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ABSTRACT 
This paper presents a portable inertial measurement unit 

(IMU)-based motion sensing system and proposed an adaptive 

gait phase detection approach for non-steady state walking and 

multiple activities (walking, running, stair ascent, stair descent, 

squat) monitoring. The algorithm aims to overcome the 

limitation of existing gait detection methods that are time-

domain thresholding based for steady-state motion and are not 

versatile to detect gait during different activities or different gait 

patterns of the same activity. The portable sensing suit is 

composed of three IMU sensors (wearable sensors for gait phase 

detection) and two footswitches (ground truth measurement and 

not needed for gait detection of the proposed algorithm). The 

acceleration, angular velocity, Euler angle, resultant 

acceleration, and resultant angular velocity from three IMUs are 

used as the input training data and the data of two 

footswitches used as the training label data (single support, 

double support, swing phase). Three methods 1) Logistic 

Regression (LR), 2) Random Forest Classifier (RF), and 3) 

Artificial Neural Network (NN) are used to build the gait phase 

detection models. The result shows our proposed gait phase 

detection with Random Forest Classifier can achieve 98.94% 

accuracy in walking, 98.45% in running, 99.15% in stair-ascent, 

99.00% in stair-descent, and 99.63% in squatting. It 

demonstrates that our sensing suit can not only detect the gait 

status in any transient state but also generalize to multiple 

activities. Therefore, it can be implemented in real-time 

monitoring of human gait and control of assistive devices. 

INTRODUCTION 
    In the last two decades, wearable devices, exoskeletons, 
and rehabilitation robots emerge as a new approach to prevent 
injuries and augment human capabilities [1]. In those 
applications, to determine the gait phase is crucial to monitor gait 
patterns, generate assistive torque profile, position profiles, and 
prevent injuries. Prior work studied foot switches [2], gyroscope 
[3], accelerometer [4], electromyography (EMG) [5] to detect 

gait cycles and used the information to trigger the assistance of 
wearable devices to augment the human walking. Typically, the 
movements of a limb in a gait cycle can be divided into 1) initial 
contact, 2) loading response, 3) mid-stance, 4) terminal stance, 
5) pre-swing, 6) initial swing, 7) mid-swing, and 8) terminal
swing [6]. Among those phases of the gait cycle, the most 
important events to separate the gait phase are heel-strike and 
toe-off [7]. Researchers have explored the foot pressure sensing 
system [8-10] and optical motion capture system [11-14] to 
obtain accurate gait cycle detection. Although these systems 
provide accurate gait detection, optical motion capture systems 
are heavy and not portable. Pappas et al. used the angular 
velocity of the foot and three force sensitive resistors to detect 
stance, heel-off, swing, and heel-strike in real-time and they 
achieve 99% accurate in climbing and walking in non-steady 
state walking and 96% for the subjects with impaired gait [10]. 
A foot pressure sensing system is not easily integrated into the 
wearable robots or may be unreliable due to its resistive sensing 
nature. Therefore, an IMU-based gait detection algorithm has 
been developed [15]. This algorithm uses the IMU sensor 
mounted on the foot and heuristic threshold to detect the heel-
strike and toe-off event, then derive the gait cycle from 0 to 
100% in time series with good accuracy in a steady state walking. 
But, if the subject suddenly changes their walking speed, stops 
walking, or changes activities, the gait cycle detection will 
become inaccurate.  

The novelty of our algorithm overcomes the limitation of 
existing gait detection methods that are time-domain 
thresholding based for steady-state motion and are not versatile 
to detect gait during different activities or different gait patterns 
of the same activity. We developed a portable IMU-based 
motion sensing system and proposed a novel gait phase detection 
approach for non-steady state walking and multiple activities 
(walking, running, stair-ascent, stair-descent, squatting). The 
proposed approach not only detects the gait status in any 
transient state but also generalizes to multiple activities across 
different users without retraining the new user’s data. Therefore, 
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it can be implemented in real-time monitoring of human gait and 
control of assistive devices.  
 
METHODS 

In order to collect data to train the machine learning model, 
three IMUs and two footswitch insoles (B&L Engineering, 
USA) were deployed. IMUs were placed at back waist, left thigh 
front 3cm above the knee and left shank back 2cm above the 
ankle respectively, while insoles were worn on both feet and 
provided the pressure as the ground truth of the gait phase.  

This study involved three healthy able-bodied subjects 
without (age = 29.3 ± 6.34 year; height = 1.75 ± 0.02 m; and 
weight = 86.3 ± 1.89 kg). The subjects were asked to wear the 
sensing suit and complete the following tasks:  
- walking on the treadmill with speeds of 1.0, 1.5, 2.0, 2.5, 3.0, 

3.5 and 4.0 miles/hour for 1 minute (each speed x1 time) 
- running on the treadmill with a speed of 4.5 miles/hour for 

1 minute (x1 time) 
- climbing up and down 9 flights of stairs (x6 times) 
- squatting 5 times (x4 times) 

The sample rate is 200 Hz. The collected raw data needs to 
be processed to get features and labels which are used to feed the 
model. Besides the 3-axis Euler angle, acceleration and angular 
velocity signals from IMUs, the resultant acceleration, and 
angular velocity is calculated as additional signals. Features of 
each timestamp consist of the signals from three IMUs of the 
current timestamp and four previous timestamps. Based on the 
pressure of insoles, each timestamp gets a label among three 
phases including swing, single-support, and double-support. 

