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Machine Learning Attacks on 65nm Arbiter PUFs:

Accurate Modeling poses strict Bounds on Usability

Gabriel Hospodar, Roel Maes, Ingrid Verbauwhede

ESAT/SCD-COSIC and IBBT, KU Leuven, Belgium
{firstname.lastname}@esat.kuleuven.be

Abstract—Arbiter Physically Unclonable Functions (PUFs)
have been proposed as efficient hardware security primitives
for generating device-unique authentication responses and cryp-
tographic keys. However, the assumed possibility of modeling
their underlying challenge-response behavior causes uncertainty
about their actual applicability. In this work, we apply well-
known machine learning techniques on challenge-response pairs
(CRPs) from 64-stage Arbiter PUFs realized in 65nm CMOS, in
order to evaluate the effectiveness of such modeling attacks on
a modern silicon implementation. We show that a 90%-accurate
model can be built from a training set of merely 500 CRPs,
and that 5000 CRPs are sufficient to perfectly model the PUFs.
To study the implications of these attacks, there is need for a
new methodology to assess the security of PUFs suffering from
modeling. We propose such a methodology and apply it to our
machine learning results, yielding strict bounds on the usability of
Arbiter PUFs. We conclude that plain 64-stage Arbiter PUFs are
not secure for challenge-response authentication, and the number
of extractable secret key bits is limited to at most 600.

I. INTRODUCTION

Implementations of classical cryptographic primitives rely

heavily on the ability to securely store secret information.

Regardless of higher level abstractions and protection mech-

anisms, the lowest representation of a secret is always of

a physical nature. In modern digital implementations, this

typically comes down to a binary vector stored in a silicon

memory, which hence requires physical security measures.

This turns out to be a non-trivial requirement since standard

cryptographic techniques cannot be used any longer, and

security is often reverted back to obscurity, e.g. by hiding

secret data in a complex chip layout or beneath dense metal

layers to prevent visual scrutiny. Silicon Physically Unclonable

Functions [1], or PUFs, have been proposed as a physically

more secure alternative to storing secrets in a digital memory.

Instead of binary values, they use random nanoscale structures

which occur naturally in silicon devices in order to store

secrets. This offers a higher level of security against physical

attacks, and additionally has the potential to be more efficient

since costly physical protection measures can be avoided.

A structure is said to show PUF-behavior if it efficiently

generates a response when challenged, with the challenge-

response behavior depending in an unpredictable and unique

way on the challenge and on the considered physical instanti-

ation. A number of different integrated circuits (ICs) designs
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exhibiting PUF-behavior have been proposed. We refer to [2]

for an extensive overview. A particularly interesting construc-

tion is the so-called Arbiter PUF, which is able to generate

an exponential number of response bits based on the random

outcome of a race condition on a silicon chip. Lee et al.

already showed for their original Arbiter PUF implementation

in 0.18µm CMOS that it was vulnerable to modeling at-

tacks [3], which severely reduces the number of unpredictable

response bits. In later work, more elaborate modeling attacks

on Arbiter PUFs, including anti-modeling countermeasures,

were proposed [4], [5]. However, these results only use data

obtained from mathematical or circuit simulations, not from

actual implementations, and the achieved modeling results

should be considered in this perspective. Moreover, neither

Lee et al. nor later works on Arbiter PUF modeling formally

specify what the implication of their modeling attacks is on

the actual security of using Arbiter PUFs.

The main goal and contribution of this work is twofold:

i) The susceptibility to modeling for simple and 2-XOR

Arbiter PUF implementations in 65nm CMOS is evaluated

by assessing the model building performance of two different

machine learning techniques: Artificial Neural Networks and

Support Vector Machines. This evaluation shows how the

results from Lee et al. scale for an independent implementation

in a modern silicon technology, and moreover provides a

physical verification for the simulation-based modeling results.

ii) The usability of a PUF in the presence of modeling attacks

is evaluated for challenge-response authentication and for

secret key generation. This results in practical security bounds

for these applications. The proposed methodology is generic,

but the presented bounds are specifically for our modeling

results on the Arbiter PUF implementation.

