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Machine learning bandgaps of 
double perovskites
G. Pilania1, A. Mannodi-Kanakkithodi2, B. P. Uberuaga1, R. Ramprasad2, J. E. Gubernatis3 & 

T. Lookman3

The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much 

practical interest for a range of applications. While quantum mechanical computations for high-fidelity 
bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, 

informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate 

a systematic feature-engineering approach and a robust learning framework for efficient and accurate 
predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 
million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of 

the constituent atomic species as the most crucial and relevant predictors. The developed models are 

validated and tested using the best practices of data science and further analyzed to rationalize their 

prediction performance.

In the recent past, high throughput explorations of enormous chemical spaces have signi�cantly aided the rational 
materials design and discovery process1–4. Massive open-access databases of computed/predicted materials prop-
erties (including electronic structure, thermodynamic and structural properties) are now available5–7. Materials 
scientists are currently looking at e�cient ways to extract knowledge and mine trends out of materials big-data8. 
As a result, well-established statistical techniques of machine learning (ML) are gradually making inroads into 
materials science9. �ese methods of data-science and information theory have already met phenomenal success 
in the �elds of cheminformatics10, game theory11, pattern recognition12, arti�cial intelligence13, event forecasting14 
etc. and are now being customized for materials informatics to help identify next generation materials break-
throughs and process optimizations15,16.

Given past knowledge—in terms of high quality data on a given property of interest for a limited set of mate-
rial candidates within a well de�ned chemical space—informatics based statistical learning approaches lead to 
e�cient pathways to make high-�delity predictions on new compounds within the target chemical space. Some 
recent examples of materials’ property predictions using informatics include predictions of molecular17,18 and 
periodic systems’ properties19–22, transition states23, potentials24,25, structure classi�cations26–28, dielectric proper-
ties2, self-consistent solutions for quantum mechanics29 and predictions of bandgaps30,31.

In this contribution, we aim to build a validated statistical learning model for a speci�c class of complex 
oxides, namely the double perovskites. �e double perovskite structure, shown in Fig. 1a, is represented by the 
chemical formula AA’BB’O6; where A and A’ cations are generally of larger radii and have a 12-fold coordination, 
while the relatively smaller B and B’ metal ions occupy six-fold coordinated positions in oxygen octahedra. �e 
A-site ions typically have + 1, + 2 or + 3 nominal charge states, while the charge state of the B-site cations is gov-
erned by the overall charge neutrality of the system. We consider the double perovskite oxides as a material-class 
of interest owing to both the chemical �exibility made available by the perovskite framework in accommodating 
a broad spectrum of atomic substitutions, and the vastness of compositional and con�gurational space spanned 
by the double perovskites32.

�e ability to rapidly and accurately predict bandgaps of double perovskites is of much interest for a range 
of applications that require materials with pre-speci�ed constraints on bandgaps, for instance, scintillation33, 
photovoltaics34 and catalysis35, to name a few. Local and semi-local functionals used within density functional 
theory—the current workhorse for electronic structure computations—have a well known de�ciency of severely 
underestimating the bandgaps. More advanced methods such as the GW approach36 and hybrid functionals37 are 
enormously computation-time intensive and are thus impractical in high throughput studies aimed at screening 
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promising candidates with targeted bandgaps. �is is one of the most important reasons for seeking to develop a 
statistical (or machine) learning model where one can use easily accessible attributes (also referred to as features) 
of a material to directly predict its bandgap, in an e�cient yet accurate manner. Our primary goal is to develop a 
validated and predictive model that establishes a mathematical relationship (or mapping) between the bandgap of 
material i residing in the prede�ned chemical space, and an Ω -dimensional (Ω − D) feature vector fi of the mate-
rial i. Here, the Ω − D vector fi (also referred to as a descriptor) is composed of Ω  di�erent features and uniquely 
describes the material i. It is also desirable to have a model which is both simple (i.e., with su�ciently small Ω ) 
and reasonably accurate. Here, we report a feature-selection (i.e., how to �nd an optimal Ω − D feature vector) and 
learning framework (i.e., how to establish the mapping between the bandgaps and feature vectors) for e�cient 
and accurate predictions of electronic bandgaps of double perovskites.

