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Machine learning autonomous identification of
magnetic alloys beyond the Slater-Pauling limit
Yuma Iwasaki 1,2,3✉, Ryohto Sawada1, Eiji Saitoh4,5,6,7,8 & Masahiko Ishida1,3

Discovery of new magnets with high magnetization has always been important in human

history because it has given birth to powerful motors and memory devices. Currently, the

binary alloy Fe3Co1 exhibits the largest magnetization of any stable alloys explained by the

Slater-Pauling rule. A multi-element system is expected to include alloys with magnetization

beyond that of Fe3Co1, but it has been difficult to identify appropriate elements and com-

positions because of combinatorial explosion. In this work, we identified an alloy with

magnetization beyond that of Fe3Co1 by using an autonomous materials search system

combining machine learning and ab-initio calculation. After an autonomous and automated

exploration in the large material space of multi-element alloys for six weeks, the system

unexpectedly indicated that Ir and Pt impurities would enhance the magnetization of FeCo

alloys, despite both impurity elements having small magnetic moments. To confirm this

experimentally, we synthesized FexCoyIr1-x-y and FexCoyPt1-x-y alloys and found that some of

them have magnetization beyond that of Fe3Co1.
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M
aterials with a high magnetization are indispensable for
information storages, motors, sensors, actuators, and
other electric devices1,2. The metastable iron nitride α

″-Fe16N2 is believed to have the highest magnetization3. However,
it decomposes at a relatively low temperature (~250 °C), and this
thermal instability precludes practical application of the
material4. Some of metastable alloys, where the crystal structure
and lattice constant are fixed by force, also exhibit the high
magnetization. For instance, ultrathin epitaxial films of Fex-
CoyMnz have very high magnetization, but it was not achieved in
stable states such as a non-epitaxial film and bulk5. Therefore, a
stable alloy with a high magnetization has been desired for
practical applications. As shown by the Slater–Pauling curve
(Supplementary Fig. S1), the binary alloy Fe3Co1 has the highest
magnetization of any stable alloy, called the Slater–Pauling limit6.
Generations of scientists have tried to discover a stable magnetic
alloy beyond the Fe3Co1 limit by investigating multi-element
alloys, but it is difficult to study multi-element alloys compre-
hensively because combinatorial explosion requires us to carry
out a quite large number of simulations and/or experiments.

Multi-element materials are often investigated by machine
learning, which is used because of its ability for multidimensional
analysis7–17. It is noteworthy that machine learning has already
been used to develop materials for magnets18,19, batteries20,21,
superconductors22,23, ferroelectrics24,25, thermoelectrics26,27, and
photovoltaics28,29. Data-driven machine learning approaches
should shed new light on our knowledge of materials and thus
bring about the discovery of unexpected novel materials.

Sumita et al.30 and Sawada et al.31 have recently suggested an
autonomous materials search system that simulates the entire
process of conventional manual materials search shown in Fig. 1a:
(I) fabricate materials, (II) evaluate their properties, and (III)
decide on next target materials. Figure 1b shows the autonomous
materials search system combining machine learning and ab-initio
simulation technologies. The virtual materials fabrication step (I′)
and virtual materials evaluation step (II′) are simulated using the
ab-initio method, which predicts various material properties from
the composition and crystal structure information. For the step
deciding the next target composition/structure (III′), machine
learning techniques such as Bayesian optimization30 and game

tree search31 are used. Machine learning is used to statistically
decide the next target material from the data obtained in step II′,
with consideration of the trade-off between exploration and
exploitation by using an upper confidential bound strategy
(UCB)31. In other words, these machine learning techniques are
adjusted to select a next target material with a better property
from materials dissimilar to those that have already been tried in
steps I′ and II′. Since the amount of learning data increases with
repetition of this automated cycle, the machine learning model
gradually improves and suggests better materials.

In this work, the autonomous materials search system indi-
cated that Ir and Pt impurities would enhance the magnetization
of FeCo alloys after the autonomous and automated exploration
in the large material space of multi-element alloys. The perfor-
mance of these alloys was confirmed by both experiments and
theories.

