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Machine-learning atomic simulation for heterogeneous
catalysis
Dongxiao Chen1, Cheng Shang1,2 and Zhi-Pan Liu 1,2,3✉

Heterogeneous catalysis is at the heart of chemistry. New theoretical methods based on machine learning (ML) techniques that
emerged in recent years provide a new avenue to disclose the structures and reaction in complex catalytic systems. Here we review
briefly the history of atomic simulations in catalysis and then focus on the recent trend shifting toward ML potential calculations.
The advanced methods developed by our group are outlined to illustrate how complex structures and reaction networks can be
resolved using the ML potential in combination with efficient global optimization methods. The future of atomic simulation in
catalysis is outlooked.
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SHORT HISTORY: FROM DFT TO MACHINE LEARNING
Heterogeneous catalysis is renowned for its great complexity in
catalyst structure, and thus revealing how reactions occur on
catalyst surfaces is an outstanding challenge. A major difficulty
stems from the intimate coupling between catalyst surfaces and
molecules during the catalytic conversion1,2. The catalyst surface
may well reconstruct caused by the molecular adsorption, and
molecules can in turn choose the best surface sites to achieve the
highest reaction kinetics. Therefore, new techniques that can be
operated under reaction conditions and have high spatial-temporal
resolution were continuously pursued to characterize the in situ
catalyst structure and to reveal the reaction mechanisms. However,
to date, most experimental techniques remain frustrating to work
properly under even the most common catalytic conditions, such as
high-pressure conditions3,4 and solid-liquid reaction conditions5–7.
On the other hand, atomic simulations, particularly those based on
quantum mechanics (QM) calculations, have attracted much
attention in the past two decades: they are not only an
indispensable complement to experimental characterization tech-
niques, but also could provide insightful predictions to guide
experimental catalyst search8,9. It is the purpose of this review to
introduce the advance of the latest machine learning atomic
simulations in heterogeneous catalysis.
Theoretical calculation emerges as a key player in catalysis

research as early as the 1980s. With the advent of density
functional theory calculations for periodic systems in the
1990s10–12, the key obstacle in computing extended solid surfaces
was removed, and the first principles atomic simulations soon
became a popular and trustful tool in the community. Compared
to empirical force field calculations and the finite system DFT
calculations, the plane-wave DFT calculations for periodic systems
can reach much better accuracy in computing the potential
energy surface (PES) of surfaces and the interaction between
molecules and surfaces13–15. This offers the possibility to system-
atically compare the adsorption and reaction of different
molecules on different surfaces. Because of the relatively low
scaling (O(NlnN)) of DFT calculations, the systems under 100 atoms
(in periodicity) can now be routinely performed on modern

workstation computers. To date, tremendous progress thus has
been achieved in catalysis via atomic simulation, where perhaps
all known important catalytic systems have been explored by
using the single-crystal bulk structures and well-defined low Miller
index surfaces as the model16–22. Even though, DFT calculations
appear still not a game changer for at least two reasons. First, the
catalytic systems are generally much more complex than single-
crystal surfaces, which involve many more atoms and more
complex surface geometries23–25. Second, the computation of
chemical reactions that need to locate the reaction transition state
(TS) is typically one or two orders of magnitude more expensive
than that of the adsorption state (initial and final states)26–31.
Therefore, the predictive power of DFT calculations for catalytic
reactions is limited to even smaller systems, not to mention the
concerned DFT intrinsic errors in computing the reaction kinetics.
To allow for efficient PES exploration as required, for example,

