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ABSTRACT Binary code analysis is crucial in various software engineering tasks, such as malware

detection, code refactoring, and plagiarism detection. With the rapid growth of software complexity and the

increasing number of heterogeneous computing platforms, binary analysis is particularly critical and more

important than ever. Traditionally adopted techniques for binary code analysis are facingmultiple challenges,

such as the need for cross-platform analysis, high scalability and speed, and improved fidelity, to name a

few. To meet these challenges, machine learning-based binary code analysis frameworks attract substantial

attention due to their automated feature extraction and drastically reduced efforts needed on large-scale

programs. In this paper, we provide the taxonomy of machine learning-based binary code analysis, describe

the recent advances and key findings on the topic, and discuss the key challenges and opportunities. Finally,

we present our thoughts for future directions on this topic.

INDEX TERMS Machine learning, program binary analysis, taxonomy.

I. INTRODUCTION

Binary code analysis (BCA) allows software engineers to

directly analyze binary executables without access to source

code. It is widely used in various domains where there is

limited availability of source code, e.g., due to proprietary

issues or simply impossible to trace any source code. Today,

BCA has become more important than ever due to legacy

programs that have been installed in a variety of environ-

ments, including the Internet of Things (IoT). It is currently

estimated that there are more than 20 billion IoT devices

worldwide by 2020 [67]. BCA can be useful for IoT and

other mission-critical environments (e.g., defense, hospitals)

and provide key tools for improving software security in such

places [56], [115], [129].

Note that it is difficult to directly analyze binary exe-

cutables when compared to program source code. First, it is

challenging, if not impossible at all, to recover the orig-

inal source code or semantic information from the repre-

sentation of binary code. Second, commercial software and

operating systems are usually slightly obfuscated to deter

reverse engineering and unlicensed use. On the other hand,

system and kernel libraries are often optimized to reduce disk
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space requirements. For instance, it may be difficult to locate

function entry points (FEPs) since the full symbol or debug

information is usually not available in optimized binaries.

Recently, machine learning techniques have been

employed to automatically extract features through large

amounts of data and have achieved significant success in

the field of source code analysis [5], [117], [142], [144].

Inspired by those prior works on the source code, machine

learning-based BCA has also been widely studied as well.

Tesauro et al. [123] first introduced a neural network-based

method for recognizing virus in application binaries. Since

then, machine learning-based BCA has become a significant

research topic in vulnerability detection, function recogni-

tion, and other areas.

In this article, we discuss several aspects of binary code

analysis and outline the machine learning algorithms used in

such analyses. We provide a taxonomy of machine learning-

based binary code analysis techniques and discuss the key

challenges and opportunities. Finally, we present our thoughts

for future directions on this topic.

II. BACKGROUND

BCA is a key requirement for many software engineering

tasks that include:
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• vulnerability discovery (including integer, heap or stack

buffer overflow, denial-of-service attack, Input manipu-

lation, authentication bypass vulnerabilities)

• refactoring (a restructuring process of changing a

program binary to creates new versions that imple-

ment or propose change to the program binary while

preserving the program’s external behavior (functional-

ity and semantics))

• plagiarism detection (detecting a plagiarized program,

which is a program that has been generated from

another program with trivial text edit operations).

Especially with the rapid growth of IoT devices and the

complexity of software applications, program binaries are

often shared among multiple platforms. Imagine a single

bug is injected at source code level, it may spread across

thousands or more devices that have diverse hardware archi-

tectures and software platforms. Thus, binary analysis is

particularly critical and more crucial than ever.

BCA is used to provide information about a program’s

content (instructions, basic blocks, functions, and mod-

ules), structure (control and data flow), and data structures

(global and stack variables), and is, therefore, a founda-

tion of many security applications. Code Clone Detection in

binaries seeks to find code sequence used more than once,

copy/paste or reused code, or same source code but com-

piled under different Instruction Set Architectures [19], [66],

[110], [150]. Malware detection detects malicious programs

which have vulnerabilities inside and will cause damage to

systems or programs crashes [10], [12], [18], [32], [36], [41],

[58], [82], [126], [127], [146]. Code obfuscation translates

the original program into another one preserving its function

but making it hard for analysis [74], [86], [114], [119], [135].

Binary reverse engineering translates the binary program into

high-level readable language, such as converting binaries

back to source code [29], [79], [85], [118]. Binary customiza-

tion directly changing the binary program through binary

rewriting, removing unused or vulnerable codes/functions

in program binaries [25], [26]. Recent studies have shown

that software can manipulate hardware features as well to do

malicious activities like information leakage [2], [145], [147]

and memory corruption [23], [24], [119]. Such studies call

for a more thorough understanding of software binaries

[95], [128] and assessing their potential to be exploited in

security attacks.

A. KEY CHALLENGES

Legacy program binaries exist in many production systems,

e.g., airspace, military, and banking. To detect bugs or analyze

software system safety, executable binary codes are the only

source of information about program content and behavior.

The compile, link, and optimize steps can cause a program’s

detailed execution behavior to differ substantially from its

source code. Although it is easy to compile source codes into

binary executables, it is hard to reverse the binary codes back

to source codes for further analysis. Often, it is relatively bet-

ter to have binary executables be analyzed into intermediate

representations (e.g., binary assembly code), which consist of

limited code syntax and semantic features comparing to the

source code.

We note that the source code can be compiled in different

platforms (e.g. x86, MIPS). This leads to the syntactic binary

representations to be very different for the same program

compiled on two platforms, bearing very different structures.

Such cross-platform binary code analysis problems have been

tackled, only recently [43], [47]. These efforts use frame-

works to extract various robust platform-independent features

directly from binary code. We will discuss more details in

Section VI.

Example: A vulnerable function in the source code

may propagate into hundreds or more IoT devices that

have diverse hardware architectures and software platforms

after being compiled using the same source code. For

instance, a real-world denial-of-service attack vulnerability

CVE-2013-6449 has completely different control flows

when compiled under x86 and MIPS architecture as shown

in Figure 1, even though they both are compiled from the

same source code from OpenSSL library (version 1.0.1a).

To deal with these challenges, the traditional approaches

for BCA are mainly through pure statistical methods or pure

formal analysis (e.g., binary symbolic execution). Statistical

methods depend on logging of program states for analysis.

In reality, the program execution often yields partial/

incomplete logs, it becomes extremely hard for statisti-

cal methods alone to accurately achieve the goal through

binary code analysis. For example, in vulnerability discovery,

it could easily miss vulnerable paths (false negatives) due to

inadequate statistical profile data and low code analysis cov-

erage. On the other hand, pure formal analysis can guarantee

no false positives with a better analysis accuracy and signifi-

cantly improve code coverage. However, it is always a time-

consuming approach and cannot be deployed in large scale

programs due to exponential state increase (path explosion)

problem.

B. GENERAL FRAMEWORK

To overcome the difficulty of processing binary codes and

perform the code analysis in an automated fashion, Machine

Learning techniques have been adopted. Several machine

learning-based code analysis frameworks have been deployed

at the source code level that adapt natural language processing

(NLP) techniques at source code for different purposes. For

example,White et al. [133] introduce a learning-based frame-

work for code similarity detection in the source code, where

Recursive Neural Network (RNN) is deployed to profile code

sequences.

A machine learning-based BCA framework has generally

two stages: the training stage and the analysis stage. The

general framework of machine learning based binary code

analysis is shown in Figure 2. In the training stage, the target
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FIGURE 1. The control flow graph comparison for the vulnerable function CVE-2013-6449 under different
architectures [46]. (a) x86 assembly. (b) MIPS assembly.

FIGURE 2. General framework of machine learning based binary code analysis.

binary code will be analyzed first and unique features will

be extracted from the analysis results. Then, the Machine

learning algorithm will be trained with input features and

desired binary code knowledge. In the analysis stage, given

a target binary code, features will be extracted after program

analysis (e.g. lexical analysis and syntax analysis). According

to the training result, machine learning models can be used to

identify such features to achieve certain analyzed goals such

as discovering vulnerable paths, finding performance bugs

and imbalance and so on.