This paper is organized as follows. Section II presents back-

ground information on Arbiter PUFs and machine learning.

Section III details the PUF implementation and the modeling

experiments and results. A discussion on the implications

of PUF modeling for security applications is put forward in

Section IV. Finally, Section V concludes the work.

II. BACKGROUND

A. Arbiter PUFs

Arbiter PUFs [3] are a type of silicon PUFs for which the

PUF-behavior is caused by the intrinsic manufacturing vari-

ability of the production process of ICs. They are constructed

as a concatenation of stages, with each stage passing two



inputs to two outputs, either straight or crossed depending

on a challenge bit. The propagation of two signals through

an ℓ-stage Arbiter PUF is determined by an ℓ-bit challenge

vector. By careful design, the nominal delays of both paths

are made identical. However, the effective delays of both paths

in a particular implementation are never exactly deterministic,

but are subject to random delay mismatch caused by the IC

manufacturing variability. As a consequence, one of both paths

will propagate a signal slightly faster or slower than the other,

depending on the considered physical implementation, and

depending on the applied challenge vector. An arbiter sitting

at the end of both paths determines on which of the outputs

a rising edge, applied simultaneously to both inputs, arrives

first. The arbiter outputs a one-bit response accordingly.

An Arbiter PUF implementation generates 1-bit responses

from ℓ-bit challenges, and is hence able to produce up to 2ℓ

different CRPs. Lee et al. [3] immediately realised that these 2ℓ

different response bits of an Arbiter PUF are not independent,

but can be modeled by an additive linear delay model with

a limited number of unknown parameters. An adversary can

attempt to estimate these parameters for a particular Arbiter

PUF from a set of qtrain known CRPs, e.g. using machine

learning techniques. Once an accurate model of the PUF is

built, the remaining 2ℓ − qtrain response bits are not random

anymore but can be predicted by the adversary. Lee et al.

successfully constructed a model of their 0.18µm Arbiter PUF

implementation which achieved prediction success rates up to

97%. More efficient and more accurate model building attacks

on Arbiter PUFs, based on different modeling techniques, were

subsequently proposed in [4], [5]. However, besides the initial

work from Lee et al., all later model building attempts use

responses generated by simulated Arbiter PUFs, instead of

measurements from physical implementations. Although these

are valuable contributions for introducing new PUF modeling

techniques and hypothesizing powerful attacks, their numerical

outcomes were (to the best of our knowledge) never verified

on a modern physical implementation. One of the main goals

of this work is to provide this physical verification.

Parallel to modeling attacks on Arbiter PUFs, countermea-

sures were introduced aimed at preventing modeling. Their ba-

sic idea is to disturb the linearity of the delay model by adding

non-linear elements to the response generation, such as feed-

forward challenge bits [3] and exclusive-or (XOR) combina-

tions of responses [6], [7]. Nonetheless, it was demonstrated

based on simulations of PUFs [5] that advanced machine

learning techniques are still able to generate good models after

training with a larger number of CRPs. Besides the simple

Arbiter PUF as described above, we will consider the k-XOR

Arbiter PUF [5]–[7] consisting of k equally challenged simple

Arbiter PUFs, with the response bit of the k-XOR Arbiter PUF

being the XOR of the separate k arbiter outputs.

B. Machine Learning (ML)

Machine learning (ML) [8] is concerned with computer

algorithms that automatically learn a complex behavior from

a limited number of observations, by trying to generalize

the underlying interactions from these examples. Since the

apparently complex challenge-response behavior of a PUF is

the result of an underlying physical system with a limited

number of unknowns, appropriate ML techniques could be

able to learn this behavior from a relatively small training set

of qtrain known CRPs and use it to make accurate predictions

of unknown responses. In this work, the ML techniques of

Artificial Neural Networks (ANN) and Support Vector Ma-

chines (SVM) are tested for their ability to model physically

realized Arbiter PUFs and k-XOR Arbiter PUFs. An advantage

of ANN and SVM is their flexibility to learn any model, as

opposed to techniques assuming a prior model with unknown

parameters, which are more restrictive. In this work, the used

ML techniques were heuristically tuned to give good results

without introducing unnecessary complexity.