Results
We start by describing the details of our double perovskite bandgap dataset that was used to train, validate 
and test the prediction performance of the ML models developed here. �e dataset used here came from the 
Computational Materials Repository (CMR)7. �e double perovskite structures reported in this dataset were 
obtained by combining 53 stable cubic perovskite oxides which were found to have a �nite bandgap in a previous 
screening based on single perovskites38,39. �ese 53 parent single perovskites contained fourteen di�erent A-site 
cations (viz. Ag, Ba, Ca, Cs, K, La, Li, Mg, Na, Pb, Rb, Sr, Tl and Y) and ten B-site cations (viz. Al, Hf, Nb, Sb, Sc, 
Si, Ta, Ti, V, Zr). Four cations (Ga, Ge, In and Sn) were found to appear on either A- or B-sites. �e chemical space 
spanned by these compounds is captured in Fig. 1b.

A total of 53C2 =  1378 unique double perovskites are possible by combining the 53 stable single cubic per-
ovskite oxides, when taken pairwise. However, out of these systems, 72 double perovskites are metallic (or have a 
very small bandgap < .


0 1 eV) and are not included in the database. �ese systems are depicted in Fig. 1c as 

o�-diagonal circles. �e CMR dataset reports the electronic bandgaps of the remaining1306 unique double 
perovskites.

Depending on the nature of the cations, various types of cation ordering can consequently arise in the double 
perovskites40. For a doubly substituted AA’BB’O6-type perovskite, there are three common ways in which cations 
at each of the two sublattices can order, leading to a total of nine di�erent ordered arrangements. Speci�cally, 
A and A’ (and B and B’) cations can order in layered, columnar, or rocksalt arrangements. �e most commonly 

Figure 1. (a) Double perovskite crystal structure with rocksalt ordering of both A- and B-site cations. 
Oxygen octahedral coordination around the B-site cations is explicitly shown. (b) Chemical space of the 
double perovskite oxides explored in the present study. Cations appearing at the A-site and/or the B-site are 
highlighted. (c) Matrix plot of the double perovskites bandgaps in the database38 used in the present study. �e 
abscissa and ordinate represent the A–B cation pairs of the constituent single perovskites. �e matrix diagonal, 
shown with gray circles, represents the 53 single perovskites which were not included in the database. White 
circles represent the 72 compositions with either zero or negligible bandgaps, which were also not included in 
the database. (d) Histogram of GLLB-SC bandgaps of 1306 double perovskites used in the development of the 
ML model presented here.
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observed type of ordering for the B-site sublattice is the one in which the cations alternate in all three dimensions, 
mimicking a rocksalt-type ordered sublattice to e�ectively accommodate any local strain arising due to size mis-
match of the two cations. Less frequently, the B-site cations may form a layered order, where they alternate only 
in one direction and form continuous layers in the other two normal cartesian axes. Rarely, however, a columnar 
order may take place, where the two di�erent cations alternate in two orthogonal directions, but form a continu-
ous column along the third direction. �e CMR database reports the bandgaps of all the double perovskites with 
the rocksalt ordering of cations at both the A- and the B-sites38.

�e reported bandgaps (cf. Fig. 1c,d) are computed using density functional theory (DFT)41 as implemented 
in the GPAW code42 with the Gritsenko, van Leeuwen, van Lenthe and Baerends potential (GLLB)43, further opti-
mized for solids (-SC) by Kuisma et al.44. �e GLLB functional has an inbuilt prescription for the evaluation of 
the derivative discontinuity45, which is added back to the Kohn-Sham bandgap to correct for the bandgap under-
estimation within conventional DFT. In fact, the GLLB-SC bandgaps for several single metal oxides have been 
found in excellent agreement with the corresponding experimental values (cf. Supplementary Information)38. 
Furthermore, the GLLB-SC functional was recently tested against the more advanced and demanding 
eigenvalue-self-consistent GW approach and has been shown to give good agreement for the bandgap of 20 ran-
domly chosen systems forming an unconventional set of ternary and quaternary compounds taken from from 
the Materials Project database46. Finally, we would also like to note that despite its signi�cantly low computational 
cost compared to the GW approach, the GLLB-SC functional is about twice as expensive as compared to a con-
ventional DFT calculation employing a local or semi-local functional.