to identify the best catalytic site, many elegant theoretical
methods have been proposed. While the real catalyst structure
evolution must be in contact with the reaction environment (e.g.,
gas molecules), most theoretical simulations have to work with
fixed numbers of particles in the system (constant number of
atoms). For example, molecular dynamics (MD) can produce a
structure evolution trajectory in real-time on a finite-temperature
free energy surface32,33, and enhanced MD methods can further
speed up the exploration of designed chemical reaction
events34,35. Unfortunately, due to the speed limit in PES
evaluation, the time scale of MD simulations is generally below
nano-seconds, which is far not enough for finding the most stable
structure at a given composition, a global optimization problem.
To this end, a number of global optimization methods were
proposed since 1990 to break the time scale of MD simulation,
which abandons the strict detailed-balance rules and the finite-
temperature free energy effects in kinetics and focuses on finding
the global minima (GM) by randomized structure perturbation.
These methods include basin hopping36,37, genetic algorithm
(GA)38–40, particle swarm optimization (PSO)41,42, and the stochas-
tic surface walking (SSW) method43–45. As a complement, variable-
atom global optimization methods have also been developed,
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which can find the most stable structure at different composi-
tions46. Even with these advances, these current global optimiza-
tion methods still cannot replace the grand canonical Monte-Carlo
(GCMC) method47–50 that realizes the dynamic atom exchange
under the fixed chemical potential, despite the fact that the GCMC
method with the atom-wise operation in structure evolution is
generally too expensive to apply to catalytic systems.
Another attractive feature of atomic simulations is the

feasibility to locate the lowest energy reaction pathway, which
is often hard to conclude from the experiment due to the
transient nature of intermediates. The main stream of atomic
simulation methods for finding reaction pathways is based on the
Markov chain theory and transition state theory51,52, where a
chemical process is considered to be composed by many
elementary steps and the rate of each elementary step is
controlled by the barrier height between its TS and the initial
state (IS). For multiple-step chemical process, the mean-field
microkinetics53,54 or kinetic Monte-Carlo (kMC) simulations55–57

are required to transfer the knowledge of the microscopic barrier
of elementary reactions to macroscopic kinetics of catalysis. While
the barrier is typically determined by TS location method as the
energy barrier at zero K26–31, the free energy barrier of an
elementary step could be computed by enhanced MD-based
approaches once the reaction coordinate is known, such as the
umbrella sampling (US) method that integrates out the potential
of mean force along a designed reaction coordinate58–60.
Nevertheless, all of these methods require a priori knowledge
or pre-guess on the reaction mechanism to obtain the reaction
coordinate for each elementary step. Compared to structure
exploration, the finding of reaction pathways is thus not only
much more demanding in computation but also needs a priori
knowledge as input from experienced users.
In recent years, machine learning (ML) based atomic simulations

are evolving rapidly, achieving huge progresses on both the
methodology for PES evaluations to the algorithms for structure
and reaction pathway sampling61,62. In particular, the latest neural
network (NN) potential calculations can be more than 104 faster
than DFT calculations without significant loss of accuracy63,64.
These ML atomic simulations bypass the heavy QM calculations
and utilize ML models to link the atomic coordinates with the total
energies by learning the PES data from QM calculations64. These
new techniques are bound to reshaping profoundly the research
in heterogeneous catalysis61,62,65,66.
As a representative of ML potentials, the high-dimensional

neural network (NN) proposed by Behler and Parrinello is one of
the most widely utilized ML framework64,67,68. They propose that
the total energy of a system is the sum of each atomic energy,
which allows to learn the total energy, an extensive quantity, by
using atom-wise NNs. The input layer of atomic NN is then a set of
permutation-, translation- and rotation-invariant numerical func-
tions, the so-called atom-centered symmetry functions, that can
sensitively reflect the local chemical environment of atom. To
date, there are many other flavors ML models, although most are
still based on the same atom-wise NN framework68. The structural
descriptors and thus the input layer of NN are generally the most
different parts among different ML potentials, for example, the
convolutional neural network (CNN) and graphic neural network
(GNN) are utilized to distinguish the chemical environment of
atom69–72. In our group, we proposed a set of power-type
structural descriptors (PTSDs) as the structural descriptors for
fitting the global PES data, where the spherical functions and the
four-body terms are introduced73. The complex PTSD descriptors
allow the ML atomic simulation in complex material systems, such
as boron cluster73, zeolite66,74,75, phase interface76, and hetero-
geneous reactions77–79.
In this review, we will highlight the recent progress on ML-

based methodologies for solving complex PES problems in
heterogeneous catalysis, both on the structure determination

and reaction pathway finding. We finally discuss the future
directions in theoretical catalysis, focusing on large-scale atomic
simulations.