Results
Machine learning-based autonomous materials search. In the
work presented here we used the autonomous materials search
system to identify a multi-element alloy with high magnetization.
To find a potential high-magnetization alloy, the autonomous
system was set to the task of optimizing the composition of a
disordered multi-element alloy (FeaCobNicRudRhePdfIrgPth) with
a body-centered cubic (bcc) crystal structure. The settings,
including the selection of elements and structure, were determined
by a simple pre-simulation (see Methods section and Supple-
mentary Fig. S2). For the ab-initio simulation parts (I′ and II′), we
used the Korringa–Kohn–Rostoker coherent potential approx-
imation (KKR-CPA) method because it is difficult to simulate
multi-element alloys by using common DFT methods such as the
projector-augmented wave (PAW) method. For example, when
using the common DFT methods, to simulate the binary alloy
Fe51Co49 we have to make a very large unit cell, calculation of
which is not feasible. The KKR-CPA, where the CPA deals with
random (disordered) material systems and allows us to simulate
band structures of multi-element materials with a single unit cell,
is known for its good agreement with experimental results, espe-
cially in multi-element alloy systems32–35. The magnetic moment,
which is roughly proportional to magnetization, was calculated

Fig. 1 Concept of autonomous materials search system. a Conventional materials search process done manually following a cycle comprising (I) a

materials fabrication step, (II) a materials evaluation step, and (III) a decision step for selecting the next target material. b Autonomous materials search

system in which the conventional process of materials search is simulated using computation technologies including ab-initio simulation and machine

learning. The virtual materials fabrication step (I′) and virtual materials evaluation step (II′) are simulated using ab-initio simulation. The decision step for

the next target material (II′) is simulated using machine learning such as the game tree algorithm. This autonomous system automatically grows smarter as

the amount of data acquired during the automated development cycle increases and eventually it finds a better material.
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using the KKR-CPA and the calculated composition values (a, b, c,
d, e, f, g, and h) decided by the machine learning part (III′) using
the game tree algorithm31. Details of the algorithms and their
parameters can be found in the Methods section.

We ran the autonomous system for 9 weeks. The growth
progress is illustrated in Fig. 2, where the magnetic moment data
are plotted per cycle shown in Fig. 1b. Over time, as the available
learning data increased, the system was able to suggest
compositions for alloys with larger magnetic moments. It is
particularly noteworthy that the autonomous system sometimes
tested material compositions with small magnetic moments,
clearly demonstrating that it considered both exploration and
exploitation during the multidimensional virtual search. Some
low-score data were necessary for the global optimization process
because diversity (dispersion) of the learning data is essential for
constructing a good machine learning (game tree) model.

The red line in Fig. 2 shows the maximum magnetic moment at
each point in time. Eventually, after 6 weeks of growth, an alloy
with the largest magnetic moment was suggested: Fe82Co13Ir4Pt1.
It is only reasonable that Fe and Co are its main components
because Fe75Co25 is the known alloy with the largest magnetic
moment. However, the presence of Ir and Pt impurities in the
material is seemingly inconsistent with chemical intuition because
both elements have small magnetic moments, which would be
expected to reduce the magnetic moment of the alloy. In other
words, the autonomous materials search system suggested an
unexpected alloy with high magnetization.

Experimental confirmation by combinatorial methods. To
confirm the effect of Ir and Pt impurities experimentally, we
synthesized FexCoyIr100-x-y and FexCoyPt100-x-y ternary alloys and
evaluated their magnetization. For comparison, the ternary alloy
FexCoyNi100-x-y was also investigated because Ni is the element
with the third largest magnetic moment (after Fe and Co). To
investigate the composition dependency within the ternary alloys,
we have carried out combinatorial experiments36,37 using
composition-spread thin films on SiO2/Si, each mapping a large
fraction of the alloy’s composition range on one library wafer.
Figure 3a shows the conceptual image of combinatorial sputter-
ing, where the use of three sputter guns and an automated
moving mask enables synthesis of a linear composition-spread
thin film36–38. Figure 3b shows the composition map of an

FexCoyIr100-x-y composition-spread thin film. For the many
sampling points shown as black spots in Fig. 3b, we carried out
combinatorial X-ray diffraction (combi-XRD) experiments and
longitudinal magneto-optic Kerr effect (combi-MOKE)39