Any ML method, targeted towards learning a prespeci�ed material property, relies on two main ingredients: 
the learning algorithm itself and a numerical representation (in form of a descriptor) of the materials in the 
learning (or training) dataset. Identi�cation of an appropriate and most suitable �ngerprint for a given prediction 
task is one of the central challenges, at present being actively pursued by the community. �e speci�c choice of 
this numerical representation is entirely application dependent and a number of proposals in terms of high-level 
features (e.g., d-band center, elemental electronegativities and ionization potentials, valence orbital radii)26,47,48, 
topological features49, atomic radial distribution functions19, compositional, con�gurational and motif based 
�ngerprints2,18,25 have been made. Regardless of the speci�c choice pursued, the representations are expected 
to satisfy certain basic requirements such as invariance with respect to transformations of the material such as 
translation, rotation, and permutation of like elements. Additionally, it is also desirable that the �ngerprinting be 
chemically intuitive and physically meaningful.

�e overall work�ow adopted in the present study, combining an e�ective feature search strategy with a 
state-of-the-art statistical learning method, is outlined in Fig. 2. Our systematic approach starts with identi�ca-
tion of seven atomic (or elemental) features for each of the cation species forming the double perovskite structure. 
�ese elemental features (viz. Pauling’s electronegativity (χ), ionization potential (I), highest occupied atomic 
level (h), lowest unoccupied atomic level (l), and s-, p- and d- valence orbital radii rs, rp and rd of isolated neutral 
atoms) are easily accessible and physically intuitive attributes of the constituent atoms at the A- and B-sites. While 
χ, I, h and l naturally form the energy scales relevant towards prediction of the bandgap, the valence orbital radii 
were included based on their excellent performance exhibited in classi�cation of AB binary solids50,51. Taking 
these seven elemental features for each of the four atoms, occupying either A- or B-site, forms our starting set of 
twenty eight elemental features. Further details on the feature set are provided in the Methods section.

It is also worthwhile to note at this point that the double perovskite structure under investigation is invariant 
with respect to swapping of the two A-site cations as well as the two B-site cations, i.e., AA’BB’O6, A’ABB’O6 and 
AA’B’BO6 are all identical systems. To incorporate this structural symmetry into the model, we symmetrize the 
above-mentioned 28 elemental features such that they re�ect the underlying symmetry of the A- and B-site sub-
lattices of the double perovskite crystal structure. �is is achieved by taking the absolute sum +

′
f f

A A
 and 

absolute di�erence −
′

f f
A A

 for each pair of elemental features fA and fA′, representing the two A-site cations. 
Features for the B-site cations were also transformed in a similar fashion. For convenience of notation, ±

′
f f

A A
 

Figure 2. Overall work�ow for the statistical learning model. Schematic presents the details of the CMR 
double perovskite bandgap database and outlines the work�ow adopted for the primary and compound feature 
selection, leading to a cross-validated and tested nonlinear regression model for bandgap predictions.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:19375 | DOI: 10.1038/srep19375

and  ±
′

f f
B B

 are henceforth represented by ±f
A

 and ±f
B

, respectively. Building such symmetry at the feature  
level ensures that the deemed ML model would predict identical bandgaps for symmetry unique systems, irre-
spective of any speci�c labeling of the two A- and two B-site atoms. �is set of 28 symmetrized features thus 
achieved is herea�er referred to as primary features.

At this point, we adopt a two-fold route for feature selection. While the primary features can directly be used 
in a statistical learning model, we also consider a large set of conjunctive—or compound—features built in a con-
trolled manner to allow for non-linearity at the feature level. �e compound feature set is built in the following 
way: 6 prototypical functions, namely, x, x1/2, x2, x3, ln(1 +  x), and ex, with x being one of the 28 primary features, 
were considered. �is immediately generates 168 features. Simply multiplying these features of single functions 
taken either two or three at a time leads to additional 16,464 and 1,229,312 features, respectively. �is approach 
thus provides us with 1,245,944 compound features, each of which is a function involving up to 3 primary fea-
tures. Finally, a least absolute shrinkage and selection operator (LASSO)-based model selection is employed to 
downselect a set of 40 compound features, which are deemed most relevant towards prediction of the bandgaps. 
We note here that this strategy of creating a large number of initial compound features and down-selecting to 
the most relevant ones using LASSO has recently been successfully employed to identify new crystal structure 
classi�ers51. A LASSO-based formalism has also been employed to identify lower-dimensional representations of 
alloy cluster expansions52.