ATOMISTIC SIMULATIONS FOR EXPLORING STRUCTURES
Since catalysts are dynamic, reconstructing and interacting
constantly with coming molecules under catalytic conditions,
atomic simulations to explore unknown catalyst structures ideally
need to be held under the grand canonical (GC) ensemble, which
means particles in a system can exchange with the environment
as driven by the chemical potential80,81. Although the grand
canonical Monte-Carlo (GCMC) simulations were developed for
such a purpose47–50, it is difficult to combine GCMC with QM
calculations due to the slow self-consistent-field cycles in solving
Schrodinger equations. Additionally, the MC method as utilized in
GCMC evolves structure via random perturbation, which is often
not efficient enough to find stable configurations. Here we will
introduce the progress of ML-powered global optimization and
grand canonical structure search for catalyst structures, which are
benefited significantly by the high speed and high accuracy of ML
potentials.

Machine learning global optimization
The global optimization method was introduced to search for
unknown structures from 1990s82. Compared to the typical MD
and MC methods, the global optimization methods can better
surmount high barriers between minima and avoid trapping at
high-entropy regions of PES. Due to the dramatic structure change
between configurations and the high computational costs, the
global optimization methods have long been limited to a few toy
models and small clusters83.
Unlike most global optimization methods, the stochastic surface

walking (SSW) method developed in our group utilizes small
structure perturbations as driven by bias potentials to move a
structure from one minimum to another43–45. The transition region
between minima can be properly visited by SSW which allows the
reaction pathway searching during the global optimization. The
early applications of SSW include both the finding of the global
minimum of clusters43, and the phase transition pathways
between bulk crystal materials45. The SSW method provides a
powerful and convenient solution for PES exploration and thus
becomes an ideal tool for PES data generation. Indeed, in 2017 a
global-to-global scheme as introduced by our group to combine
SSW with NN endows the global optimization ability to ML
potentials84. The so-called global NN potential (G-NN) have good
transferability and can be utilized to explore unknown structures
with arbitrary compositions starting from random structures. The
SSW-NN methods have been applied to a wide range of PES
problems, in particularly those related to complex surface and
interface structures in heterogeneous catalysis85.
Figure 1a gives an example of how SSW-NN determines the

famous silver surface oxide structure, Ag12O6 phase on p(4×4)
periodicity of Ag(111)86–88. First, a Ag-O global NN potential is
generated by SSW-NN method, which is iteratively trained by
learning a wide range of different Ag-O structures, including the
bulk and surfaces for metal Ag and AgOx oxides. In searching for
the surface oxide structure, the initial structure (‘IS’ in the figure) can
randomly generated, for example, from a 1 ns of high-temperature
(2000 K) NN-based MD simulations that contains O2 species, surface
oxygen, subsurface oxygen, and silver vacancies. Next, the SSW-NN
is conducted to locate the global minimum (GM) of this structure. A
2000-step SSW-NN trajectory at a given Ag12O6 composition is
shown in Fig. 1a, where the energy drops rapidly in the early stage,
for example, the structure in step-372 is only 0.2 eV higher than the
GM. The SSW trajectory also reveals the stable structure patterns of
surface oxide, namely (i) the subsurface oxygen is not stable (str 1
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→ 2, red part), (ii) molecular O2 species, if present, will dissociate on
the surface (str 2 → 3, green part), and (iii) the optimal Ag-O
arrangement (str 3 → 4, blue part). Finally, the GM structure,
identical to that reported previously87,88, is identified after 1979
SSW steps, which is verified by continuing SSW search for another
10,000 steps and no more stable structures is found.
For the same Ag-O surface oxide system, Hammer group has

developed the atomistic structure learning algorithm (ASLA) to
identify the global minimum, as shown in Fig. 1b89,90. The method
builds 2D structures using an atom-by-atom strategy based on a
reinforcement learning framework. In this method, CNN is used to
acquire the knowledge of a surface structure and output the
Q-values used for locating the next atom in ε-greedy policy. DFT
calculations are performed to evaluate the stability of the
predicted structures. It takes more than 3990 episodes (one trial
for building Ag12O6 phase is one episode) to resolve the Ag12O6

global minimum phase. Apparently, if DFT can be replaced by ML
potentials, the searching speed should be dramatically dropped.
This demonstrates, on the other hand, that ML techniques can be
combined versatility with PES evaluation methods to solve
complex PES problems.