1) Artificial Neural Networks (ANN): ANNs are adaptive

systems formed by interconnected computing nodes called

neurons, which are typically structured in feedforward layers.

A strong motivation to use ANN is given by the Universal

Approximation Theorem [9], which in short states that a

two-layer feedforward ANN containing a finite number of

hidden neurons can approximate any function with arbitrary

precision. However, the theorem does not hint at how to tune

a network to efficiently reach such an approximation. The

simplest form of an ANN consists of a single layer of neurons

and is called the single layer perceptron (SLP) [10]. In each

neuron, all input vector values are weighed, summed, biased

and applied to an activation function to generate an output.

In SLP training, a neuron’s weights and bias are updated

according to a linear feedback function of the prediction error

on a known training set. The training process stops when the

prediction error reaches a predefined value or a predetermined

number of iterations is completed. SLPs are only capable of

solving linearly separable classification problems. Multilayer

ANNs are required for nonlinear problems. In this work, the

multilayer ANNs are trained by the resilient backpropagation

(RProp) [11] training algorithm because it offers fast con-

vergence. RProp is an improved version of the SLP training

algorithm based on the gradient descent method. The important

tuning parameters that should be set to create accurate ANN

models are: the number of layers and neurons in each layer, the

activation function of each neuron and the training algorithm.

2) Support Vector Machines (SVM): SVM is a ML tech-

nique able to learn a binary classification pattern from a set

of training examples. In the learning phase, known training

examples are mapped into a higher dimensional space to relax

the classification task. The learning algorithm tries to find a

good separating hyperplane allowing to linearly solve classifi-

cation problems that are not linearly separable in the original

input space. The separating hyperplane should have the largest

possible distance between input vectors belonging to different

classes, and the inputs with minimal distance to the separating

hyperplane are called support vectors. The separating hyper-

plane is constructed with the help of two parallel supporting

hyperplanes through the corresponding support vectors. The

distance between the supporting hyperplanes is called the



margin. The basic idea of building a good SVM is to maximize

the margin while minimizing the classification error. These

conflicting goals are traded-off by a regularization parameter

γ. Trained SVMs rely heavily on the self inner product of the

mapping function, called kernel, evaluated respectively on the

support vectors and on the challenge to be classified. Three

commonly used kernels K(·, ·) are: i) Linear: K(w, z) = zT w

(no mapping – solves only linearly separable problems); ii) Ra-

dial Basis Function (RBF): K(w, z) = exp
(

−||w−z||22
σ2

)

; iii)

Multilayer Perceptron (MLP): K(w, z) = tanh(κ1z
T w + κ2).

The important tuning parameters for a good SVM classifier

are: γ, and σ2 (RBF) or (κ1, κ2) (MLP).

III. EXPERIMENTS AND RESULTS

A. PUF Implementation and Experiment Setup

The studied Arbiter PUFs were implemented in silicon using

TSMC’s 65nm CMOS process. To minimize systematic bias,

the layout of the delay line stages and of the arbiter element

was fully custom designed. A test board for the ICs provides

a convenient digital interface to the PUFs allowing efficient

collection of CRPs using a standard PC. A total of 192 ICs

were produced, each one implementing 256 simple 64-stage

Arbiter PUFs as described in Section II-A. At nominal operat-

ing conditions, the measured response bits have a robustness of

97% (ratio of error-free response reconstructions) and, despite

the design effort, still exhibit a 60% bias towards zero. The

uniqueness, measured as the rate of differing bits generated by

the same PUF and challenge but on different ICs, is 48%. The

responses of 2-XOR Arbiter PUFs were obtained by XORing

the outputs of pairs of simple Arbiter PUFs from the same IC

using the same challenges. The resulting 2-XOR Arbiter PUF

responses have a robustness around 94%, a bias towards zero

around 55% and a uniqueness close to 50%.