experiments. Figure 3c shows the results of combi-XRD experi-
ments with FexCoyIr100-x-y composition-spread samples. As an
example, Fig. 3d shows the XRD pattern of Fe68.1Co26.2Ir5.7
(bottom right point in Fig. 3b). All of the FexCoyIr100-x-y, Fex-
CoyPt100-x-y, and FexCoyNi100-x-y XRD curves are shown in Sup-
plementary Fig. S3. It is noteworthy that an Fe-bcc(200) peak is
much larger than an Fe-(110) peak. This is due to the annealing
process, which increases the mobility of atoms. Then the equili-
brium state of an island is easy to attain, and the island prefers
(200) orientation40. Figure 3e shows the results of combi-MOKE
experiments with FexCoyIr100-x-y composition-spread samples. As
an example, Fig. 3f shows the MOKE curves of Fe68.1Co26.2Ir5.7
(bottom right point in Fig. 3b). Note that the vertical axis value in
Fig. 3f is normalized by the maximum MOKE intensity of pure Fe
(top left point in Fig. 3b). The amplitude of a MOKE curve is
proportional to saturation magnetization Ms

41:

Ms / MMOKE ¼
IMOKE
max � IMOKE

min

2
;

where MMOKE is the amplitude of the MOKE curve and IMOKE
max

and IMOKE
min are respectively the maximum and minimum values of

the normalized MOKE intensity. As with the FexCoyIr100-x-y
composition-spread thin film, we also performed the combi-
MOKE experiment with the FexCoyPt100-x-y and FexCoyNi100-x-y
samples. Figure 3g–i show the composition gradients of Fex-
CoyIr100-x-y, FexCoyPt100-x-y, and FexCoyNi100-x-y composition-
spread thin films. All of the MOKE curves are shown in Sup-
plementary Fig. S4.

Figure 3j–l show MMOKE color maps of FexCoyIr100-x-y,
FexCoyPt100-x-ym, and FexCoyNi100-x-y, respectively. It was found
that small amounts of Ir and Pt impurities enhance the MMOKE,
while Ni impurity monotonically decreases the MMOKE. To clarify
this, Fig. 3m showsMMOKE of (Fe75.2Co24.8)1-xIrx, (Fe75.3Co24.7)1-xPtx,
and (Fe71.1Co28.9)1-xNix along dotted arrows in Fig. 3j–l, respectively.
The dark-blue solid line and blue dotted line in Fig. 3m show
theoretical MMOKE values of pure Fe (MFe

MOKE ¼
mFe

mFe
¼ 1) and

Fe75Co25 (M
FeCo
MOKE ¼

mFe75Co25

mFe
� 1:136), where mFe and mFe75Co25 are

magnetic moments of Fe and Fe75Co25, respectively. It is clearly seen
that the (Fe75.2Co24.8)1-xIrx exhibit large MMOKE beyond MFeCo

MOKE.
Similar results were also obtained by another experiment, a

superconducting quantum interference device (SQUID)42 experi-
ment. Figure 3n shows magnetization curves of Fe73.2Co24.2Ir2.6
(whose MMOKE is the largest in Fig. 3j), Fe84.0Co12.0Pt4.0 (whose
MMOKE is the largest in Fig. 3k), Fe75.2Co24.8, and pure Fe at room
temperature (T= 300 K). As with the case of the MOKE
experiments, the magnetic field is applied along an in-plane
direction. It is clearly seen that inserting Ir and Pt impurity into
FeCo alloy enhances magnetization. Figure 3o shows the results
of SQUID experiments at a low temperature (5 K). As at room
temperature, we can see clear enhancement of magnetization by
Ir and Pt impurities. These magnetization values obtained in the
SQUID experiments still have rooms for improvement by
fabrication process optimization, such as optimization of
annealing temperature and time.

These experimental confirmations were constrained to ternary
systems because it was difficult to fabricate quaternary alloys by
using our combinatorial sputter system. In the future the
quaternary alloy Fe82Co13Ir4Pt1 predicted by the autonomous
materials search should be fabricated and investigated for a
synergistic effect of Ir and Pt impurities experimentally.

Fig. 2 Growth of autonomous materials search system. Growth of the

autonomous materials search system for an alloy with a large magnetic

moment. Magnetic moment data were plotted for each search cycle shown

in Fig. 1b. Colors of data points show the base element of the alloys. After

some time, the autonomous system was able to find a better composition

for a disordered multi-element alloy (FeaCobNicRudRhePdfIrgPth) with a

large magnetic moment due to an increase in the amount of data for

learning. After 6 weeks (strictly, 43 days) of growth, the autonomous

system arrived at Fe82Co13Ir4Pt1, not the composition of the alloy at the top

of the Slater–Pauling curve (Fe75Co25).
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Theoretical confirmation by ab-initio simulation. In addition
to the two experimental confirmations, theoretical confirma-
tion by ab-initio simulation (KKR-CPA) was also conducted.
Figure 4a, b, c show ternary plots of magnetic moment of
FexCoyIr100-x-y, FexCoyPt100-x-y, and FexCoyNi100-x-y, respec-
tively. Small amounts of Ir and Pt impurities enhance mag-
netic moment in FexCoyIr100-x-y and FexCoyPt100-x-y systems.
On the other hand, increasing amounts of Ni monotonically
decrease magnetic moment in the FexCoyNi100-x-y system.
These results are consistent with the results of MOKE and
SQUID experiments.