The training set consists of data from two subjects, while the 
test set consists of data from the other subject. The training set 
of all tasks is fed to three machine learning models, including 
Logistic Regression (LR) [16], Random Forest Classifier (RF) 
[17] and Artificial Neural Network (NN) [18]. The LR model 
uses L2 penalty with the regularization parameter C=1; the RF 
model deploys 10 trees; and the NN model uses ReLU activation 
function and implements three hidden layers with 100, 50 and 25 
neurons respectively. Then these models will be used to classify 
each timestamp of the test set into single-support phase, double-
support phase or swing phase. This study used the accuracies 
calculated on every single task and the whole test set as a metric. 
Fig. 1 illustrates the flowchart of the algorithm. 
 
RESULTS & DISCUSSIONS 

The accuracy of each model on the whole test set is 90.22% 
for LR, 99.09% for RF, and 98.03% for NN respectively. The 
accuracies of models on different tasks are listed in Table 2.Figs. 
2-6 illustrate the estimation results of each model.  

As shown in Fig. 2, three models perform well on walking 
task, while LR model sometimes classifies single-support phase 
as a double-support phase. The wrong estimation usually 
behaves as a vibration between two phases, which could be 
solved easily by applying a filter. From Fig. 3, three models have 
similar performance on running and walking task for the 
transition from support phase to swing phase, while the reverse 
transition has a bad performance, which is because that running 

has only very short double support phase. The result shows that 
this IMU-based model could handle different pace speeds 
without loss of accuracy, indicating that it has the ability to deal 
with non-steady walking situations. 

 

 
Fig. 1: System flowchart: IMU signals in combined with the 

calculated variables constitute the signals of one timestamp. Features of 
current timestamp are signals of current and four past timestamps. 
Current footswitch signal forms the label. Both features and labels are 
fed to the machine learning model. 
 

 Walk Run Stair Ascent Stair Descent Squat 

LR 94.43% 90.31% 85.90% 80.85% 80.19% 

RF 98.94% 98.45% 99.15% 99.00% 99.63% 

NN 98.36% 97.34% 97.28% 96.96% 98.27% 
TABLE 2: Accuracy of Three Methods on Different Tasks 
 

 
Fig. 2: Performance of three models on walking task. (Top) The 

ground truth and estimation of three models. (Middle) 3-axis 
acceleration during walking. (Bottom) 3-axis angular velocity during 
walking. LR model sometimes produces erroneous estimation while RF 
and NN perform very well. 
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Fig. 3: Performance of three models on the running task. Three 

models give a similar performance of walking task on rising transition 
edge (from support phase to swing phase), while the reverse transition 
has bad performance. The lack of the double support phase in falling 
edge causes the model to produce erroneous estimation. 

 
From Fig. 4 and 5, the LR model produces long time period 

erroneous estimation. This is because of the obvious difference 
between the gait behaviors of walking and stair-related tasks. It’s 
challenging for a linear model to deal with this discrepancy due 
to its limited expression ability. NN model makes erroneous 
estimation near the phase transition point, which could also be 
solved by applying a filter. RF model still performs very well on 
stair-related tasks. Since the tasks with different gait behaviors 
are often mixed in real situations, models which only concentrate 
on a single task usually have limited usage. Our model shows its 
potentiality for handling mixed-tasks, which promises it a wider 
application prospect. 

 

 
Fig. 4: Performance of three models on stair-ascent task. LR 

model takes longer time and produces erroneous estimation, while the 
other two models perform very well. 

 
Fig. 5: Performance of three models on stair-descent task. Three 

models behave similarly with stair-ascent, while LR model makes even 
longer incorrect estimation. 

 
On squatting task from Fig. 6, when misleading action is 

taken, the LR model will make the wrong estimation, while RF 
and NN models could still stick to the double-support phase. 
Combined with previous results about walking, running and 
stair-related tasks, our IMU-based models are functional in all 
kinds of tasks. 

 

 
Fig. 6: Performance of three models on squatting task. RF and NN 

models resist the misleading action, while LR makes the wrong 
estimation. 
 
CONCLUSIONS 

From the above results, all three models were demonstrated 
to be functional in walking tasks, while RF and NN models have 
superior performance in all five tasks. As shown (Table 1), the 
proposed gait phase detection with the RF model achieves 
98.94%, 98.45%, 99.15%, 99.00% and 99.63% accuracy in 
walking, running, stair-ascent, stair-descent and squatting task 
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respectively.  These results demonstrate that our IMU-based 
simple sensing algorithm can handle different pace speeds and 
different gait behaviors, which means that it’s suitable for 
mixed-tasks, making it valuable for real-world mobility 
applications with real-world human activities which are typically 
non-steady-state and complicated. Besides, the latency of our 
algorithm is only related to the calculation ability without 
systematic delay, which means this method could provide a real-
time estimation.  

In addition, this model was used as a part of our knee-
exoskeleton control system. The phase estimation from this 
algorithm was passed to the control system, and then the 
controller chose a dynamic function model corresponding to the 
gait phase to calculate the torque to deliver.  
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