For the machine learning attacks 20 CRP data sets were

used, obtained from four different Arbiter PUFs on five

distinct ICs, with each data set containing 10,000 randomly

selected challenges and 10 independent measurements of every

response bit. A model’s performance is assessed by its success

rate after training with a set of qtrain CRPs. This success rate

SR(qtrain) is defined as the ratio of correct response predictions

for CRPs from an independent test set. In a realistic attack

scenario, qtrain would be the number of CRPs an adversary

needs to obtain, e.g. by eavesdropping on a protocol, in order

to build a model of the used PUF. To give an idea of the

complexity: all models were trained in less than one minute

on a standard machine (dual core @ 3 GHz, 4 GB of RAM).

B. Modeling Attacks and Results

The performance of ML attacks on the simple Arbiter PUF

was evaluated for training set sizes ranging from qtrain = 25
up to 5,000. In order to obtain a meaningful estimate on

the results of an attacker’s model, for each value of qtrain

ten independent experiments are performed using different

randomly selected training sets of size qtrain from each of

the 20 data sets. Motivated by the fact that the adversary
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(b) 2-XOR Arbiter PUF.

Fig. 1. Box plots of obtained SR(qtrain) of our ML attacks.

has freedom to scrutinize the training set, and as we verified

that the modeling performance depends strongly on the used

training CRPs, 100 different models were created for each

experiment. Each model was respectively built and validated

on subsets formed by random splits of a training set containing

70% and 30% of the training CRPs. The model with the best

validation results was selected to evaluate the success rate

using a test set of 5,000 previously unseen CRPs.

In the Arbiter PUF additive delay model, e.g. as detailed

in [5], [7], the response is shown to be linearly dependent

on the cumulative XORs of the challenge bits, rather than on

the challenge bits directly. Performing this nonlinear operation

prior to training the ML algorithms substantially improves

their performance: the ANN models use fewer neurons and the

SVM models count on fewer support vectors. Consequently,

as the models get simpler, fewer training CRPs are required.

The results for the ANN and SVM modeling attacks on the

simple Arbiter PUF are shown in Fig. 1(a). The used ANNs

consist of a single neuron SLP using a threshold comparator

as the activation function. The SVM models were based on



linear kernels with γ = 0.1. The graph shows the box

plots of SR(qtrain) for both techniques over all performed

experiments on all 20 data sets. Also shown are the Arbiter

PUF’s robustness and bias which indicate practical lower and

upper bounds for the achievable success rates.

On average, SVM yields more accurate Arbiter PUF models

than ANN for qtrain ≤ 500, but ANN outperforms SVM for

larger training sets. SVM achieves SR(50) ≈ 70% and for

qtrain = 500, both SVM and ANN are able to predict responses

with an accuracy close to 90%. For qtrain ≥ 5,000, ANN is able

to perfectly model an Arbiter PUF by achieving success rates

arbitrarily close to the PUF’s robustness. The decreasing height

of the box plots indicates that the estimation of SR(qtrain) gets

more accurate as qtrain increases.

Similarly, the modeling performance of ANN and SVM

on 2-XOR Arbiter PUFs is evaluated. As their behavior is

more complex, more training CRPs are required for effective

modeling and we use training set sizes ranging from qtrain =
2,000 up to 9,000 CRPs, and 1,000 CRPs for the test set.

Ten models are created for each experiment. The used ANNs

consist of two layers with respectively four and one neurons,

and respectively using hyperbolic tangent and linear activation

functions. The SVM models were based on RBF kernels with

(γ = 10, σ2 = 3.16) for experiments with qtrain ≤ 6,000 and

on MLP kernels with (γ = 2.7, κ1 = 0.015, κ2 = −1.2)