Discussion
These experimental and theoretical results confirmed that the
autonomous materials search system had discovered materials
that had previously never been considered. Moreover, the dis-
covery of novel materials can stimulate further theoretical studies.
In this case, the materials found by the autonomous system led to
a theoretical investigation of why these impurities (Ir and Pt)
enhance the magnetization.

Figure 5a, b show the ab-initio simulation results of local
magnetic moments of Fe and Co in the ternary alloy Fe75Co25X1,
where impurity X is a transition metal. Several elements around Ir
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Fig. 3 Experimental confirmation by combinatorial XRD, MOKE, and SQUID experiments. a Illustration of combinatorial sputtering system with an

automated moving mask for synthesizing FexCoyIr100-x-y, FexCoyPt100-x-y, and FexCoyNi100-x-y composition-spread thin films on SiO2/Si substrates.

b Composition map of FexCoyIr100-x-y composition-spread thin film, where the Ir composition gradient is along the X direction, and Fe and Co composition

gradients are along opposite Y directions. The black spots denote sampling points of the combi-MOKE experiments. c Results of combi-XRD experiments

with FexCoyIr100-x-y composition-spread sample. d XRD curve of Fe68.1Co26.2Ir5.7 (bottom right point in Fig. 3b) e Results of combi-MOKE experiments with

FexCoyIr100-x-y composition-spread sample. f MOKE curves of Fe68.1Co26.2Ir5.7 (bottom right point in Fig. 3b). g–i Composition maps of FexCoyIr100-x-y,

FexCoyPt100-x-y, and FexCoyNi100-x-y composition-spread thin films, respectively. j–l Mapping of amplitude of MOKE curves MMOKE (∝ saturation

magnetization Ms) of the FexCoyIr100-x-y, FexCoyPt100-x-y, and FexCoyNi100-x-y composition-spread thin films, respectively. Small amounts of Ir and Pt

impurities enhance the MMOKE, while Ni impurity monotonically decreases the MMOKE. m MMOKE plots of (Fe75.2Co24.8)1-xIrx, (Fe75.3Co24.7)1-xPtx, and

(Fe71.1Co28.9)1-xNix along dotted arrows in Fig. 3h–j, respectively. The dark-blue solid line and blue dotted line show theoreticalMMOKE values of pure Fe and

Fe75Co25, respectively. n, oMagnetization curves obtained in SQUID experiments with Fe73.2Co24.2Ir2.6, Fe84.0Co12.0Pt4.0, Fe75.2Co24.8, and pure Fe at room

temperature (T= 300 K) and low temperature (T= 5 K). The magnetization enhancement due to Ir and Pt impurities were also observed in the SQUID

experiments.

Fig. 4 Theoretical confirmation by ab-initio simulation. To confirm and analyze the alloy discovered by the autonomous materials search system and

combinatorial experiments, the magnetic moments in various ternary alloys were investigated by ab-initio calculation. a Magnetic moments in FeCoIr

ternary alloy system (largest magnetic moment was observed for Fe81Co15Ir4). b Magnetic moments in FeCoPt ternary alloy system (largest magnetic

moment was observed for Fe85Co11Pt4). c Magnetic moments in FeCoNi ternary alloy system (Ni impurities do not enhance magnetic moment, so the

largest magnetic moment was observed in the alloy at the top of the Slater–Pauling curve, Fe75Co25).