ASOP algorithm
The fast global optimization ability of SSW-NN opens the door for
searching structures with variable compositions in a GC ensemble.
We have developed the automated search for optimal surface
phases (ASOP)91, which can explore the composition space under
a predefined chemical potential condition. As shown in Fig. 2a, the
ASOP simulation is based on a multi-grid framework to scan all
likely compositions. It takes only simple inputs, including the bulk
crystal structure, the surface Miller index, and the chemical
potentials of exchanging particles, and outputs a phase diagram,
including a list of stable phases.

In one ASOP simulation, the whole composition space is
discretized into a series of grids from coarse to fine, in which each
grid represents a unique surface periodicity ordered by the surface
area from small to large. Then, several cycles of SSW-NN structure
exploration and Monte-Carlo selection are conducted for the
compositions in each grid. The simulation starts from the coarsest
grid and progressively explores the larger grids, where the
knowledge of the stability of compositions is inherited from grid
to grid. The SSW-NN sweeps over each composition with only a
few steps (e.g., smaller than 400) since the energetically favorable
compositions will be biased and visited again in the subsequent
cycles. The Monte-Carlo scheme is utilized to select the focus zone
containing energetically favorable compositions.
Taking Ag(100) oxidation under typical ethene epoxidation

conditions (500 K, 1 bar of O2) as the example, the ASOP
algorithm can identify the top stable silver surface oxides within
90 hours on 80 CPU cores. Figure 2b shows the PES map and
energy spectrum of surface oxides, in which the optimal zones
locate at the Ag and O coverages being 0.6~1.0 and 0.5~0.9 ML,
respectively (see the blue zone in the figure). Figure 2c plots the
geometries of
phase-1, the most stable structure from ASOP, which differs
from an experimentally observed surface oxide at low O2

pressure,
phase-292,93. The phase-1 possesses a Ag7O5 stoichiometry with
O coverage of 0.625 ML, which contains the planar coordinated
[AgO4] motif with high O-density. By contrast, the phase-2 has a
lower O coverage (0.50 ML) and is less sable (0.025 J/m2, see
energy spectrum of Fig. 2b), which features a missing-row
reconstruction induced by atomic O adsorption. These results
indicate that Ag(100) surface under typical ethene epoxidation
conditions are in fact at a deeper oxidized state comparing to
the surface science experiment. The Ag catalyst surface is highly
dynamic under different O2 pressures.

Fig. 1 The identification of silver surface oxide. a The 2000-step SSW-NN trajectory for identifying the structure of silver surface oxide
(Ag12O6 phase on p(4 × 4) supercell of Ag(111)). The initial structure (IS) and four representative structures under different stage of
optimization during SSW-NN are shown. b The building of Ag12O6 optimal surface phase with the given input of p(4 × 4) supercell and Ag12O6
composition by reinforcement learning based atomistic structure learning algorithm, in which the depth of blue in the figure represents the
Q-values (the preference for the location of the next atom) predicted by the CNN, reproduced with permission from ref. 89. Copyright
American Institute of Physics, 2019.
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REACTION ACTIVITY PREDICTION
The determination of the catalyst structures is generally not
enough for predicting reactivity in heterogeneous catalysis. The
molecules can adsorb, diffuse and react at a vast number of local
sites, which may only have trivial differences in geometry but can
provide very different reactivity. Traditionally, the reaction path-
way at each site needs to be determined by locating all likely
transition states (TS) in order to predict correctly the overall
activity51,52. The TS search can be accelerated by the NN potential,
but the pre-guess of reaction coordinate remains to be a key
obstacle in unknown reactions. The Brønsted-Evans-Polanyi (BEP)
relationship94–96, that correlates the reaction energy (adsorption
energy difference between the initial and the final states) with the
reaction barrier is often utilized to speed up the reactivity
prediction, although the accuracy of BEP is generally poor and
may only be used as a coarse screening tool.
Recently, Sun and Sautet demonstrated further the complexity of

reaction pathways on nanocatalysts using a concept of catalyst
fluxionality97–99. They utilized the HDNN potential together with a
modified genetic algorithm to explore extensively the low energy
metastable ensemble (LEME) of Pt13Hx clusters and then evaluates
the hydrogen evolution reaction (HER) and methane activation