for qtrain > 6,000. Figure 1(b) shows the box plots of the

obtained SR(qtrain) for all the experiments for the ANN and

SVM models. This shows that SVM performs better than

ANN when qtrain ≤ 3,000, but ANN outperforms SVM for

qtrain > 3,000. ANN achieves SR(9,000) ≈ 87% and even up

to 90% in certain experiments. Although this is still below the

upper bound given by the PUF robustness, the steadily rising

trend of both graphs suggests that ANN and SVM possibly

reach near-perfect models respectively for qtrain ≈ 12,000 and

qtrain ≈ 14,000, if a plateau does not happen before these

values. The large spread of the observed SR(qtrain) values, as

shown by the long box plot whiskers, indicates that in certain

cases modeling is considerably harder than in the average

experiment. This observation suggests that ad hoc adjustments

of the ML tuning parameters can significantly improve the

results. For k-XOR Arbiter PUFs with k > 2, the considered

ML techniques perform considerably worse. ANN achieves

SR(9,000) ≈ 75% for a 3-XOR Arbiter PUF. We emphasize

that the modeling results can be optimized if qtrain increases

and if more specific models are created, e.g. by fine tuning

the parameters for each attack or using other ML techniques.

IV. DISCUSSION

In this section, the implications of model building attacks

on the security of PUF-based applications are discussed. The

provided results are specifically based on our modeling results

of the Arbiter PUFs, but the introduced methodology can be

applied to any type of PUF which suffers from model building.

A. Implications on Challenge-Response Authentication (CRA)

We first consider the implications of modeling attacks on a

PUF-based CRA scheme [12]. More efficient and/or practical

variants of this scheme have been introduced, but the core

idea remains the same: during an enrollment phase, CRPs are

collected from every device and stored in a verifier’s database;

and in the verification phase, a device authenticates itself by

proving that it can recreate (almost) the same PUF responses

stored by the verifier. The assumed unclonability of PUFs

ensures that only enrolled devices can be authenticated.

A PUF response is not perfectly reconstructible and a

verifier needs to take this into account by allowing a number of

errors when matching the regenerated with the stored response

bits. This is often done by forgiving bit errors, or alternatively

by applying some form of error correction on the responses, up

to a certain error threshold t. If t is set too low, authentic PUFs

that happen to have too many bit errors will be rejected, this is

called false rejection; while setting t too high will cause non-

authentic PUFs to be accepted when their responses happen

to be too close to that of an authentic PUF, which is called

false acceptance. The rates of false rejections (FRR) and false

acceptances (FAR) cannot be optimized simultaneously, and

setting t is a careful trade-off between security and reliability

requirements. In this sense, a good performance indicator of a

PUF-based CRA scheme is the point where FAR and FRR

are equal and the corresponding failure rate is called the

equal error rate (EER). In Fig. 2(a), FAR and FRR of 64
response bits obtained from our Arbiter PUF implementations

are plotted as a function of t. To determine EER, both plots

are extrapolated with a fitted binomial cumulative distribution

to find their intersection at (tEER = 11, EER = 5.0 · 10−7).
In a modeling attack on a PUF-based CRA scheme, an

adversary tries to fool the verifier into believing he possesses

an enrolled PUF, while in reality he only has a (possibly

accurate) model thereof. He might have trained his model

using eavesdropped CRPs from previous successful runs of

the CRA protocol. We define the adversary acceptance rate

(AAR) as the probability that an adversary, without direct

access to an enrolled PUF, achieves a successful authentica-

tion. FAR is a lower bound for AAR, since an adversary can

always try to authenticate with an unenrolled PUF. However,

in general AAR > FAR, especially if the adversary possesses

an accurate model of an enrolled PUF. Figure 2(a) also shows

the AAR for a CRA scheme using N = 64 simple Arbiter PUF

response bits, considering our modeling results as described in

Section III-B. For the adversary’s PUF model, we considered

the ML technique with the best median success rate after

being trained with qtrain = 100 random CRPs. It is clear

from this graph that these modeling attacks severely reduce

the security of the CRA scheme. If the verifier keeps allowing

up to tEER = 11 bit errors then the probability of a successful

attack becomes as high as AAR(t = 11) = 19.2%! Aware

of the existence of these attacks, it is wiser to select the

point where FRR = AAR as a performance indicator for

the CRA scheme. We will call this point the attack equal

error rate (AEER) and for the considered example it lies at

(tAEER = 6, AEER = 5.3·10−3). We note that the actual value

of AEER strongly depends on the considered adversary. We

have evaluated AEER using the results of our ML attacks as
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reported in Section III-B, but AEER will increase when better

modeling attacks are found.