Fig. 5 Theoretical analysis by ab-initio simulation. a Fe local magnetic moment in the Fe75Co25X1 system, where X is a transition metal. The center of the

color bar (white part) corresponds to the Fe local magnetic moment in Fe75Co25. Ir and Pt (and other elements around them in the periodic table) enhance

the Fe local magnetic moment. b Co local magnetic moment in the Fe75Co25X1 system. Ir and Pt (and other elements around them) also enhance the Co

local magnetic moment. c Lattice constant of the Fe75Co25X1 system. Elements with large atomic numbers tend to expand the lattice constant of Fe75Co25.

d Local magnetic moments of different X elements in the Fe75Co25X1 system. Positive and negative signs respectively mean parallel and anti-parallel

magnetic moments with respect to the Fe and Co local magnetic moments. Paramagnetic elements, including Ir and Pt, have smaller magnetic moments

than ferromagnetic elements (Fe, Co, and Ni).
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and Pt in the periodic table increase the Fe and Co local magnetic
moments. Figure 5c shows the lattice constant, which is thought
to be one of the key parameters determining how the magnetic
moment behaves in the Fe75Co25X1 ternary alloys. Comparing
Fig. 5a–c, one finds that not all elements that expand the lattice
constant increase the Fe and Co local magnetic moments: Ta does
not increase them even though Fe75Co25Ta1 has a large lattice
constant. Figure 5e shows the local magnetic moments of the X
elements in Fe75Co25X1 ternary alloys. Paramagnetic elements
have much smaller local magnetic moments than ferromagnetic
elements.

Our inductive theoretical study revealed that the FexCoyIr100-x-y
and FexCoyPt100-x-y alloys have high magnetization because Ir and
Pt impurities enhance the local magnetic moments of Fe and Co.
However, too much Ir and Pt in the alloy reduces the magneti-
zation because their local magnetic moments are small. Conse-
quently, we observe the peaks of the FexCoyIr100-x-y and
FexCoyPt100-x-y magnetization (magnetic moments) in the heat
maps (Figs. 3j, k and 4a, b). This knowledge, that Ir and Pt
impurities enhance local magnetic moment of Fe and Co, will
contribute to the development of materials for even stronger
magnets. Thus, the finding of an unexpected material by the
autonomous materials search system will promote further
experimental and/or theoretical studies.

In summary, stable alloys FexCoyIr100-x-y and FexCoyPt100-x-y with
magnetization beyond that of Fe3Co1 were discovered via autono-
mous materials search system combining machine learning and ab-
initio calculation. The performance of these alloys was confirmed by
both experiments and theories. These alloys can be used for various
applications, such as information storages, motors, sensors, actua-
tors, and other electric devices. In addition, our inductive theoretical
study based on the data-driven materials discovery revealed that the
Ir and Pt impurities enhance the local magnetic moments of Fe and
Co. This knowledge has a potential to contribute to the development
of materials for even stronger magnets. Our autonomous system for
materials discovery is quite versatile and can be used in the devel-
opment of various materials by selecting appropriate objective
properties and algorithms to be used in the virtual materials eva-
luation step and the next target composition/structure decision step.
We believe that use of this autonomous system will lead to the
emergence of more and more innovative materials and theories.

Methods
Game tree search. The game tree search algorithm31 is used to calculate the
priority P of a candidate next sampling point (composition). It tunes the trade-off
between exploration and exploitation in the material search space, which in this
case is an eight-dimensional space composed of the a, b, c, d, e, f, g, and h
composition axes for the alloy FeaCobNicRudRhePdfIrgPth. The magnitude of the
exploration is mathematically expressed as an expected uncertainty σ, which tends
to be large at sparse points in the search space. The magnitude of exploitation is an
expected value μ predicted on the basis of accumulated data. Both σ and μ are
calculated using a Gaussian process regression model in which the objective
variable and explanatory variables are respectively the total magnetic moment and
the compositions (a, b, c, d, e, f, g, and h). To calculate the priority of a candidate
next sampling point, we use an upper confidence bound (UCB) strategy43

expressed as

P ¼ σ þ Cμ: ð1Þ

Parameter C is used to tune the trade-off between exploration and exploitation.
The cost of calculating P over the entire eight-dimensional materials search space is
reduced by using a tree structure for the game tree search so that the spatial
resolution increases stepwisely. The shallow part of the tree manages coarse-
composition spatial resolution while the deep part manages fine-composition
spatial resolution. Error pruning is used to exclude from the set of candidate next
sampling points those with σ lower than threshold emin. In this study, parameter C
in the UCB formula (Eq. 1), initial spatial resolution d0, tree depth D, and threshold
emin were set to 0.3, 0.8, 13, and 0.0001, respectively31.