activities on these clusters97. Fig. 3a shows the top three stable
Pt13H26 clusters in its LEME, in which the Pt atoms exhibit various
coordination numbers, such as four-coordinated Pt (PtH4, see GM0,
GM1, and GM2), three-coordinated Pt (PtH3, see GM0 and GM1),
and two-coordinated Pt (PtH2, see only GM1). The kinetic evaluation
of all these clusters in Fig. 3b indicate the PtH2 site is the most
active site with the lowest activation energy, which locates on
energetically less favored GM1 compared to GM0. Notably, even
with the consideration of presence probability, the weight reaction
rate of GM1 is still 30 times higher than GM0, indicating the
fluxionality of active site from the most stable structure to
metastable isomer, which can hardly be noticed without the
machine learning accelerated large-scale structure sampling.
The ultimate goal of reaction activity prediction in the

heterogeneous reaction is to discover reaction channels in an
automated way, which should take into account the intimate
coupling between catalyst structure and molecular reactions.
Since the complexity of the reaction network grows exponentially
when many elementary reactions and likely reaction sites are
present, an intelligent on-the-fly pathway explorer is essential in
order to identify the kinetically relevant reactions by the algorithm
itself. For this purpose, new methods have developed by

Fig. 3 Pt clusters for methane activation. a The geometries of top three stable Pt13H26 clusters (denoted as GM0, GM1, and GM2) as explored
by the HDNN potential together with modified genetic algorithm, in which the note ‘PtHx’ represents the coordination number (x) of Pt. b The
activation energies (Ea) and relative contributions to the reaction rate of methane activation under 673 K. Reproduced with permission from
ref. 97. Copyright American Chemical Society, 2018.

Fig. 2 The ASOP algorithm and its application. a Flowchart of the ASOP algorithm that contains three steps. b The PES contour map and
energy spectrum for silver surface oxides on Ag(100) from ASOP simulation. c The geometries of two phases, as labeled in both PES map and
energy spectrum. Reproduced with permission from ref. 91. Copyright American Institute of Physics, 2022.
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exploiting the SSW global optimization for PES search and the
G-NN potential for PES evaluation.

SSW-RS method
The SSW reaction sampling (SSW-RS) method modifies the SSW
global optimization for pathway collection during the SSW PES
search. Specifically, in the SSW-RS simulation, the structure
characteristics, such as the bond matrix and chirality of the initial
structure, are remembered and used to judge whether a new
structure from SSW is identical to the initial structure. If it is false,
SSW will output a reaction pair for the subsequent pathway search
and the current structure is back to the initial structure to continue
the SSW search. Finally, the TS location for all reaction pairs is
performed by the double-ended surface walking (DESW)31, which
can identify iteratively all TSs along the pathway connecting a
reaction pair. The SSW-RS method can be combined with DFT and
G-NN calculations for studying different type of reactions, from
gas phase reactions100–102 to solid phase transitions103–105.
Figure 4(a) illustrates an SSW-RS example for finding the

reaction pathways for the oxometallacycle (OMC) intermediate on
Ag(100), which is known to be a critical intermediate in ethene
epoxidation106–108. It was generally believed that OMC can further
oxidize to AA and EO with similar barriers on metal Ag sites and
thus the EO selectivity on Ag catalyst is about 50 %106,109,110.
By using SSW-RS, a total 864 qualified reaction pairs are

collected from 10000 SSW-RS steps, and after DESW pathway
search, 29 distinct products are identified. In these products, only
five of them are kinetically favored with a barrier smaller than 1 eV
(see Fig. 4a), i.e., OxoE (2-oxoethyl), AA (acetaldehyde), VA (vinyl
alcohol), ethene, EO (ethene oxide). The SSW-RS identifies a new
intermediate OxoE and much lower formation barrier of AA than
EO, in which the route from OMC to AA should be indirect via
OMC → OxoE → AA79. This finding rules out the metal Ag sites as
the active site for EO production, and the active site for EO
production must be Ag surface oxides.
For multiple-step reactions, SSW-RS can be iteratively performed

and the whole reaction network can be resolved finally, as shown
in Fig. 4b79. Starting from a given reactant A, the first SSW-RS is
performed to sample the possible reaction pairs connecting to the
reactant A and locate all the TSs, then the reaction network is
updated based on the sampled new reaction channels. Next,
according to the order of the calculated barriers, the kinetically
favorable intermediates are chosen to start new SSW-RS tasks. By

performing SSW-RS to scan all likely intermediates, the lowest
reaction pathways from reactant A to any products can in principle
be obtained in an automated manner. This simple algorithm meets
difficulties when the reaction network is too complex with too
many elementary reactions. The AI-Cat and MMLPS algorithms are
thus developed to cope with the challenges relating to complex
reaction networks.