The design parameter of a CRA scheme directly affecting

the value of AEER is the number N of used response bits

per authentication, with AEER decreasing as N increases. In

the discussed example, AEER = 5.3 · 10−3 for N = 64.

However, a reasonable security-reliability trade-off in practice

requires that AEER ≤ 10−6 down to ≤ 10−9. To obtain these

bounds in the considered example, N needs to be increased to

214 or 371 respectively. When qtrain increases, the adversary’s

model becomes more accurate and even more response bits are

required to obtain practical security levels. Figure 2(b) shows

the evolution of the lower bounds on the required number

of response bits to achieve AEER ≤ 10−6 and ≤ 10−9

respectively for increasing qtrain. A particularly pessimistic

conclusion from this plot is the observation that N > qtrain

for all considered training set sizes. This implies that a

simple Arbiter PUF can be authenticated at most once with

a CRA scheme, since an adversary learns more than enough

response bits from eavesdropping on one protocol run, to build

an accurate model which can impersonate the PUF during

subsequent authentications. An adaptive adversary, capable of

building and evaluating a model during a run of the CRA

scheme, might even be able to accurately impersonate an

Arbiter PUF during its very first authentication attempt.

Figure 2(b) also shows the same N vs. qtrain analysis for

our ML results on the 2-XOR Arbiter PUF. The conclusion is

not as pessimistic as for the simple Arbiter PUF since N <

qtrain for all training set sizes, though not by a large factor,

indicating that the number of possible secure authentications

is also strictly limited. Moreover, the plots from Fig. 2(b) are

lower bounds on N based on our ML attack results, and any

improvement upon our attacks will further increase them.

B. Implications on Secure Key Generation (SKG)

In this second analysis we investigate the effects of mod-

eling on the usability of an Arbiter PUF in a Secure Key

Generation (SKG) algorithm. We refer to [13] for an extensive

background on how PUF responses can be considered as

fuzzy secrets from which secure keys can be extracted. In line

with [13], the implications of modeling attacks on PUF-based

SKG are discussed from an information-theoretical viewpoint.

In the following, we denote a vector of N response bits as

a random variable XN = (X1, X2, . . . , XN ) with Xi a single

response bit, and a subvector consisting of the first j bits as

X(j) ≡ (X1, . . . , Xj). By pi we mean the conditional prob-

ability of Xi after observing x(i−1): pi ≡ Pr(Xi = 1|x(i−1)).
The operators H(.) and I(.; .) respectively stand for entropy

and mutual information, and the binary entropy function is

defined as h(p) ≡ −p · log2 p − (1 − p) · log2(1 − p).
The premise of considering PUF modeling attacks is the

assumption that different response bits generated by the same

PUF are not independent. The real conditional probabil-

ity pi cannot be learned, but it can be approximated as

p̃i ≡ Pr(Xi = 1|x̃i), with x̃i the response bit predicted by a

modeling attack trained on x(i−1). The unknown value of pi

is bounded as h(pi) ≤ h(p̃i). Moreover, p̃i will be equal to

SR(i− 1) or 1− SR(i− 1) depending on x̃i, and in any case

h(p̃i) = h(SR(i − 1)). In the following, we use as values for

SR(q) the linear interpolation of the median success rates from

Section III-B of the best ML technique given q.

In earlier work on SKG, the secrecy capacity S(X) of

a fuzzy secret X is defined as the theoretical maximum

number of secure key bits that can be extracted from

X [14], and it is shown that S(X) = I(X;X ′) with X

and X ′ two noisy realisations of the same fuzzy secret.

