. In order to generate a training set with
a wide range of entanglement features, subsystem sizes,
and mixedness, we perform the following procedure: (i) For
a fixed number of qubits N, take either a R-GPS, or R-MPS
with bond dimension D. (ii) Take different tripartitions
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such that N ¼ NA þ NB þ NC, and for each calculate μm
and E for ρAB. (iii) Repeat for different random instances,
while separately varying N and D. Further generation and
training are provided in the Supplemental Material [48].
Numerical results for random Sstates.—To check the

performance of our neural network estimator, we take the
set of random states described in the previous section and
split this data in two, one-half for training the neural
network model, and the other as “unseen” test data. In
Fig. 2(a) we plot the machine learning model’s predictions,
EML
M , for the test data, using only M ¼ 3 copies, in which

a high degree of accuracy is achieved. In the inset of
Fig. 2(a), we plot a histogram of the errors EML

M − E, which
displays a very sharp peak at zero error with standard
deviation ∼0.09. A further improvement, particularly in
outliers, is achieved by increasing the number of copies M
to 10, see Fig. 2(b), where the error standard deviation
decreases to ∼0.07 Regardless, the machine learning
method is already very accurate for extracting entangle-
ment using only three copies. The machine learning
approach works particularly well for large bond dimension
and volume-law-like states—an important fact given that
these are the exact cases where efficient tomography fails.
A more detailed discussion about sensitivity and ascribing
errors to machine learning predictions can be found in the
Supplemental Material [48].
Numerical results for physical states.—We now consider

themore realistic setting of quenchdynamics in amany-body
system.We take a systemofN spin-1=2 particleswith nearest
neighbour Heisenberg Hamiltonian H ¼ J

P
N−1
i¼1 σi · σiþ1

with J the interaction strength and σi ¼ ðσxi ; σyi ; σzi Þ the
vector of Pauli matrices acting on site i. The system is
initialized in the (separable) Néel-state jΨð0Þi ¼ j↑↓↑…i.
As the chain unitarily evolves in time as jΨðtÞi ¼
e−iHtjΨð0Þi, it becomes entangled, with an effective MPS

descriptionwhose bond dimension increases until the state is
essentially volume law [78,79].
In Fig. 3 we plot the evolution of E and three approxi-

mation methods, as functions of time for three different
choices of subsystems. The three methods are the
Chebyshev approximation with M ¼ 10 and M ¼ 20,
discussed in the Supplemental Material [48], and machine
learning with M ¼ 3, with respective approximate entan-
glements ECheb

M¼10, E
Cheb
M¼20 and E

ML
M¼3. In Fig. 3(a) we consider

a specific partition with NA ¼ 2, NB ¼ 2, and NC ¼ 4.
Here, EML

M¼3 and ECheb
M¼20 are comparably accurate. For larger

subsystems, as shown in Figs. 3(b) and 3(c), the machine
learning approximation, using only M ¼ 3 copies, signifi-
cantly outperforms the Chebyshev approximations, using
either M ¼ 10 or M ¼ 20 copies. It is remarkable that
despite being trained on a arbitrary set of random states
with no knowledge of the underlying physical system,
the evolution of E is accurately captured by the neural
network estimator for all partitions and times, with as few
as M ¼ 3 copies.
In the Supplemental Material [48], we explore various

other physical situations, including the ground state of an
XX chain across its phase transition, the fully symmetricW
state, and a quench across the critical point of a transverse
Ising chain.
Conclusions.—The measurement of logarithmic nega-

tivity in generic multiparticle mixed states (where Renyi
entropies are insufficient to quantify entanglement) has so
far relied on the complete reconstruction of a quantum
state, which in general requires an exponential number of
measurements, and is thus limited to small system sizes. In
this work, we have devised an alternative strategy, based on
machine learning, by which we can extract the entangle-
ment from very few measurements. These measurements

(a) (b)

FIG. 2. Machine learning entanglement. Estimated logarithmic
negativity EML

M , using a machine learning vs actual logarithmic
negativity E, for the same set of random states described in the
main text. Training and prediction is performed using the mo-
ments μm generated from (a) M ¼ 3 copies, (b) M ¼ 10 copies.
The respective insets show the distribution of error, EML

M − E.

(a)

(b)

(c)

FIG. 3. Estimating entanglement for physical states. Logarith-
mic negativity E and its approximations, using machine learning
(M ¼ 3) and a Chebyshev expansion (M ¼ 10, M ¼ 20), as a
function of time Jt for the quench dynamics of a Heisenberg spin
chain initialized in a Néel state. A variety of system sizes with
different partitions is shown here: (a) N ¼ 8, NA ¼ NB ¼ 2;
(b) N ¼ 11, NA ¼ 3, NB ¼ 5; (c) N ¼ 20, NA ¼ NB ¼ 5.
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are basedon twocounterpropagating series of swapoperators
on copies of the state—techniques for achieving this have
already been demonstrated in a number of physical setups
ranging from quantum dot arrays [56,82] to cold atoms
in optical lattices [14,83]. Our method is based on learning
the functional relationship between these measurement
outcomes—the first fewmoments of the partially transposed
density matrix—and the logarithmic negativity using a
neural network. Remarkably, our method is already very
accurate for as few as three copies—making it very resource
efficient and desirable for practical applications—even for
estimating the entanglement of highly entangled physical
states, such as those arising in quantum quenches.
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