AI-Cat algorithm
Kang et al. proposed an end-to-end artificial intelligence frame-
work for the activity prediction of heterogeneous catalytic systems
(AI-Cat)111. The AI-Cat method is a general framework for
predicting the kinetics of heterogeneous catalytic processes
where the reaction network is too complex to resolve by using
SSW-RS. The method first needs a general reaction database
containing information on common elementary reactions, includ-
ing the structures and energetics of initial state (IS), final state (FS),
and their TS. The database can be obtained by the SSW-RS
simulations introduced above. The structures in the reaction
database are then encoded by Surface-sensitive atom-centered
Extended-Connectivity FingerPrint (s-ECFP). To learn the reaction
information, two neural networks, namely the reaction pattern (R-
Pat) unit and the kinetics information (K-Info) unit, are built for
predicting the most likely reaction patterns (RPs) (i.e., the coding
of IS/FS pair) from a given IS and predicting the kinetics data
(reaction barrier and energy) of this IS/FS pair, respectively. The
reaction pathways between any given reactant and product are
determined using the Monte-Carlo tree search method, which
inquires the R-Pat unit and the K-Info unit in making decisions.
Figure 5a shows a MC tree search step, namely the expansion

step, from a father node to child nodes. The input reactant, the
father node, firstly go through R-Pat unit to generate all the possible
RPs. Next, the top RPs are selected and go through K-Info unit to
predict the associated reaction energies and barriers. Finally, the
kinetically favorable products, the child nodes are determined.
By using SSW-RS to collect the reaction data for common C1-C4

organic compounds on Cu(111), Cu(100), and Cu(211), and
training R-Pat unit and K-Info unit based on the database, the
AI-Cat method is able to explore the glycerol hydrolysis pathways
on Cu(111), which is significant in biomass-derived polyol
utilization112,113. Fig. 5b shows the Gibbs free energy profile for
the AI-Cat predicted lowest-energy pathways from glycerol to 1,2-
propanediol (1,2-PDO, blue solid line) and 1,3-propanediol (1,3-

Fig. 4 The SSW-RS method and its application. a The barrier-energy map of the sampled products of oxometallacycle (OMC) intermediate on
p(4 × 4) supercell of Ag(100) after 10000-step SSW-RS. Abbreviations: OxoE, 2-oxoethyl; AA, acetaldehyde; VA, vinyl alcohol; EO, ethene oxide.
b The diagram of the general SSW-RS based pathway sampling algorithm, reproduced with permission from ref. 79. Copyright American
Chemical Society, 2021.
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PDO, red solid line). In the rate-determining step (TS1 and TS2),
the overall barrier of 1,2-PDO path is 0.22 eV lower than 1,3-PDO
path (TS2 – (TS1+ state 2)), indicating the hydroxyl on the
terminal C favors dissociation more than central C. Therefore, the
1,2-PDO product after TS1 is more selective than 1,3-PDO after
TS2, thus explaining the long-standing high selectivity puzzle of
1,2-PDO on Cu surfaces114. It is worth noting that the popular
glyceraldehyde mechanism in literature that involves a dehydra-
tion process (TS3 and TS4)115,116, is neither kinetically favored nor
able to explain the high 1,2-PDO selectivity (see TS1, TS2 < TS3,
TS4 and TS4 > TS3 in the figure).