We calculate this mutual information bound of XN as

I(XN ;X ′N )= H(XN ) − H(XN |X ′N ) and consider both

terms separately. We expand H(XN ) as
∑N

i=1 H(Xi|X
(i−1)),

and H(Xi|X
(i−1)) ≡

∑

x(i−1) Pr(x(i−1)) · H(Xi|x
(i−1))

=
∑

x(i−1) Pr(x(i−1)) · h(pi) ≤
∑

x(i−1) Pr(x(i−1)) · h(SR(i − 1))
= h(SR(i − 1)). From which it follows that:

H(XN ) ≤
∑N

i=1 h(SR(i − 1)). To evaluate H(XN |X ′N ),
we assume a simple but realistic noise model for the PUF

response with bit errors occurring i.i.d. over the different

response bits with probability pe ≡ Pr(Xi 6= X ′
i). This is

equivalent to a transmission over a binary symmetric channel

and in that case H(XN |X ′N ) = N · h(pe).
Substituting both results in the secrecy capacity bound

leads to S(XN )≤
∑N

i=1 h(SR(i − 1)) − N · h(pe). An upper

bound for the secrecy capacity can thus be calculated using the

success rates SR(i − 1) of a PUF response model and the bit
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Fig. 3. Upper bounds on the secrecy capacity of Arbiter PUF responses.

error probability pe estimated from the PUF’s statistics. Using

our empirical results from Section III, we calculate this bound

for increasing N . The result is shown in Fig. 3. Also shown is

an upper bound on the incremental secrecy capacity ∆S(XN ),
which indicates a bound on how much S(XN ) increases by

considering a single additional response bit. It is clear that

∆S(XN ) decreases steadily as N grows and approaches 0 for

N ≥ 5000. The S(XN ) upper bound of our simple Arbiter

PUF implementation reaches 600 bits for N = 5000 and will

not increase substantially for larger N .

We also performed the S(XN ) vs. N analysis for the 2-

XOR Arbiter PUF results, considering the fact that from an

information-theoretical viewpoint, ∆S(XN ) of a 2-XOR Ar-

biter PUF response bit can never be larger than 2 × ∆S(XN )
of a simple Arbiter PUF as calculated earlier. Moreover,

∆S(XN ) of a single PUF response bit can never be larger

than 1. The results are also shown in Fig. 3.

Again, the SKG results shown in Fig. 3 express rather loose

upper bounds on the number of secure key bits which can be

generated in practice. First of all, S(XN ) expresses a theoret-

ical maximum, but no efficient algorithms are known to reach

this maximum. Secondly, we did not calculate S(XN ) exactly

but only an upper bound thereof. Finally, any improvement

upon our ML attacks will further decrease these upper bounds.

V. CONCLUSION

We have demonstrated the susceptibility of an actual 65nm

CMOS Arbiter PUF implementation to modeling attacks based

on machine learning. Summarizing, even after training a model

with merely a couple of dozen CRPs, it can predict responses

from simple Arbiter PUFs with a success rate significantly

better than random guessing. After 1,000 training CRPs the

prediction accuracy is already > 90%, and after 5,000 training

CRPs the prediction is perfect up to the robustness of the PUF.

For the 2-XOR Arbiter PUF a prediction accuracy close to

90% is achieved after training with 9,000 CRPs.

Additionally, we have proposed a methodology for assessing

the implications of modeling attacks on PUF-based security

applications and applied it to our modeling results on Arbiter

PUFs. We conclude that simple Arbiter PUFs cannot be se-

curely used for PUF-based challenge-response authentication

and the applicability of 2-XOR Arbiter PUFs is also limited.

For PUF-based secure key generation, we find that the number

of information-theoretically secure key bits which a simple

Arbiter PUF can generate is at most about 600 and for 2-XOR

Arbiter PUFs at most twice that amount. Moreover, the secure

key material contributed by each additional CRP decreases

rapidly and approaches zero after about 5,000 CRPs.

We stress that these numerical limitations on the usability of

Arbiter PUFs, both for authentication as for key generation, are

merely bounds. These bounds will become tighter when better

modeling attacks are found, or when the PUF’s robustness

decreases, e.g. as a consequence of varying temperature and

supply voltages which we did not consider here. Future work

based on our proposed methodology will reveal tighter bounds

on the actual applicability of Arbiter PUFs.
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