KKR-CPA. The Korringa–Kohn–Rostoker coherent potential approximation32 is a
Green’s function-based density functional theory calculation often used for disordered

multicomponent alloys. Based on first-principles theory, it can predict various material
properties, including the magnetic moment, from composition and crystal structure
data. In this study we used Akai KKR software32. The crystal structural type (“brvtyp”)
was set to bcc. Lattice constant a between 5.27 and 5.38 bohr was optimized by
minimizing the total energy. An imaginary part at the Fermi level (“edelt”) and the
width of the energy contour were set to 0.001 and 1.0 Ry, respectively. When calcu-
lating the magnetic moments in the FeCoX systems shown in Fig. 4, we set the
relativistic treatment type (“reltyp”) to “srals” including both the relativistic effect and
spin-orbit interaction effect. In the KKR-CPA calculation for the autonomous mate-
rials search system shown in Fig. 2, the “reltyp” was set to “nrl”, which means no
relativistic effect or spin-orbit interaction effect, in order to reduce calculation cost. The
“bzqlty” parameter, which specifies the quality of the Brillouin zone mesh, was set to 9.
The maximum angular momentum taken into account (“xml”) was 3. Note that the
ab-initio calculation does not perfectly represent experimental results because of the
condition difference. The experimental samples synthesized by sputtering were thin
films, and their characterizations (MOKE, SQUID, XRD) were carried out at room
temperature. The ab-initio calculations (KKR-CPA), on the other hand, were carried
out assuming ideal disordered bulk states at absolute zero.

Limitation of the material search space. Ideally, the search for a material with a
large magnetic moment would take place in a very large search space with axes for
all metallic elements, but this is not feasible due to the computational cost and
KKR-CPA performance limitation. There are more than 50 metallic elements in the
periodic table, which is too large a number for KKR-CPA to converge in the Akai
KKR software32. We therefore performed some calculation by hand beforehand.
We calculated the local magnetic moments of various impurities in Fe, which is the
likely main element in an alloy with a large magnetic moment. Supplementary
Fig. S1 shows the KKR-CPA results for the local magnetic moment of various
impurities (X) in Fe99X1 with a bcc structure. We identified eight elements (Fe, Co,
Ni, Ru, Rh, Pd, Ir, and Pt) that have local magnetic moments greater than +0.25 μB.
Because conventional materials simulation technologies (KKR-CPA in this case)
are also being advanced, we should be able to simulate alloys with more compo-
nents in the future. And in an expanded search space, the autonomous system
might discover an alloy with even better properties.

Combinatorial experiment. To fabricate composition-spread thin film of Fex-
CoyIr100-x-y, FexCoyPt100-x-y, and FexCoyNi100-x-y on a SiO2/Si substrate, we employ a
combinatorial sputtering system36–39. Using the moving mask motion, very thin unit
layers with wedge shaped thickness are deposited and stacked alternatingly38. Because
the thicknesses of the unit layers are about 0.2 nm, which is almost equal to the atomic
distance, the ideal material mixtures can be obtained by using a post-deposition
annealing process. We used a combinatorial sputtering system (CMS-6400)38, whose
ultimate vacuum is at 3 × 10−6 Pa. Sputtering using Fe, Ir, Pt, and Ni metal targets was
done with a radio-frequency (RF) source, while that using a Co metal target was done
with a direct current (DC) source. The alternative sputtering deposition was carried
out aiming for 100 nm film thickness under an Ar atmosphere (40 sccm, 0.3 Pa) at
room temperature. After deposition, films were annealed at 600 °C in vacuum (3 ×
10−5 Pa) for 1 h. After the annealing process, film thickness was measured accurately
by cross-sectional scanning electron microscopy (X-SEM). On the composition-spread
sample, we carried out combinatorial longitudinal magneto-optic Kerr effect (combi-
MOKE)39 experiments at room temperature. To detect magneto-optical Kerr rotations
(MOKE intensity), a magnetic field ranging from −650 to +650Oe was applied in
an in-plane direction. Sampling distances on the composition thin film were 2mm
and 3.3mm for the x and y directions, respectively, as shown in Fig. 3b. After the
combi-MOKE experiments, the composition-spread samples were cut into small tips
(2mm× 3.3mm) by using the dicing machine for a superconducting quantum
interference device (SQUID)42 experiment. Lowering the temperature to 5 K was done
by field cooling. To obtain magnetization curves, a magnetic field ranging from −400
to +400Oe was applied in an in-plane direction.

Data availability
The data that support the results reported in this paper and other findings of this study

are available from the corresponding author upon reasonable request.