C. THE TAXONOMY

According to the general framework shown in Section II-B,

existing machine learning-based BCA systems can be

broadly divided into four major components. In Figure 3,

we present the taxonomy of machine learning-based BCA

framework in detail. The remaining sections of this paper

discuss the various existing methods from the perspec-

tive of feature extraction, feature embedding, analysis tech-

niques used in BCA and corresponding applications in the

real-world.
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FIGURE 3. The taxonomy of machine learning-based BCA framework.

1) FEATURE EXTRACTION
Different from applying machine learning in NLP tasks,

optimized program binary codes contain a huge vocabu-

lary block of codes (e.g. basic blocks) that have complex

relationships and less redundancy in terms of syntax and

semantic information compared to human languages or even

the original program source codes. The first requirement

of machine learning-based BCA is to extract features that

represent binary code. Here, we further divide the features

extracted from program binaries into different categories.

1. Graph-Based Feature: Program Binaries can be repre-

sented as a program flow graph, such as control flow

graph (CFG). We can use such graph to extract graph-

based features [43], [47], [65], [136].

2. Code-Based Feature: Here, we extract the features

directly from raw binary code. We summarize code-

based feature into two different levels: token-level and

instruction-level.

2.1 Token-Level Features: Tokens (e.g., words, charac-

ters, or symbols) from binary code to extract tokens-

based feature using decompiler or binary disassembly

tools, such as IDA Pro [102], OllyDbg [148] and

capstone [90].

2.2 Instruction-Level Features: Every machine-level

instruction in binary executables is a combination

of tokens, such as memory references, registers, and

immediate values. Such instructions sequence can

also be used as program features for analyzing pro-

gram bugs, information flow and so on [95], [126].

2) FEATURE EMBEDDING

The extracted raw features from binaries cannot be fed into

machine learning modules directly since machine learning

needs numerical data as inputs (e.g. vectors). Thus, a gen-

eral phase is to transfer features to feature vectors or some

formal rules, this phase is commonly named as feature

embedding.

1. Graph Embedding: Graph embedding networks have

been proposed for classification domains such as

molecule classification [35], which we can covert graph-

based features into graphs.

2. Code Embedding: Based on existing sequence-to-

sequence models (e.g., Recursive Neural Network),

These and related models are well-suited to tasks that

have tokens or instructions as inputs and embed them

into vector space [72], [103], [120].

3) ANALYSIS TECHNIQUES

After feature extraction and feature embedding, we need

to choose a suitable machine learning algorithm for further

program analysis. Existing analysis techniques can be classi-

fied into three categories: supervised learning, unsupervised

learning, and deep learning. We will discuss each of them in

detail in Section V.
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4) APPLICATIONS

BCA for malware detection is a widely developed area of

research. Rieck et al. [103] introduced Malware behavior

analysis based on machine learning. Liangboonprakong and

Sornil [83] create amethod to classifyMalware families using

Machine learning. Rosenblum et al. [105] recover toolchain

provenance to record the compilation-related information.

discovRE [43] and Genius [47] develop tools that can iden-

tify bugs automatically via clustering the already known

vulnerabilities.

The remainder of this article is organized as follows.

In Section III and Section IV, we discuss the overall prin-

ciples and strategies of feature extraction and feature embed-

dings. Sections V address the commonly used machine learn-

ing models that are deployed in binary code analysis and

they will be further compared, while Section VI discusses the

application of machine learning based code analysis for real-

world problems. Section VII discusses how recent advances

in other areas could be applied to enhance binary code anal-

ysis. Concluding remarks are presented in Section VIII.

III. FEATURE EXTRACTION

In this section, we list the various types of features that can

be extracted from binaries. In general, the goal of feature

extraction is to automatically link binary code patterns mined

at the lexical level with patterns mined at the syntactic level.

A. GRAPH-BASED FEATURES

The Program flow graph (e.g., control flow graph, data

dependency graph) is the common feature used in various

approaches of BCA. Especially for the cross-platform bug

search problem, the program flow graph and the basic block

margins typically remain equivalent (or at least similar) in

cross-compiled code. Thus, such graph-based features are

adaptive by design and with high efficiency for large-scale

BCA applications.

1) ABSTRACT SYNTAX TREE

Abstract Syntax Tree (AST) is typically used by compilers

to represent the structure of program code and to analyze

the dependencies between variables and statements. Many

works adopt AST in source code level syntax extraction

analysis [20], [34], [72], [76], [93].

AST can also be used in machine learning-based BCA. For

instances, a function recognition tool, FID [130], first trans-

lates each instruction within a basic block into assignment

formulas which can represent the data flow exchanging and

the semantics of each basic block. Then, each data move-

ment between registers and/or memory (assignment) will be

translated into a syntax tree, which can be further converted

into a numerical vector by calculating the maximum levels of

nested parentheses and the maximum depth of an AST as two

syntactic features.

Example: As shown in Figure 4, (A) shows a func-

tion entry point basic block and its corresponding data

movement operations (register/memory copy, assignments

FIGURE 4. Instruction and its corresponding assignment formulas [130].

and computations), while (B) shows memory access depen-

dency behavior between caller’s and callee’s basic blocks.

2) CONTROL FLOW GRAPH

The concept of Control Flow Graph (CFG) is first introduced

by Allen [4]. CFG represents a graph of all possible execution

paths that might be traversed through a program during its

execution. To construct a basic static binary CFG, function

entry and exit point should be found first. In a function,

a sequence of consecutively executing instructions (defined

as nodes) and control flow transfers between such sequences

via jumps, function calls and returns (defined as edges).

A binary CFG is constructed to capture the relationship

between nodes and edges in the underlying binary program.

It is a useful method to reflect internal relations between

basic blocks. For this purpose, plenty of works have discussed

CFG extraction from binary codes as program features, such

as Theiling [124], Kinder et al. [75], Kruege et al. [77],

Yadegar et al. [141].

In machine learning-based BCA, many works have

adopted CFG features as inputs to machine learning

models [3], [21], [53]. For instance, discovRE [43] uses

CFG to reflect the structural similarity between two static

functions in program binaries which will be further discussed

in Section IV; Caliskan-Islam et al. [20] disassemble the

executable binary and recover the CFG as features to extract

the abstract syntax trees of decompiled source code for code

authorship recognition. We give a simple example of how to

extract CFG features utilizing simple NLP model (N-gram

model).

Example: Assuming a static binary function CFG shown

in Figure 5. The corresponding control-flow features are gen-

erated using the N-gram model. For instance, CFG bigrams

(while N = 2) extract 2 adjacent basic blocks as control-flow

features.

To reflect the binary code behaviors at the instruction-

level, graphlets [99] (small, non-isomorphic subgraphs of the

CFG) is introduced to analyze instruction patterns. It was first

introduced for BCA domain by Rosenblum et al. [105], [107].
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FIGURE 5. Control flow features [20].

TABLE 1. List of attributes used in ACFG.

Rosenblum et al. [107] use graphlet features to represent

details of the program structure. In this work, graphlets are

three-node subgraphs of CFG. Such graphlet features can be

used to capture the layout of particular classes of instructions.

Simultaneously, it can also be used to represent the program

structure (the local control flow). We illustrate graphlet fea-

tures using an example as follows.

FIGURE 6. Example code and its corresponding grapglet [107].

Example:As shown in Figure 6, A is a binary code snippet

with three basic blocks and B is the corresponding graphlet.

σi={1,2,3} are the three different types of nodes in graphlet

respectively. For example, σ1 represents a block which con-

tains privileged system instructions. Since there are two basic

blocks with privileged instructions (cpuid and systenter in the

code snippet), there are two σ1 nodes in this case. τi={1,2,3}

indicates the control flow edge type between basic blocks. For

instance, τ1 is its fall through edge and τ3 is corresponding to

the jle conditional branch.

Besides of traditional CFG, there is a similar graph named

as Attributed Control Flow Graph (ACFG) to represent a

static binary function (mostly used for the tasks of vulnerabil-

ity discovery and cross-platform code similarity detection).