Next, the primary features and downselected compound features are subjected to a Pearson correlation �lter 
(cf. Fig. 2) to remove features that exhibit a high correlation with the other features in each set. �e cut-o� of the 
Pearson correlation �lter was adjusted such that only 16 features in each set survive. Tests showed that selecting 
more than 16 features does not lead to any improvements in the out-of-sample prediction accuracy of ML mod-
els. A Pearson correlation map showing the correlation for each pair of the primary or compound features is 
presented in Fig. 3.

�e above sets of 16-primary and 16-compound features were subsequently used separately to construct all 
possible Ω -dimensional (or Ω − D) descriptors (i.e., taking Ω  features at a time), where Ω  was varied from 1 to 16. 
�is leads to 216 −  1(= 65535) total possible descriptors to be tested for the primary and the compound feature 
sets. Since testing and evaluating prediction performance of such a large number of descriptors using non-linear 
statistical learning models (such as kernel ridge regression or KRR) is a highly computation-time intensive task, 
we resort here to a cross-validated linear least square �t (LLSF) model instead. A training set consisting of 90% 
of the whole dataset was used to �t a linear model, and the rest 10% was used as a test set to evaluate root mean 
squared (rms) error and coe�cient of determination (R2) of the �t. To take into account variability of the models, 
average test set rms error and average test set R2 over 100 di�erent bootstrap runs were used to rank the linear 
models.

�e LLSF performance of the best Ω − D descriptors for a given Ω  ∈ [1, 16] is presented in Fig. 4a. We �nd 
that for any given Ω , the descriptors with the compound features perform much better than those formed using 
the primary features. Certainly, this boost in performance can be attributed to the additional �exibility imparted 

Figure 3. Pearson correlation map for features. A graphical representation of the Pearson correlation matrix 
for the downselected primary (labelled as Pi with i ∈  1,16 in the upper-right part) and compound (labelled as 
Ci with i ∈  1,16 in the lower-le� part) features is presented. Blue and red colors indicate positive and negative 
correlations, respectively; the lighter the tone used, the less signi�cant the corresponding correlation. �e 
�lled fraction of the circle in each of the pie charts corresponds to the absolute value of the associated Pearson 
correlation coe�cient.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:19375 | DOI: 10.1038/srep19375

by the non-linear functions in the compound features. Furthermore, a compound feature can e�ectively have a 
combination of up to three functions of primary features. We also note that going beyond a 10-D descriptor does 
not improve the prediction performance in either case (cf. Fig. 4a). For instance, the average rms error for the 
16-D descriptor formed with compound features is 0.786 eV, while that for the 10-D descriptor is 0.792 eV. �e 
average rms errors for the corresponding descriptors with primary features are 0.971 eV and 0.973 eV, respectively.

Performance of the best primary and compound Ω  −  D descriptors (with Ω  ∈[1, 16]) identi�ed above was 
then reassessed in a Kernel ridge regression (KRR)53,54 model—a state-of-the-art ML method capable of handling 
complex non-linear relationships—which has recently been shown to be promising for prediction of a diverse set 
of materials properties2,17,55–57. Based on the principle of similarity, the KRR method �rst uses a distance measure 
such as the Euclidean norm in the descriptor space (i.e., −‖ ‖f fi j

2, for ith and jth compounds in the training set) 
to quantify (dis)similarity between materials; the property to be predicted is then computed as a linear combina-
tion of the kernel (e.g., a gaussian kernel ( )σ( , ) = − − /‖ ‖k i j f fexp 2i j

2 2  used in the present case) distance 

functions of materials of interest and the training set materials. �erefore, constructing descriptors in which 
materials have a small distance when their property of interest is similar is of particular importance for the learn-
ing process. Further details on the KRR learning model are provided in Methods.