Code availability
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is available from the corresponding author upon reasonable request.

Received: 6 August 2020; Accepted: 15 February 2021;

References
1. Spaldin, N. A. Magnetic Materials: Fundamentals and Applications

(Cambridge Univ. Press, 2010).

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00135-0

6 COMMUNICATIONS MATERIALS |            (2021) 2:31 | https://doi.org/10.1038/s43246-021-00135-0 | www.nature.com/commsmat

www.nature.com/commsmat


2. Gutfleisch, O. et al. Magnetic materials and devices for the 21st century:
stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011).

3. Li, D., Li, Y., Pan, D., Zhang, Z. & Choi, C.-J. Prospect and status of iron-based
rare-earth-free permanent magnetic materials. J. Magn. Magn. Mater. 469,
535–544 (2019).

4. Cui, J. et al. Current progress and future challenges in rare-earth-free
permanent magnets. Acta Mater. 158, 118–137 (2018).

5. Snow, R. J., Bhatkar, H., N’Diaye, A. T., Arenholz, E. & Idzerda, Y. U. Large
moments in bcc FexCoyMnz ternary alloy thin films. Appl. Phys. Lett. 112, 7
(2018).

6. Kakehashi, Y. Modern Theory of Magnetism in Metals and Alloys (Springer-
Verlag, 2012).

7. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine
learning for molecular and materials science. Nature 559, 547–555 (2018).

8. Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in material
science: recent progress and emerging applications. Rev. Comput. Chem. 29,
186–273 (2016).

9. Jose, R. & Ramakrishna, S. Materials 4.0: materials big data enabled materials
discovery. Appl. Mater. Today 10, 127–132 (2018).

10. Senderowitz, H. & Tropsha, A. Materials informatics. J. Chem. Inf. Model. 58,
2377–2379 (2018).

11. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C.
Machine learning in materials informatics: recent applications and prospects.
npj Comput. Mater. 3, 54 (2017).

12. Agrawal, A. & Choudhary, A. Perspective: materials informatics and big data:
realization of the ‘fourth paradigm’ of science in materials science. APL Mater.
4, 053208 (2016).

13. Lookman, T., Alexander, F. J. & Rajan, K. Information Science for Materials
Discovery and Design (Springer, 2016).

14. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed
experiments. Nature 553, 73–77 (2016).

15. Lookman, T., Eidenbenz, S., Alexander, F. & Barnes, C. (eds) Materials
Discovery and Design by Means of Data Science and Optimal Learning
(Springer International Publishing, 2018).

16. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances
and applications of machine learning in solid-state materials science. npj
Comput. Mater. 5, 83 (2019).

17. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).
18. Kusne, A. G. et al. On-the-fly machine-learning for high-throughput experiments:

search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014).
19. Halder, A., Ghosh, A. & Dasgupta, T. S. Machine-learning-assisted prediction

of magnetic double perovskites. Phys. Rev. Mater. 3, 084418 (2019).
20. Sodeyama, K., Igarashi, Y., Nakayama, T., Tateyama, Y. & Okara, M. Liquid

electrolyte informatics using an exhaustive search with linear regression. Phys.
Chem. Chem. Phys. 20, 22585–22591 (2018).

21. Wu, B., Han, S., Shin, K. G. & Lu, W. Application of artificial neural networks
in design of lithium-ion batteries. J. Power Sources 395, 128–136 (2018).

22. Stanev, V. et al. Machine learning modeling of superconducting critical
temperature. npj Comput. Mater. 4, 29 (2018).

23. Ishikawa, T., Miyake, T. & Shimizu, K. Materials informatics based on
evolutionary algorithms: application to search for superconducting hydrogen
compounds. Phys. Rev. B 100, 174506 (2019).

24. Balachandran, P. V., Young, J., Lookman, T. & Rondinelli, J. M. Learning from
data to design functional materials without inversion symmetry. Nat.
Commun. 8, 14282 (2017).

25. Balachandran, P. V., Kowalski, B., Sehirlioglu, A. & Lookman, T. Experimental
search for high-temperature ferroelectric perovskites guided by two-step
machine learning. Nat. Commun. 9, 1668 (2018).

26. Iwasaki, Y. et al. Identification of advanced spin-driven thermoelectric materials
via interpretable machine learning. npj Comput. Mater. 5, 103 (2019).