In an ACFG, each vertex is a basic block labeled with a

set of attributes. Table 1 lists the commonly used attributes

in ACFG. As we can see, the number of string, function

calls, control transfer instructions, and arithmetic instructions

are extracted as features for further analysis. Those ACFG

generated from binaries will be further embedded into a hash

table and similarities are compared. Genius [47] proposes

ACFG as raw features to compare the code similarity between

static binary functions. Xu et al. [136] also adopt this ACFG

construction technique to extract raw features but with a

different feature embedding method. We discuss more details

about how to convert ACFG to embeddings in Section IV-A.

Example: Figure 7 illustrates an ACFG for a function in

OpenSSL containing the Heartbleed vulnerability. To gener-

ate the ACFG for a binary function, we first need to extract its

control flow graph (as showing on the left hand of the figure),

along with occurrence of each attribute for each basic block

in the graph, and store them as the features associated with

the basic block (the generated ACFG is showing on the right

hand of the figure). Each ACFG node can be converted into

an N-dimension vector through counting the occurrence of N

attributes (In this example, N = 8). According to the types

of instructions, the first block can be represented as [0, 1,

10, 1, 11, 0, 11, 0.296] (e.g., There is only one function call

instruction, thus, the fourth dimension of the vector equals

to one. Also, the last dimension represents the Betweenness,

which is a centrality measure of a vertex within a graph.)

In summary, CFG-based features mainly are used to show

structural characteristics of binary codes with high-level

analysis granularity (e.g. control flow dependency or data

dependency).

B. CODE-BASED FEATURES

1) TOKENS

Different from program flow graph, which needs to be

recovered and constructed from binaries through con-

trol or dependency analysis, a sequence of tokens (e.g., words,

characters, or symbols) can be easily extracted and contain

enough information to represent a code’s syntax and struc-

ture. It is also easy to transform token sequences to other types

of features and it is efficient for large-scale programs analysis

and scalable to large software systems [20], [81], [98].

Based on the appropriate level of granularity, the binary

code sequence can be divided into several pieces with the

same length token sequences. Katz et al. [72] propose

token-based binary to source code translation framework by

tokenizing binary code byte by byte to identify identifier,

a keyword or a constant corresponding to the source program

in the high-level language such as C. Sæbjørnsen et al. [110],

Xue et al. [139], [140] and Byteweight [9] adopt token-based

methods for analysis as well. In the following sub-sections,
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FIGURE 7. Partial CFG of function dtls_process_heartbeat and its corresponding ACFG [136].

TABLE 2. N-gram-malware matrix [83].

we present various token-based features that have been used

in BCA domain.

a: N-GRAM

N-gram is a contiguous sequence of N items extracted from

the given samples. For program binary analysis, N-gram

based features are defined as a sequential pattern where an

individual sample can be identified as binary instructions, file

names, function arguments and so on.

Liangboonprakong and Sornil [83] proposes an N-gram

based feature extracted from the binary form of Malware.

Example: Table 2 uses n=1,2,3,4 to generate n-gram slices

and t is a set of n-gram terms.

Shijo and Salim [120] propose an integrated static and

dynamic analysis framework for vulnerable binary code

detection. It first discovers call sequences in the application

programming interface (API) via the cuckoo malware ana-

lyzer [96], which is a sandbox used to outline the malware

behavior. It then uses N-gram based method to analyze API

call sequences called API-call-grams. Finally, it generates

feature vectors by counting the frequency of printable strings

and using N-grams with the top N of the highest frequency of

printable strings. Rosenblum et al. [107] introduce the byte

N-grammethod to extract short strings from instruction, such

as a specific type of instruction and memory access pattern

behavior.

b: PORTABLE EXECUTABLE

The Portable Executable (PE) is a file format for binary

files that encapsulates important information for program

loader tomanage executable binary code, such as the dynamic

libraries, API exported and so on. This executable-specific

information in PE format’s headers can be extracted as fea-

tures to represent a binary file.

Schultz et al. [116] extracted file size, the name of dynamic

link libraries (DLLs) which are shared libraries in Windows

OS, the names of functions within a DLL and relocation

table from PE file’s header using libBFD, a library of GUN’s

Bin-Utils. Saxe and Berlin [112] extracted the import address

table into a 256-integrate-array and convert text information

in numerical PE fields into 256-length-array from malware.

Based on these malware features and group information,

malware can be classified into different families.

We note that the Portable executable feature is a unique

feature for certain executable files, especially for files in

Windows platforms.

c: PRINTABLE STRINGS

Printable strings are un-encoded strings preserved after com-

piling the source code into binaries. Many works [68], [69]

have proven that the printable strings are one of the most
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useful features that can be obtained from binary executables.

It can be relatively easily extracted from binary files, such as

‘‘Openfile’’, ‘‘GetError’’ or ‘‘CopyMemory’’. The printable

strings extracted from binary files are sorted according to

the frequency of occurrence within a file. We further elimi-

nate the printable strings whose frequency below a particular

threshold. Here we give an example.

Example: Consider we have three binary files (one benign

and two malware) correspondingly. After feature extraction

and processing, we assume the printable strings are included

in each binary file as follows:

File1 (benign): {GetProcessWindowStation, FindFirstFile,

GetLongPathName, HeapReAlloc}

File2 (malware): {FindFirstFile, GetLongPathName,

GetProcessHeap, GetLastError}

File3 (malware): {GetLastError, FindFirstFile, GetPro-

cAddress}

Then we count the frequency of these printable strings.

Based on the analysis results from Islam et al. [69]. they found

10% feature reduction rate gives the optimum result, we say it

threshold value (integer value). In this example, we have total

of 11 printable strings, thus the threshold can be set up as 2 if

we calculate the upper limit of ⌈11 × 10%⌉ (note that this

threshold value can be an arbitrary value depending on users

as long as it is larger than 20% feature reduction rate), then the

features selected will be {FindFirstFile, GetLongPathName

and, GetLastError}:

Printable strings Frequency

FindFirstFile 3

GetLongPathName 3

GetLastError 2

GetProcessWindowStation 1

HeapReAlloc 1

... ...

2) INSTRUCTION-LEVEL FEATURES

To further lift tokens-based features to a higher level repre-

sentation, we can also use instruction-based features that are a

combination of tokens, such as memory references, registers,

and immediate values. We then list several instruction-based

features in this section.

a: FUNCTION ENTRY POINTS

The function or procedure, identified in the static binary

code, is a collection of basic blocks with one entry point

(i.e., the next instruction after a call instruction) and possibly

multiple exit points (i.e., a return or interrupt instruction). The

entry point of a function is named as the Function Entry Point

(FEP). Several tools are able to manually identify the FEP,

such as Dyninst [63] and IDA Pro [102].

b: IDIOM

To represent the order of a sequence of binary instructions,

the idiom feature is introduced into the features extraction

process. An idiom is a short instruction sequence template

including undecided instructions inside, which is similar

to N-grams based feature with optional single-instruction

wildcards. Any short instruction sequences satisfying the

idiom template are considered as idiom features. For instance,

Rosenblum et al. [108] use idiom feature to extract compiler

provenance without the assistance of machine learning tech-

niques. There are two types of idioms which are prefix idiom

and entry idiom. On the one hand, an entry idiom reflects

FEP’s instructions and its offset immediately.

Example: For instance, an idiom

u1 = ( push ebp | ∗ | mov esp, ebp ) (1)

where ∗ can be any type of instructions. An instruction

sequence matches this idiom will be extracted to capture pat-

terns indicative of compiler provenance, such as a sequence

of instruction ( push ebp | push eax |mov esp, ebp ) is a match

and will be identified as idiom features.

On the other hand, a prefix idiom places the offset at the

beginning. For example, an instruction sequence which will

immediately precede (ret|int3) will be:

u2 = (PRE : ret|int3) (2)

c: THE MALWARE INSTRUCTION SET

The Malware Instruction Set (MIST) [125] is a special repre-

sentation of vulnerable program behavior. The MIST instruc-

tion can be translated from arbitrary binary instructions.

In contrast to traditional textual or XML-based instruction

formats, the MIST of a malware binary code is described as

a sequence of instructions, where encode individual system

calls obtained from the execution trace of a malware program.