Results obtained using the cross-validated KRR models are presented in Table 1 and the identities of the best 
Ω − D descriptors are provided in the Supplementary Information. For each descriptor, the average rms error 
and average R2 on training and test sets are reported. �e average was taken over 100 di�erent KRR runs, in 
each of which a 90% training set and a 10% test set were randomly selected. Not surprisingly, it is seen that both 
the learning and prediction accuracies grow with the descriptor dimensionality (and complexity). Interestingly, 

Figure 4. Prediction performance of the developed linear and non-linear learning models. (a) Computed 
test set rms errors and coe�cient of determinations (R2) for the best Ω  −  D models, with Ω  ranging from 1 
through 16, in linear least square �t (LLSF) models which are built on either primary or compound features. �e 
prediction performance reported here is computed as an average over 100 di�erent runs, each with randomly 
selected 90% training and 10% test sets. Representative parity plots comparing the DFT-computed bandgaps 
against the KRR predicted bandgaps, for (b) the 4-D primary descriptor, (c) the 16-D primary descriptor and 
(d) the 16-D compound descriptor. Histograms of the test set average rms error, computed over 400 di�erent 
runs, are also presented as insets in the last three panels.
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unlike the LLSF model, in the KRR model the performance of a primary descriptor is found to be comparable to 
that of the corresponding compound descriptor. �is is owing to the inclusion of the nonlinearity in the learning 
model itself, which boosts the performance of the primary descriptors. In light of this observation, going forward 
with the KRR model, we choose the simpler models with the primary descriptors over the compound descriptors.

It is interesting to note that going from the 3-D to the 4-D primary descriptor (cf. Table 1) leads to a signi�cant 
improvement in the model prediction performance. For instance, the average R2 on the test set increases from 
0.69 to 0.90 and average rms error decreases from ~0.87 eV to ~0.50 eV. Going beyond the 4-D descriptor, how-
ever, only results in marginal improvements. For instance, with the 16-D descriptor (containing all of the primary 
features) the obtained average test set R2 is ~0.94, only slightly better than that of the 4-D descriptor. Figure 4b–d 
compare the KRR prediction performance of the 4-D descriptor with the 16-D primary and the 16-D compound 
descriptor in separate parity plots, using a representative training/test set split. It can be seen that while the train-
ing set performance is signi�cantly better in the KRR models with the higher dimensional descriptors, the test set 
performance of those models can be considered comparable (or only slightly better) to that of the 4-D descriptor.

Discussion
We now examine the individual primary features that combine to give the 4-D primary descriptor. �ese features 
are: +lA , −lA , χ +

B
, χ−

B
, i.e., the absolute sum and di�erence of elemental lowest occupied levels of the two A-site atoms 

and the electronegativities of the two B site atoms. We also note that the two conjugate pairs of these elemental 
features appear together and none of the primary features with valence orbital radii appears. Furthermore, the 
descriptor is well balanced with respect to the participation from the features speci�c to the A-site atoms (i.e., +lA , 
−lA ) and to the B-site atoms (i.e., χ +

B
, χ−

B
). In addition to being chemically intuitive, elegant and symmetric, the 

identi�ed descriptor is also simple and easily accessible. It is always desirable to have a ML prediction model built 
on simpler (i.e., low dimensional) and intuitive descriptors, since with high dimensional complex descriptors 
there is always a danger of over�tting leading to poor model generalizability. �erefore, by preferring the 4-D 
primary descriptor over the 16-D descriptor, we are trading some model accuracy for model simplicity and better 
model generalizability.

To further test the model’s predictability, we used the cross-validated KRR learning model, trained on a ran-
domly selected 90% double perovskite dataset, to predict bandgaps of the original 53 parent single perovskites. 
We note that for the single perovskites, owing to the constraints A =  A’ and B =  B’, only two of the four features 
survive (i.e., for all the single perovskites we have =−l 0A , χ =

− 0
B

). Figure 5 compares the bandgaps predicted by 
the model with those computed using DFT with the GLLB-SC functional. Given that the model was never trained 
on single perovskites and that only two of the four primary features e�ectively survive for a single perovskite, such 
a prediction performance is rather remarkable.