27. Iwasaki, Y. et al. Machine-learning guided discovery of a new thermoelectric
material. Sci. Rep. 9, 2751 (2019).

28. Ishida, N., Wakamiya, A. & Saeki, A. Quantifying hole transfer yield from
perovskite to polymer layer: statistical correlation of solar cell outputs with
kinetic and energetic properties. ACS Photonics 3, 1678–1688 (2016).

29. Takahashi, K., Takahashi, L., Miyazato, I. & Tanaka, Y. Searching for hidden
perovskite materials for photovoltaic systems by combining data science and
first principle calculations. ACS Photonics 5, 771–775 (2018).

30. Sumita, M., Yang, X., Ishihara, S., Tamura, R. & Tsuda, K. Hunting for organic
molecules with artificial intelligence: molecules optimized for desired
excitation energies. ACS Cent. Sci. 4, 1126–1133 (2018).

31. Sawada, R., Iwasaki, Y. & Ishida, M. Boosting material modeling using game
tree search. Phys. Rev. Mater. 2, 103802 (2018).

32. Akai, H. Electronic structure Ni-Pd alloys calculated by the self-consistent
KKR-CPA method. J. Phys. Soc. Jpn. 51, 468–474 (1982).

33. Khan, N. S., Staunton, J. B. & Stocks, G. M. Statistical physics of
multicomponent alloys using KKR-CPA. Phys. Rev. B 93, 054206 (2016).

34. Yang, L. et al. Investigation of the site preference in Mn2RuSn using KKR-
CPA-LDA calculation. J. Magn. Magn. Mater. 382, 247–251 (2015).

35. Jin, K. et al. Tailoring the physical properties of Ni-based single-phase
equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159
(2016).

36. Koinuma, H. & Takeuchi, I. Combinatorial solid-state chemistry of inorganic
materials. Nat. Mater. 3, 429 (2004).

37. Takeuchi, I. et al. Identification of novel compositions of ferromagnetic
shape-memory alloys using composition spreads. Nat. Mater. 2, 180–184
(2003).

38. Combinatorial Technology (Comet Inc. https://www.comet-nht.com/concept-
e.html.)

39. Yoo, Y. K. et al. Identification of amorphous phases in the Fe-Ni-Co ternary
alloy system using continuous phase diagram material chips. Intermetallics 14,
241–247 (2006).

40. He, S. H., Zha, B. M. A., Zhang, Z. Z. & Jin, Q. Y. Formation of (002) texture
in Fe films prepared by thermal treatment. J. Magn. Mag. Mater. 310,
2656–2658 (2007).

41. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic
octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78
(2018).

42. Clarke, J. & Braginski, A. I. The SQUID Handbook: Applications of SQUIDs
and SQUID Systems (John Wiley & Sons, 2006).

43. Auer, P. Using confidence bounds for exploitation-exploration trade-offs. J.
Mach. Learn. Res. 3, 397–422 (2002).

Acknowledgements
We thank S. Ri in Comet Inc. for combinatorial experiments and thank I. Takeuchi and

V. Stanev in the University of Maryland and M. Kotsugi in Tokyo University of Science

for valuable discussion. This work was supported by JST-PRESTO under the “Advanced

Materials Informatics through Comprehensive Integration among Theoretical, Experi-

mental, Computational and Data-Centric Sciences” research area (Grant JPMJPR17N4)

and by the JST-ERATO “Spin Quantum Rectification Project” (Grant JPMJER1402).

Author contributions
Y.I., R.S., and M.I. contributed to the theoretical discussion and the machine learning

algorithm discussion. Y.I. wrote the manuscript. E.S. and M.I. supervised the study. All

the authors discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s43246-021-00135-0.

Correspondence and requests for materials should be addressed to Y.I.

Peer review information Primary handling editor: Aldo Isidori

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00135-0 ARTICLE

COMMUNICATIONS MATERIALS |            (2021) 2:31 | https://doi.org/10.1038/s43246-021-00135-0 | www.nature.com/commsmat 7

https://www.comet-nht.com/concept-e.html
https://www.comet-nht.com/concept-e.html
https://doi.org/10.1038/s43246-021-00135-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmat
www.nature.com/commsmat

	Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
	Outline placeholder
	B1

	Results
	Machine learning-based autonomous materials search
	Experimental confirmation by combinatorial methods
	Theoretical confirmation by ab-initio simulation

	Discussion
	Methods
	Game tree search
	KKR-CPA
	Limitation of the material search space
	Combinatorial experiment

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