Figure 8 shows the structure of a MIST instruction. In the

MIST instruction,CATEGORYOPERATION reflects the sys-

tem call, while ARGBLOCK represents arguments of system

calls. The system call arguments are arranged in blocks in

different levels and these levels are the MIST levels. The

MIST level divides a MIST into several parts which higher

levels contain attributes with higher variability and lower

levels are more constant. Rieck et al. [103] use MIST to

search numeric identifiers representing system calls and argu-

ments using the program monitoring tool CWSandbox [134].

Similarly, MIST is also used in Firdausi et al. [49] as features

for analysis.

FIGURE 8. Schematic depiction of a MIST instruction [125].

Example: Given a CWsandbox original XML move file

operation of system call as:

<move_file srcfile = "c:\foo.exe" dstfile="c:\windows\
system32\kernel32.dll" filetype="file" creationdistribution =
"CREATE_NEW">
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TABLE 3. MIST categories and encoding as well as the number of
contained unique operations within each category [125].

According to table 3, the correspondingMISTwill have the

category filesystem (03) and the system call move file (05).

The other part of MIST instruction will be arranged as path

names and file extensions in level 2 and the base names of the

files in level 3:

03 05
︸ ︷︷ ︸

move_file

| 01 000000 01
︸ ︷︷ ︸

createflages

00006ce5
︸ ︷︷ ︸

"exe"

000066fc
︸ ︷︷ ︸

"c:\"

00006b2c
︸ ︷︷ ︸

"dll"

002e6d6c
︸ ︷︷ ︸

"c:\w..."

| 00006d5f
︸ ︷︷ ︸

"foo"

071c94bc
︸ ︷︷ ︸

"kernel"

d: HEXADECIMAL BYTE SEQUENCE

To deal with the binary files that are not in PE format,

Schultz et al. [116] propose Hexadecimal features that con-

vert original binary files into hexadecimal files via a raw

byte translation tool Hexdump [92]. The result will be hex-

adecimal byte sequences that can represent machine code

instructions.

Example: Given a sequence of machine code instruc-

tions, Hexdump can translate them into hexadecimal files.

As shown in the following example, each line of hexadecimal

numbers corresponds to a short sequence of machine code

instructions.

1f0e 0eba b400 cd09 b821 4c01 21cd 6854

7369 7020 6f72 7267 6d61 7220 7165 6975

6572 2073 694d 7263 736f 666f 2074 6957

646e 776f 2e73 0a0d 0024 0000 0000 0000

454e 3c05 026c 0009 0000 0000 0302 0004

0400 2800 3924 0001 0000 0004 0004 0006

000c 0040 0060 021e 0238 0244 02f5 0000

0001 0004 0000 0802 0032 1304 0000 030a

e: OTHERS

Wehave listed several well-used features in previous sections,

there are still some works that are using other types of special

features that cannot be classified into the same category.

Hosfelt [65] use PIN tool, a dynamic binary instrumen-

tation framework [89], to trace each instruction in binaries

and counts the number of execution for each instruction.

Then, the PIN tool will classify each instruction into different

categories, such as Nop, Syscall and Binary. Hosfelt [65] also

use PIN to detect and count the number of loops in programs.

As introduced in section III-A.1, FID [130] translates

binary instructions within a basic block into assignment for-

mulas. On the one hand, operations, constants, and token

related features will be extracted from these assignment for-

mulas as lexical features shown in table 4. On the other hand,

stack registers (formulas of register esp and ebp) are extracted

as stack features.

TABLE 4. Lexical Features extracted from assignment formulas
in FID [130].

IV. FEATURE EMBEDDING

As extracted raw features from program binaries cannot be

fed into machine learning modules directly since machine

learning needs numerical data as inputs (e.g. vectors),

we would like to learn an indexable feature representa-

tion from the feature extraction that we need to encode

(i.e., embed) a feature representation into an embedding

(e.g., numeric vectors). In this section, we present the com-

mon feature embedding approaches corresponding to differ-

ent feature representations.

A. GRAPH EMBEDDING

A control flow graph describes the flow of basic blocks in the

instruction level. However, such basic blocks or instructions

cannot be directly used as input for a machine learningmodel.

Thus, some numeric and non-numeric features have to be

normalized into vectors of some length. discovRE [43] intro-

duces a concept called Basic Block Distance dBB to detect

the similarity of functions in binaries. Assuming we have a

vulnerable function code sample, we can use Basic Block

Distance to identify similar functions in other binaries across

platforms, compilers, and optimizations.

It first represents a static function f ’s CFG, identified from

program binary, with each node labeled with features F , that

can be its topological order, string references, numeric con-

stants, and robust features (e.g., No.of function calls, No.of

store/load instructions and so on)in the function. Based on

these representing features, the basic block distance dBB is

defined as:

dBB(cif , cig) =

∑

αi|cif − cig|
∑

αimax(cif , cig)
(3)
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with αi is the weight metric with a range as [0...100] to achive

max(dBB(fi, gj)−dBB(fi, fj)), and cif and cig represent numeric

feature i ∈ F of function f and g where f 6= g. In another

way, we want to maximize the difference between the same

and different functions.

Besides, Genius [47] calculates the similarity of two static

binary functions using ACFGs. It first defines a ACFG as:

G = 〈V ,E, φ〉 (4)

where V is a set of basic blocks, E is a set of edges and

φ : V →
∑

is a labeling function that maps a basic block

in V to a set of attributes in
∑

. Similar definitions such

as g = 〈ν, ε〉 are proposed in Xu et al. [136]. Based on

G1,G2, the bipartite graph which combines two graphs can

be represented as Gbp = (V̂ , Ê), where

V̂ = V (G1 ∪ G2) (5)

and

Ê = {êk = (vi, vj|vj ∈ V (G1) ∧ vj ∈ V (G2))}. (6)

where êk = (vi, vj) is an edge from vi to vj. So, based on the

distance (equation 7), the similarity of two ACFGs (g1, g2),

denoted as k(g1, g2), can be described as:

k(g1, g2) = 1 −
dBB(g1, g2)

max(dBB(g1, 8), dBB(8, g2))
(7)

where 8 is an empty ACFG whose nodes has an empty

feature vector, and the size is set to that of the corresponding

compared graph (g1 and g2).

B. CODE EMBEDDING

1) FREQUENCY EMBEDDING

Katz et al. [72] introduce a decompilation framework to

reverse binaries to the source code. It uses frequency embed-

ding as the translation from short snippets of higher-level

code (C source code) to corresponding bytes of binary code

in a compiled version of the program. A popularity ranking

(the top N most frequent tokens) is generated to represent a

token as the input for the Recurrent Neural Network.

Additionally, Liangboonprakong and Sornil [83] also pro-

pose sequential pattern extraction [1] and pattern statistic to

statistics the frequency of pattern extracted from raw features.

Given the result of n-gram extraction T = {t1, t2, . . . , tm},
a sequential pattern can be represented as an ordered list of

terms as S = 〈t1, . . . , tr 〉 : (ti ∈ T ). So, n-gram patterns will

be a vector di and the embedding result will be Y .

Edi = 〈(si1 , fj1 ), (si2 , fj2 ), . . . , (sim , fjm )〉 (8)

Y = { Ed1, Ed2, .., Edn} (9)

where si is a pattern (tokens), fj is the frequency in di.

For each vector, frequency-inverse document frequency

(TF-IDF) weighting filtrates out the common n-gram sequen-

tial. Finally, it minimizes valued feature sets with sequen-

tial floating forward selection (SFFS) procedure [100].

Similarly, [120] lists API-call-grams and corresponding

classes sorted by frequency and a vector for each feature is

created.

2) BYTE EMBEDDING

Some machine learning-based BCA frameworks directly

use raw bytes extracted from binary programs as features.

However, raw bytes are not acceptable for some machine

learning models. In Shin et al. [121], the recurrent neural

network takes bytes as inputs. A byte cannot directly be input

to RNN so that each byte has to be translated into a form

that the RNN accepts. Shin et al. [121] introduce a method

called the one-hot encoding. In this method, each byte will

be encoded as a R256 vector and there is only a ‘1’ as the

identification of a byte and the other are 0s in each vector.

Example: NUL (0) and NOP in x86 (144) can be

represented as equations 10 and 11.