Performance of KRR ML models with primary 
descriptors

Performance of KRR ML models with 
compound descriptors

Descriptor
Training set 

(90%) Test set (10%) Descriptor
Training set 

(90%) Test set (10%)

Dimension

rms 
error 
(eV) R2

rms 
error 
(eV) R2 Dimension

rms 
error 
(eV) R2

rms 
error 
(eV) R2

1-D 0.959 0.634 1.056 0.546 1-D 0.954 0.638 1.056 0.545

2-D 1.059 0.554 1.114 0.493 2-D 0.888 0.686 0.879 0.685

3-D 0.689 0.811 0.867 0.692 3-D 0.774 0.762 0.777 0.753

4-D 0.306 0.963 0.501 0.897 4-D 0.716 0.796 0.742 0.775

5-D 0.270 0.971 0.529 0.885 5-D 0.566 0.872 0.637 0.834

6-D 0.302 0.968 0.521 0.889 6-D 0.502 0.900 0.594 0.855

7-D 0.356 0.949 0.510 0.892 7-D 0.426 0.928 0.554 0.875

8-D 0.281 0.969 0.429 0.925 8-D 0.437 0.924 0.563 0.870

9-D 0.219 0.981 0.406 0.932 9-D 0.399 0.937 0.550 0.876

10-D 0.139 0.992 0.397 0.935 10-D 0.300 0.964 0.484 0.904

11-D 0.178 0.987 0.413 0.930 11-D 0.249 0.975 0.455 0.915

12-D 0.074 0.998 0.393 0.936 12-D 0.222 0.980 0.451 0.917

13-D 0.137 0.993 0.365 0.944 13-D 0.187 0.986 0.418 0.928

14-D 0.110 0.995 0.397 0.935 14-D 0.169 0.989 0.413 0.930

15-D 0.087 0.997 0.377 0.941 15-D 0.144 0.992 0.376 0.942

16-D 0.080 0.997 0.371 0.939 16-D 0.132 0.993 0.360 0.947

Table 1.  Prediction performance of the KRR models. Computed training set and test set rms errors and 
coe�cient of determinations (R2) for the best Ω  −  D models, with Ω  ∈ [1, 16], in 5-fold cross-validated KRR 
models built on top primary and compound descriptors (identi�ed in the LLSF models). �e reported rms 
errors and R2 are averaged values over 100 di�erent runs, each with randomly selected 90% training and 10% 
test sets. Here = − ∑( − ) /∑( − ),R b b b b1 i i i

2
pred

2
avg

2 with bi, bi,pred and bavg being the GLLB-SC computed 
bandgaps, model-predicted bandgaps and average bandgap value in the training or test set.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:19375 | DOI: 10.1038/srep19375

To gain deeper insight into the model’s remarkable prediction performance, we next construct 2-D contour 
plots in which dependence of any two of the four features has been marginalized (by considering an averaged 
value along those particular dimensions, as explained below). We start with a �ne 4-D grid in the feature space 
constituted by the four primary features identi�ed above, while still con�ning ourselves within the boundaries 
of the original feature space used to train the KRR model. Each point on this grid then, in principle, represents 
a descriptor. Next, we use the trained KRR model to make predictions using each of these descriptor points as a 
model input. For the sake of better representation, we convert the predictions in this 4-D feature space into a 2-D 
plot by averaging out any given two of the four primary features. �is approach allows us to explicitly visualize 
the dependence of the bandgap along any two pre-speci�ed features, while the dependence of other two features 
is considered only in an averaged manner. We can now represent this data in a 2-D contour plot. �ree out of 
a total of six such possible plots are shown in Fig. 6, where green and purple regions represent the high- and 
low-bandgap regions, respectively. �e data-points in the double perovskites dataset are also plotted on top for 
validation, color (or size) coded according to their GLLB-SC bandgaps. Since the dependence of two out of the 
four features has already been integrated out, one does not expect a quantitative agreement between the contour 
and scatter plots. However, it can be seen from the �gure that the two are in quite good agreement. �e green 
“mountains” on the contour plot are largely occupied by red (large) circles while the purple “valleys” are mostly 
populated with blue (small) circles. Such feature-property maps provide a pathway towards drawing decision 
rules (for a targeted functionality) from statistical learning models. Furthermore, while the original model can 
be used to make quantitative predictions, such simple feature-property maps can be employed as a �rst-line of 
screening to make qualitative predictions or devise simple screening criteria for a given property (in our case the 
bandgap).