MMLPS algorithm
Shi et al. proposed a microkinetics-guided machine learning
pathway search method (MMLPS) method to speed up the
buildup of the reaction database by SSW-RS117. The MMLPS aims
to fast build a reaction database for a target reaction and identify
the kinetically favorable pathway. Compared to AI-Cat method
which is more general and can predict unknown reactions, the
MMLPS is the tool to get the accurate kinetics for a target reaction.
Specifically, the MMLPS simulation divides a reaction network into
several parts with different molecules and surface coverages, then
each SSW-RS branch samples independently different parts of the
reaction PES as guided by a fast microkinetics solver. A reaction
dataset is established by merging reactions from all branches, and
the microkinetics simulation is performed to identify the lowest
barrier reaction pathway.
Figure 6(a) illustrates the complete 2D reaction map of CO and

CO2 hydrogenation on Cu and Zn-alloyed Cu surface, as plotted
from 14958 reaction pairs sampled by MMLPS. These reaction
pairs are collected from three batches, i.e., CO2+ H2, HCOOH+

H2, and HCHO+ H2, which depicts the whole reaction channel
from CO/CO2 to methanol. On all surfaces, CO2 hydrogenates via
the formate pathway (CO2− HCOO*− HCOOH*− H2COOH*−
HCHO*− CH3O*− CH3OH*− CH3OH), and CO hydrogenates
pathway via the formyl pathway (CO− CO*− CHO*− HCHO*−
CH3O*− CH3OH*− CH3OH), as shown by the free energy profile
in Fig. 6b, c. On Cu(211), only 1.40 eV is required for CO2

hydrogenation, which is 0.05 eV lower than that of CO, indicating
that CO2 is the main carbon source in methanol products. The
microkinetics based on MMLPS data reveals that Zn alloying has
no obvious kinetics promotion to CO2/CO hydrogenation
reaction and a high coverage of Zn would even poison the
catalyst (yellow and blue lines in the figure).

CONCLUSIONS
This review outlines recent advances in ML potential-based atomic
simulations for heterogeneous catalysis. The high accuracy and
high speed of ML potentials accelerate greatly the PES exploration
and thus allow the development of new algorithms to solve long-
standing challenges in heterogeneous catalysis.
In particular, we illustrate a few key advances in realizing ML

potential atomic simulations, including the atomic-based ML
model to fit the total energy that is assumed to be a sum of single
atom energies, the structure descriptors to distinguish the
chemical environment of atoms, and the global-to-global scheme
to generate global PES dataset and train ML potential. As the
representative, the SSW-NN method and the methods developed
upon SSW-NN, such as ASOP, AI-Cat, and MMLPS, can now tackle
complex catalysis problems, such as the surface phase diagram
under the grand canonical ensemble, the end-to-end reaction

Fig. 5 The AI-Cat method and its application. a The expansion from father nodes (reactants) to child nodes (products) in AI-Cat method.
b The Gibbs free energy profile for four low energy pathways of glycerol hydrogenolysis to 1,2-PDO and 1,3-PDO under typical experimental
conditions (473 K, total pressure of 1 atm with glycerol: H2: H2O= 1: 140: 12). Reproduced with permission from ref. 111. Copyright Royal
Society of Chemistry, 2022.
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prediction based on the known reaction database, and the
automatic determination of the reaction kinetics in a complex
reaction network.
Nevertheless, the current algorithms, even with ML potential

calculations, generally only consider the weak coupling between
catalyst structure and reaction by either focusing on the thermo-
dynamics in structure evolution or resolving the reaction kinetics on
well-defined surfaces. This is apparently due to the too-large
degrees of freedom if both surface flexibility and the reaction
varieties are treated at the same time. In some catalytic systems,
this approximation may lead to misleading or even wrong
conclusions, for example, the reactions on nanoclusters as shown
in reactions on supported Pt13 cluster. Ag-catalyzed ethene
epoxidation is another example: despite the metal Ag is now ruled
out as the active site for epoxidation, the true active sites of Ag
surface oxides remain largely unclear, which is strongly influenced
by the reaction atmosphere (ethene and O2 pressures).
One possible and feasible solution to treat strong-coupling

systems could be an automatic focus on transient structures during
PES search, including the meta-stable phases and the TS structures
of molecular reactions. This is likely achieved by the on-the-fly
constrained PES searching procedure98,100, which identifies the
critical reaction coordinate and the lowest energy reaction channel
by constraining PES search at the target reaction coordinate (e.g.,
important chemical bonds). During such exploration of reaction
pathways, the surface phases should be allowed to change by
considering the grand canonical reaction conditions. Given the
recent progresses, one can be sure that the methodology advance
and better applications of ML techniques in heterogeneous
catalysis are coming in the future.
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