[1 0 . . . 0
︸ ︷︷ ︸

255 elements

] (10)

[ 0 . . . 0
︸ ︷︷ ︸

144 elements

1 0 . . . 0
︸ ︷︷ ︸

111 elements

] (11)

3) Q-GRAMS EMBEDDING

Inspired by NLP techniques and host-based intrusion detec-

tion [37], [50], [80], [111], Rieck et al. [103] have developed

a unique feature embedding approach of instruction Q-grams

which is similar to N-grams. A window will slide over a

MIST instructions sequence x and a sequence with the length

of Q called instruction Q-gram will be extracted. The set of

Q-grams S can be represented as:

S = {(a1, . . . , aq|ai ∈ A with 1 ≤ i ≤ Q)} (12)

where A is the set of all possible instructions.Within the set S,

the extraction result is translated into |S|-dimensional vector.

Then, the embedding function can be represented as:

φ = (φ(x))s∈S (13)

where

φs(x) =

{

1 if report x contains q− grams s,

0 otherwise
(14)

Example: If there is a report x of malware behavior

corresponding to a simple sequence of instructions x =
{1|A 2|A 1|A 2|A}, where N |A is a MIST instruction A with

MIST level N . It can be formed by two simplified instruc-

tions: A = {1|A, 2|A}. Consider the sliding window threshold

is set up as Q=2, there are only two possible instruction

sequences as ′1|A 2|A′ or ′2|A 1|A′. Then the embedding

function is:

φ(′1|A 2|A 1|A 2|A′) →







0

1

1

0







′1|A 1|A′

′1|A 2|A′

′2|A 1|A′

′2|A 2|A′

(15)

To reduce the bias, the embedding result will be further

normalized as:

φ̂(x) =
φ(x)

||φ(x)||
(16)
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TABLE 5. Summary of supervised learning in machine learning-based BCA.

After normalization, the similarity between two embeddings

(x and z) can be calculated as the distance d(x, z):

d(x, z) = ||φ̂(x) − φ̂(z)|| (17)

V. ANALYSIS TECHNIQUES

The early stage of BCA based on machine learning usually

employs basic machine learning analysis techniques, such as

logistics classification, linear regression and so on. With the

rapid development of machine learning analysis (e.g., deep

neural networks) techniques, more advanced machine learn-

ing algorithms have been used lately.

In section III and section IV, we discuss how to extract

a feature and embed them into an appropriate format

(e.g., numerical feature vectors) for machine learning. Here,

we divide the machine learning analysis techniques used

in BCA into three main types: supervised learning, unsu-

pervised learning, and deep learning. The main difference

between supervised learning and unsupervised learning is

that the ground truth and prior domain knowledge are given

for supervised learning. Unsupervised learning, on the other

hand, does not have those conditions before its training

process.

A. SUPERVISED LEARNING

In this section, we present several BCA systems using super-

vised learning. Table 5 shows the overview of existing works.

a: SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) is a supervised leaning used

as a classification generation. It was first invented as a practi-

cal method by Boser et al. [16], then it was further developed

in Cortes and Vapnik [33]. The key ideal of SVM is trying

to fairly separate a linear space into different classes. Given

the input of a set of vector xi, there will be a weight vector

λ generated during training. The weight vector decides the

boundary of different classes in the form of margin also

defined as a kernel function K (x, y) where (x, y) is a point

in a feature space mapped from a hyperplane in the input

space. As a significant segment in SVM, there are many

kernel functions introduced to this area, such as linear ker-

nel function, polynomial kernel function, radial-basis kernel

function [113], and sigmoid kernel function. For linear kernel

function, linear SVM calculate faster due to the linear func-

tion and less argument. Thus, the linear kernel function is

used when the sample set is huge. Comparing with the linear

kernel, the polynomial kernel has more parameters (α, d, c)

than the linear kernel (c), so it is usually used to handle the

classification problem with the orthogonal normalization.

Linear kernel function:

K (x, y) = xT y+ c (18)

Polynomial kernel function:

K (x, y) = (αxT y+ c)d (19)

Radial-basis kernel function:

K (x, y) = exp(−
||x − y||2

2λ2
) (20)

Sigmoid kernel function:

K (x, y) = tanh(αxT y) + c (21)

In the field ofmachine learning-basedBCA, SVMhas been

applied in several works. Liangboonprakong and Sornil [83]

adopt polynomial kernels SVM to classify string tokens

of hexadecimals extracted from disassembling files and its

frequency features with high dimensions in vector space

via LIBSVM [22]. Shijo and Salim [120] use WEKA [60]

machine learning tool to study its PSI features as static

features, API call sequences as dynamic features to clas-

sify malware and benign. This paper adopts SVM, Random

Forest as learning methods and SVM gets a better accu-

racy. Hosfelt [65] compare the training results of four differ-

ent kernel functions: Linear, RBF, Polynomial and Sigmoid

and finds that the linear kernel has the best performance

to classify cryptographic algorithms in binary programs.
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Besides, Rosenblum et al. [105] adopt linear SVM to scale all

features via LIBLINEAR [45] due to its less cost and higher

accuracy on recovering the details generated during transfor-

mation process through which the binary was produced.

b: K-NEAREST NEIGHBORS

K-Nearest Neighbors (K-NN) is a supervised learning clas-

sification approach. Given a sample set, K-NN identifies k

samples whose distances will be shortest in the feature vector

space. Basing on these k neighbors’ information, the K-NN

classifier can further identify input targets. discovRE [43]

employs K-NN based on k-dimensional trees (k-d tree). This

k-d tree is a binary search tree whose node is a k-dimensional

vector and one dimension of each node is randomly cho-

sen from the data set. When search for a point in the tree,

the system will begin from the root and step down. In each

step, the most match point will be chosen if it is better then

the old one. This algorithm cannot handle high-dimensional

data well.

c: BAYES CLASSIFIER

The Bayes model is a basic learning method to make deci-

sions via probabilities. It classifies the groups by computing

the probability of a certain feature belonging to a certain class.

For instance, given features {x1, . . . , xn} of the program X ,

the probability of Program X belonging to class Ck for each

of k possible outcomes will be:

P(Ck |X ) =

∏n
i=1 P(xi|Ck ) ∗ P(Ck )

∏n
j=1 P(xj)

(22)

In this case, classification model will be:

ŷ = argmaxk∈{1,...,K }(P(Ck )

n
∏

i=1

P(xi|Ck )) (23)

For example, Hosfelt [65] adopt Gaussian Bayes (P(x|c)
is Gaussian function) as one of the learning algorithms to

represent the most likely function returning to the class C .

Besides, Schultz et al. [116] adopt both Bayes and Muti-

naive Baye to detect malware. Similar to naive Bayes,

the likelihood of Muti-Bayes of the class C given bytes X

will be:

LNB(C|X ) =

|NB|
∏

i=1

PNBi (C|X )

PNBi (C)
(24)

And classification model will be:

ŷ = maxC (PNB(C) ∗ LNB(C|X )) (25)

where NB stands for a set Naive Bayes of classifiers, |NB| is
the size of set, NBi∈{1,2,...,|NB|} is an individual Naive Bayes

classifier.

d: DECISION TREE

The Decision Tree is a tree-liked supervised learning

model formed by decisions and corresponding consequences.

Belson [13] is the earliest work that used the decision tree.

After, some researchers have improved the decision tree

algorithms, such as Freund and Mason [51] and Kearns and

Mansour [73]. A decision tree is formed by nodes, arcs, and

leaves which represent decisions, consequences, and results.

Those three parts can reflect feature attributions, feature val-

ues and categories clearly.