Finally, we comment about the limitations and domain of applicability of the ML model. �e presented model 
is applicable within the considered chemical space (i.e., aforementioned choices of A- and B-site cations) and to 
non-magnetic AA’BB’O6 type perovskites, which can be separated into two charge neutral ABO3 and A’B’O3 single 
perovskites. Test performance on double perovskite compounds which cannot be decomposed in such a manner 
was found to be poor, which is not surprising since the learning model was never trained on such compounds. 
Extending the ML model to such compounds and accounting for other possible A- and B-site cation orderings 
remains work to be undertaken in future studies. It will also be interesting to check the general applicability of 
the identi�ed descriptor by employing it to predict the bandgaps of other materials classes, quite distinct from 
perovskites and related chemistries.

In summary, we have presented a robust ML model along with a simple elemental descriptor set for e�cient 
predictions of electronic bandgaps of double perovskites. �e proposed optimal descriptor set was identi�ed via 
searching a large part of feature space that involved more than ~1.2 million descriptors formed by combining 
simple elemental features such as electronegativities, ionization potentials, electronic energy levels and valence 
orbital radii of the constituent atomic species. �e KRR-based statistical learning model developed here was 
trained and tested on a database consisting of accurate bandgaps of ~1300 double perovskites computed using 
the GLLB-SC functional within the framework of density functional theory. One of the most important chem-
ical insights that came out of the adopted learning framework is that the bandgap is primarily controlled (and 
therefore can e�ciently be learned) by the lowest occupied energy levels of the A-site elements and electronega-
tivities of the B-site elements. �e average test set rms error of the cross validated model with only four primary 
features (i.e., the 4-D primary descriptor) is found to be 0.5 eV, which is further reduced to ~0.37 eV (0.36 eV) 

Figure 5. Predictions on single perovskites. Prediction performance of the KRR model in predicting the 
bandgaps of the parent 53 single perovskites, which form all the double perovskites in the database. �e model 
was trained on a randomly selected 90% training set from the double perovskite bandgap database using the 
4-D primary descriptor.
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with the primary (compound) 16-D descriptor. Out-of-sample prediction performance of the trained model is 
further demonstrated by its ability to predict bandgaps of several single perovskites. Finally we have shown that 
the prediction performance of the model can be visually rationalized by constructing several two-dimensional 
feature-property contour maps. We believe that the ML approach presented here is general and can be applied 
to any material class in a restricted chemical space with a given crystal structure to make e�cient predictions of 
bandgaps. Such a prediction strategy can be practically useful in an initial screening to identify promising candi-
dates in a high throughput manner.

Methods
Details of feature set. For feature set accumulation, we start from 7 atomic features for each metal atom A 
in the double perovskite structure. �ese primary atomic features are Pauling’s electronegativity (χ), ionization 
potential (I), highest occupied atomic Kohn-Sham level (h), lowest unoccupied atomic Kohn-Sham level (l), 
and s-, p- and d- Zunger’s valence orbital radii rs, rp and rd of isolated neutral atoms50. �e ionization potential 
and Pauling’s electronegativity data were taken from the literature6,59 and the highest-occupied lowest-unoccu-
pied Kohn-Sham levels of the isolated atomic species were computed using the GGA-PBE exchange-correlation 
functional58.

Machine learning model. Within the present similarity-based KRR learning model, the bandgap of a sys-
tem in the test set is given by a sum of weighted Gaussians over the entire training set. As a part of the model 
training process, the learning is performed by minimizing the expression λ ω∑ ( − ) + ∑= , , =E Ei

N
g KRR
i

g DFT
i

i
N

i1
2

1
2, 

with 
,

Eg KRR
i  being the KRR estimated bandgap value, 

,

Eg DFT
i  the DFT value, and λ a regularization parameter. �e 

explicit solution to this minimization problem is ω λ= ( + )− ,k I E g DFT
1 , where I is the identity matrix, and 

= (− − )
σ

k f fexpij i j
1

2

2

2
 is the kernel matrix elements of all compounds in the training set. �e parameters λ, 

σ are determined in an inner loop of �vefold cross validation using a logarithmically scaled �ne grid. We note that 
KRR training and hyperparameter determination were performed only using the training data and the test set 
samples were never seen by the KRR model during the training procedure.
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