In the BCA field, Hosfelt [65] use the decision tree as

a supervised learning algorithm and compared it with other

learning algorithms. The result shows that the decision tree

has a weak performance in identifying the binary program

of the cryptographic algorithm used to encode data. Besides,

Liangboonprakong and Sornil [83] adopt the C4.5 decision

tree [101] with tool KNIME [14] as one of learning methods

to classify malware. Similar to the result in Hosfelt [65],

the accuracy of malware classification of the decision tree is

lower than SVM.

e: RANDOM FOREST

Random Forest is an Ensemble learning combining decision

trees, so it has a better performance compared with a deci-

sion tree. It was first introduced in Ho [62] and was further

developed in Dietterich [40]. In the area of machine learning

based BCA, Caliskan-Islam et al. [20] randomly selected

(logM )+1 features fromM total features and each (logM )+1

features will be inputted to a tree. Shijo and Salim [120]

also adopt random forest as their classifier for malware

detection.

f: BOOSTING

In order to improve the performance of a certain machine

learning algorithm, boosting is proposed. The boosting com-

bine several weak learning algorithms together and create a

strong learner. FID [130] proposes the majority voting on the

top of multiple learning. It combines linear SVM and two

Boosting which are AdaBoost and GradientBoosting.

Example: RIPPER sets five types of rules after learning

thousands of malicious binaries and benign binaries. accord-

ing to four principles:

1. Does the malware have a GUI?

2. Does the executable perform malicious functions?

3. Does the executable compromise system security?

4. Does this executable delete a file?

Then to check if a binary is malicious, we need to check

the following classification table:

The heuristic for stop condition defined as a total descrip-

tion length will be computed with the rule set and examples.

The total description length will stop adding rules when there

is no positive example or it is more than 64 bits and larger

than the smallest description length calculated from previous

rules.
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TABLE 6. Summary of unsupervised learning in machine learning-based BCA.

B. UNSUPERVISED LEARNING

Different from supervised learning, unsupervised learning

does not have the ground truth and prior domain knowledge

before its training process. In this section, we then give the

common unsupervised learnings that have been employed in

BCA, and the overview is shown in Table 6.

1) CLUSTERING

Clustering is one of the most common unsupervised learn-

ing approaches used in general classification tasks. Given

a considerable amount of unmarked feature embeddings,

clustering can automatically group them into different

homogeneous groups. Several existing works adopt cluster-

ing algorithms to gain homogeneous groups and prepare for

further classification.

a: K-MEANS CLUSTERING

K-means Clustering is a prototype-based clustering that

was first introduced by Lloyd [88]. Then, it was further

developed and improved by many other researchers, such

as Algorithm AS 136 [61], Alsabti et al. [6], filtering

algorithm [71], etc.

Hosfelt [65] uses K-means clustering as an unsupervised

learning module to identify instruction features, such as the

number of times an individual instruction is executed, the type

of instructions (e.g., NOP, SYSCALL) and the number of

loops executed, from the implementation binaries of crypto-

graphic algorithm for malware detection purpose. The goal

of this work is to utilize K-means clustering to detect cryp-

toviruses in small (single purpose) programs.

Besides, Rosenblum [107] uses K-means clustering for

authorship classification. Given program sets and label sets,

we can cluster them with a distance metric between two

feature vectors. During this process, Large Margin Nearest

Neighbors (LMNN) [132] is proposed to learn the distance

metric.

K-means clustering is a simple and efficient clustering

algorithm. However, prior knowledge of the cluster numbers

must be known before clustering and k-means clustering also

cannot handle non-globular clusters well.

b: AFFINITY PROPAGATION CLUSTERING

Different from K-means clustering, Affinity Propagation

clustering (AP clustering) is able to determine the number

of clusters among the data points without any a prior knowl-

edge [15]. AP clustering performs the ‘‘message passing’’

procedure to update the relationships between data points

and candidate exemplars (a.k.a cluster centers). There are

three matrices used in AP clusterings, where S is a similarity

matrix, R(i, k) and A(i, k) are for Responsibility matrix and

Availability matrix respectively. Assuming we have two dis-

tinct data points Xi and Xj, S is represented as the negated

value of the squared Euclidean distance.

On the other hand, Responsibility matrix and Availability

matrix are being updated in each iteration. In particular,

R(i, k) measures how well data point Xk is suited to serve as

a candidate cluster exemplar for the point Xi, while A(i, k)

reflects how appropriate it is for Xi to choose Xk as its cluster

exemplars. The more details of AP clustering can be found in

reference [52].

In particular, Clone-Hunter [139] utilizes AP clustering

to detect code clones in binaries. Given a binary code,

Clone-Hunter first normalizes the assembly code into inter-

mediate representations in order to remove instruction-

specific details, such as register names and memory

addresses. The feature vectors are then generated from each

normalized instruction sequence, embed them into vector

space and use AP clustering algorithms to find binary code

clones.

c: HIERARCHICAL CLUSTERING

Hierarchical Clustering clusters data sets from different

hierarchies, hence, it can handle non-globular clusters.

In the machine learning based BCA, Rieck et al. [103]

proposes a framework using the Hierarchical Cluster-

ing [42] for the behavior classification problem following by

Bayer et al. [11]. It firstly uses a linear-time algorithm [55] to

extract prototypes whose distance is smaller than a constant

from feature vectors. Based on these prototypes, Clustering

will then update the distance with the minimum Manhattan
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TABLE 7. Summary of deep learning in machine learning-based BCA.

Distance between prototypes and finally decides the group

according to the nearest prototype.

d: OTHER TYPES OF CLUSTERINGS

Genius [47] adopts a kernelized special clustering [94] where

the input is a kernel matrix to generate a optimal cluster.

Given a kernel matrix formed by a set of ACFG similarity

score which has been discussed in IV-A, the output will be an

optimal cluster of ACFGs.

2) RULE-BASED LEARNING

Schultz et al. [116] employ a special rule-based learn-

ing system [31] which is a set-valued extension of a rule

inductive algorithm, the Repeated Incremental Pruning to

Producing Error Reduction (RIPPER) [30]. For example,

Schultz et al. [116] use this algorithm to learn malicious

executables features (PE headers information) to construct a

detection model to identify malicious executables.

3) WEIGHTED PREFIX TREE

Similar to AST, a prefix tree is a data structure that each

non-root node is associated with bytes or instructions for a

binary code to enable efficient information retrieval. Given

a static execution path containing a n instructions, it can be

represented in a prefix tree path from root to a child node

with tree height of n. Byteweight [9] utilizes a weighted

prefix tree approach to identify function entry point in a

program. It proposes a program signature learning process

using prefix tree and recognizes function entry pointer by

simple matching binary code fragments with the correspond-

ing learned signatures. First, the training data is constructed

as a corpus of program binaries, which contain a set of func-

tions with known function entry point and end point. Then,

it builds weight prefix tree for each function from training

data and the weights are learned by the likelihood that the

instruction sequence corresponding to the path from the root

node to this node is a function entry point in the training

data set.

Example: In a weighted prefix tree, defined in Byteweight,

each non-root node specifically represents an instruction.

As shown in Figure 9, for example, the weight of {push%ebp}
is 0.8459, which means there are 84.59% of all sequences in

with prefix of {push %ebp} were function entry point, while

the other 15.41% were not.

FIGURE 9. A sample of prefix tree [9].

C. DEEP LEARNING

In recent years, Artificial Neural Network (ANN), especially

Deep Neural Network, has been applied to the BCA [121],

and has shown better results than other methods. The advan-

tage of Neural Network (NN) is that it can represent a binary

analysis task, (e.g. using ACFG embedding to represent a

binary function as we mentioned in Section III), as NN can

train parameters in an end-to-end fashion so that it does not

require toomuch prior domain knowledge. On the other hand,

an NN-based BCA approach can be adaptive by design, as the

input of NN can be arbitrary types of data into different

application tasks. Table 7 gives the overall of current BCA

frameworks based on deep learning

1) RECURRENT NEURAL NETWORK (RNN)

RNN is a type of ANN original proposed from Hopfield

networks [64] in 1982. RNN has been proven as an effective

approach for modeling a piece of sequential information,

such as binary assembly code. Katz et al. [72] proposes the

encoder-decoder RNN using the seq2seq model to generate

a decompiler. From the token result discussed in the pre-

vious section, both source codes and binary tokens can be

translated into integers according to the frequency of tokens.

Then, these pairs of integers will be grouped into different

buckets according to their length. RNN will take both source

codes (C language) and corresponding binary code buckets

as input and output a decompiler model.

Clone-Slicer [140] proposes a code clone detection frame-

work based on RNN. It first parses assembly instructions into

tokens and uses them as input to RNN to generate vector

embeddings for each unique token in the lexical level. Then it
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utilizes recursive auto-encoder to combine the embeddings

to generate code signature in syntax level. Here, we give an

example of how to use RNN to model binary assembly code.

FIGURE 10. RNN learning process.

Example: As shown in Figure 10, there are 2 adjacent

instructions which are [. . . , mov, %edi] and [0x4029e0, push,

%rbp,...]. The input of each node is a one-hot vector rep-

resenting the current term in the disassembly code corpus,

the hidden layer stores the current state and previously cal-

culated results. Specifically, it can be obtained using the

following equation:

st = f (Uxt +Wst−1) (26)

The output is probability vectors to predict the distribution of

the next input. The parameters {U ,V ,W } are trained using

back propagation through the time (BPTT) method in an

RNN network [44]. Once RNN training is complete, each

term in the code corpus will have a unique embedding U for

further analysis.

Similarly, Shin et al. [121] also adopts RNN as its learning

method for function recognition and the learning process is

just like Xue et al. [140].

2) DEEP NEURAL NETWORK (DNN)

DNN is a complex non-linear ANN with multiple hid-

den layers. Its first implementation is back to 1989 by

LeCun et al. [78]. Recently, DNN has been substantially

applied in different NLP tasks and aim to improve the rep-

resentation power of the abstractions (e.g., language words

embeddings).

As mentioned in Section III-A.2, Xu et al. [136] embed

the whole ACFG through a DNN embedding network, then

it implements a similarity detection based on the euclidean

distance between the embeddings for two static functions

that compiled in different architectures. We further present

an example of such embedding process using DNN.

Example: As shown in Figure 11, given a set of ACFG

basic blocks feature vector, the embedding network will

generate a feature vector to represent a basic block and its

adjacent basic block in each DNN layer. In particular, a code

graph with a set of vertex v ( In this figure, there are three

vertex x1, x2 and x3). Then embeddingµt+1
v is updated at each

iteration as:

µt+1
v = f (xv,

∑

u∈v

µt )

where f is a nonlinear function. In Figure 11, the function f

is defined as:

tanh(W1xv + σ
∑

u∈v

µu)

where xv is a d-dimensional vector for graph node (or basic-

block), W1 is a d × p matrix, and p is the embedding size

as explained above. To make this transformation σ (∗) more

refined, a n-layer neural network are used after as:

σ (l) = P1 × ReLU (P2 × ...ReLU (Pnl)))

where Pi is a p× pmatrix, ReLU is the activation function as

ReLU (x) = max{0, x}.
For example, given the ACFG in Figure 7, the first layer’s

input will be the current vertex [0, 1, 10, 1, 11, 0, 11,

0.296] and the adjacent vertex is [0, 1, 1, 0, 2, 0, 10, 0.362].

In the second layer, the current vertex will be [0, 1, 1, 0, 2, 0,

10, 0.362] and adjacent vertex are [0, 1, 1, 0, 3, 0, 5, 0.19],

[1, 6, 21, 4, 32, 2, 5, 0.26] and so forth. The output of

embedding network will be a vector which represents the

whole ACFG.

3) MULTIPLE LAYER PERCEPTRON (MLP)

Multi-layer perceptron (MLP), a feed-forward neural net-

work that consists of at least three layers (an input and an

output layer with one or more hidden layers). Different from

conventional neural networks, each node is using a nonlinear

activation function (e.g., sigmoid function) inMLP except for

the input nodes. Thus, it can handle non-linear separable data

due to its multi-layers and non-linear activation.

Back to Section III-B, we mentioned Liangboonprakong

and Sornil [83] use N-gram-based features to classify

malware families. It then adapts MLP as one of their classifi-

cation models. However, the results have shown the classifi-

cation accuracy is not as good as other classification models,

such as SVM.

4) ONE-SIDED PERCEPTRON

One-sided perceptron is a modified version of Perceptron.

This algorithm first trains data with a chosen label and data

sets will be separated into two part through learned linear

separator. On the one side of the separator, data will have

that chosen label, while the others will have mixed labels.

Gavriluţ et al. [54] propose one-sided perceptrons to detect

vulnerabilities in binaries. One-sided perceptrons is modified

from perceptrons algorithm in [104] for malware detection

purpose. In Gavriluţ et al. [54], the Perceptron Training

Subroutine, One-sided Perceptron, and Kernelized One-sided

Perceptron Algorithms are integrated together by a Cascade

Classifier. The Cascade Classifier is a case of ensemble learn-

ing which each classifier in Cascade Classifier will collect the

previous classifiers’ output and learning data itself.

VI. APPLICATIONS

In this section, some applications of machine learning based

BCA will be classified. Furthermore, we elaborate and

compare the techniques used in each application in detail.
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FIGURE 11. DNN embedding structure [136].

TABLE 8. Binary code clone detection.

A. BINARY CODE CLONE DETECTION

Detecting similar code fragments, usually referred to as code

clones, is an important task to understand software and detect

duplicate code fragments. Many works have proposed vari-

ous code clone detection frameworks for different purposes

in the source code. For example, prior works make use of

subsequence token matching, abstract syntax trees (ASTs)

comparison or control flow graph analysis [8], [70]. Binary

code clone detection is more difficult compared to detect code

clones in source codes. As mentioned in the previous section,

source codes leverage rich structural information such as syn-

tax trees and variable names made available through source

lines of program code comparing to binary codes. Due to

this fundamental difficulty of binary code clone detection,

machine learning has been adopted and proved as a sufficient

approach.

Generally, there are five different clone types in terms

of binaries. Type I: Identical code fragments that are

copy/paste. Type II: Identical code fragments except for

variations in identifiers, literals, and comments. Type III:

Syntactically similar fragments with further modifications

such as changed, added or removed statements with respect

to each other. Type IV: Semantically equivalent code frag-

ments that implement the same functionality. Type V:

Cross-platform code fragments that are compiled from the

same source code but in different platforms, e.g., x86,

ARM, or MIPS.

Table 8 summaries the contrast of some binary code clone

detection applications. We conducted experiments to ana-

lyze and compare the ability to detect different types of

code clones. All experiments are performed on a 2.54 GHz

Intel Xeon(R) CPU E5540 8-core server with 12 GByte of

main memory. The operating system is Ubuntu 14.04 LTS.

We measured the quality of code clones (in terms of clone

types) that are detected from those clone detection tools.

In the evaluation, we measure the types of code clones (five

different types: Type I - Type V, defined in Section VI-A)

that can be detected from those clone detection tools. For a

fair comparison, we choose the same configuration to gen-

erate function-level code regions conducted on eight real-

world software systems (in binary format) mentioned in

Reference [133]. Finally, to mitigate the bias, two judges
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(two authors from this paper) used a uniform set of guidelines

to measure the similarity of code fragments.

As we can see, the majority of binary code clone detec-

tion frameworks are efficient to detect Type I and Type II

clones. In particular, CFG based features can obviously show

characteristics in the binary code and are able to detect Type

V clones. For machine learning, discovRE [43] adopts K-NN

due to faster set up time and less memory occupy compared

with SVM. Xu et al. [136] introduce Neural Network because

it can quickly retrain the data set. Mostly, deep learning tech-

niques have been applied in the binary code clone detection

and can be used to detect.Type IV clones. Clone-Slicer [140]

first proposes a binary clone detector using RNN. The general

idea is similar to use RNN for NLP tasks. Here, we give an

example of how to apply deep learning to detect binary code

clones.

FIGURE 12. Code clone detection process by Xue et al. [140].

Example: As shown in Figure 12, given instructions in

a basic block, the recursive auto-encoder will embed vec-

tors into an embedding vector. It shows an execution path

including a total of 8 instructions. Clone-Slicer makes use of

a greedy method to combine the embeddings. For instance,

the embedding for the first instruction (push %rbp) is

encoded from terms embeddings [push;%rbp]. For the rest

of the instructions, it repeats the same process until the end

of the given execution path.

B. FUNCTION RECOGNITION

In binary code, only part of instructions can be extracted since

different optimizations may have been made during program

compiling time (e.g. inline functions). It is a difficult task to

identify the boundary of each basic block and further find the

entry point and the end point of functions. As mentioned in

Section III, FEP features are used as inputs for the machine

learning model to deal with this problem. Using machine

learning, each boundary can be easily found. Table 9 lists

several existing works for the function recognition in static

binary codes.

Rosenblum et al. [106] and Rosenblum et al. [109] both

set FEP based features and Idiom feature as the characteristic

of binary code. Rosenblum et al. [106] use MRF model

interface, while Rosenblum et al. [109] adopt CRF model

interface as the learning model. The goal of these two papers

is FEP identification. Besides, Byteweight [9] has the same

goal which is to find the function entry points. It adopts

a weight prefix tree to learning the CFG based features.

Shin et al. [121] propose RNN as the ML model to learn

tokens of byte sequences. FID [130] proposes a ensemble

learning using LinearSVC, AdaBoost, and GradientBoosting

to recognize function.

C. MALWARE DETECTION

The software security system has become more complex due

to the growing software scale and complexity. Prior works

have shown that there are about 5 to 20 bugs per 1,000 lines

of software code [84]. To reduce the number of vulnerabilities

in software systems, malware detection is becoming the focus

of BCA research.

Identifying vulnerabilities in binaries have been studied for

over 20 years, the main research consists of three major direc-

tions: static analysis, dynamic analysis, and hybrid method

(the combination of static and dynamic). Tools for malware

detection have been deployed to all stages of software devel-

opment to reduce the damages caused by software security

issues. To evaluate malware detection systems, we use two

common measurements:

1. True Positives Rate (TPR), the number of malicious

executable examples classified as malicious executables.

2. False Positives Rate (FPR), the number of benign

programs classified as malicious executables.

We note that the reported TPR and FPR numbers vary

in existing malware detection tools, that is because differ-

ent tools may be used for different purposes (for example,

some tools are proposed to detect memory-related vulnerable

programs, some tools are to detect crytovirus, etc.). On the

other hand, different tools utilize various types of features and

machine learning analysis techniques. Thus, the performance

of a malware detection tool can be affected by the different

types of machines they used for evaluation, the hyperparame-

ters in machine learning models (e.g., training iterations, vec-

tor embedding depth and size and so on), the type and the size

of training and testing data. This results in that we cannot do

a one-to-one simple comparison. Therefore, we report TPR

and FPR into three different levels as High/H , Medium/M

and Low/L respectively. Table 12 shows the range of those

levels.

Table 10 summarizes some widely used malware detec-

tion tools for binary executables. For instance, VDISCOVER

has an FPR as H (31%), which is the highest FPR in this

list. That is because it is developed to detect not only mal-

ware in large-scale programs, but to predict if the bugs

are exploitable or probably exploitable. This can be lim-

ited by the amount of training data for machine learning

model and require both static and dynamic (e.g., runtime
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TABLE 9. Function recognition.

TABLE 10. The comparison of classification performance in malware detection tools.

TABLE 11. The comparison of experiment affecting factors in malware detection tools.

TABLE 12. Ranges of reported TPR and FPR for malware detection.

information) features. We further compare the experiment

setup in those malware detection systems in detail, as shown

in Table 11. As we can see, most of those works chose a larger

amount of malicious binaries than clean/benign binaries for

training their systems. On the other hand, the cross-validation

approach is a common method to evaluate the performance.

Finally, the training time is not always reported. That is

because the training for machine learning is mainly an offline

process, which does not consume online resources. Thus, it is

not an important experiment affecting factor.

Schultz et al. [116] use RIPPER and different Bayes

models learning PE features and token of byte sequence

to detect vulnerabilities. Gavrilucţ et al. [54] direct

learn the binary malware via the one-sided perceptron.

Rieck et al. [103] generate a vulnerability detector through

the Hierarchal Clustering and Nearest prototype classifica-

tion. Liangboonprakong and Sornil [83] adopt both a decision

tree C4.5, a multilayer perceptron and SVM to learn the

string pattern. Saxe and Berlin [112] learn vulnerabilities

through DNN. Shijo and Salim [120] adopt both SVM and

Random Forest. Genius [47] searches bugs via spectral clus-

tering. VDISCOVER [57] searches vulnerabilities through

learning the static and dynamic calling sequence for c library

of samples via the logistic regression model, MLP and

Random Forest. Zak et al. [149] learn malware through

two kinds of n-gram features. The first is sectional byte
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TABLE 13. Vulnerabilities discovery.

TABLE 14. Authorship recognition.

n-gram features which are byte sequences of PE features and

the second is assembly n-gram features which are assembly

code instructions. RMVC [122] first translates the assembly

language into an image through RNN and hash algorithm

Minhash [17], then uses CNN to learn image features and

constructed a model for the malware identification.

D. VULNERABILITY DISCOVERY

Machine learning-based BCAs are also applied success-

fully in vulnerability discovery field. The existing vulnera-

bility analysis methods based on machine-learning can be

categorized into three different program analysis methods:

(1) vulnerability analysis in the lexical level; (2) vulnerability

analysis in the syntax level; (3) vulnerability analysis in the

semantic level. Table 13 summarizes several distinguished

works for vulnerability discovery, with respect of machine

learning model used, analysis method, and the types of vul-

nerabilities that are detected. As we can see, semantic pro-

gram analysis outperforms the other two analysis approaches

in general, with the ability to detect diverse bugs and higher

accuracy.

For example, Fabian et al. [143] propose a detection frame-

work for automatically inferring search patterns for taint-

style vulnerabilities. The inferred patterns are derived through

tainting by identifying corresponding source-sink APIs and

constructs patterns that model the control flow graph in

binaries. The results show the inferred patterns reduce the

amount of code to inspect for finding known vulnerabilities

by over 95% and are able to identify multiple unknown types

of vulnerabilities as well.

E. AUTHORSHIP RECOGNITION

Authorship means the creation of a piece of code and its attri-

bution that will threaten the privacy and security community.

To identify the author of a certain program by coding style

without any source code or increase the accuracy, binary code

is adopted for authorship recognition. Table 14 shows the con-

trast of Authorship recognition. Two papers all use features

related to instructions. In Rosenblum et al. [107], Idioms and

graphlets can reflect order and detail of instructions, while

Caliskan-Islam et al. [20] directly use instructions as features.

This means that the instruction is more likely to reflect the

style of code by different authors. Meng et al. [91] construct a

classification model via learning instructions, CFG, and data

flow to identify basic block level authorship in a binary code.

F. OTHER TYPES OF APPLICATIONS

Besides the applications we have mentioned above, there

are several other works using machine learning based BCA

frameworks for other purposes. We list some distinguished

other types of applications in Table 15. Hosfelt [65] test the

ability of Cryptographic algorithm classification of learning

algorithm SVM, Naive Bayes model, Decision Tree, and

K-means Clustering. Katz et al. [72] create a tool to decom-

pilation via RNN. Rosenblum et al. [105] use SVM to

learn the compiler information and further recovers toolchain

provenance.

VII. FUTURE RESEARCH DIRECTIONS

In this section, we discuss several possible directions for

future work in BCA, including deep learning based BCA, and
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TABLE 15. Other types of applications.

joint statistical and formal learning approaches to improve the

robustness of BCA.

A. DEEP LEARNING

Deep learning has demonstrated great potential in various

domains. Relating to software analysis, researchers have

successfully applied deep learning for problems like mal-

ware detection [7], [112] and binary reverse [28]. More and

more works are leveraging these advanced machine learning

models for BCA.

LEMNA [59], a deep learning-based BCA framework, can

take an input data sample and generates a small set of inter-

pretable features to explain how the input sample is classified.

The core idea is to approximate a local area of the complex

deep learning decision boundary using a simple interpretable

model. In a separate line of work, INNEREYE [151] borrows

ideas from NLP to provide a solution for two important code

similarity comparison problems. (I) Cross-platform binary

code similarity detection; and (II) given a piece of binary

code of interest, determining if it is contained in another piece

of code compiled from a different instruction architecture

set (ISA). Furthermore, MORPH [137] proposes an interac-

tive program feature customization framework by leveraging

deep learning technique to map dynamic execution trace to

static binary functions and binary rewriting to remove unused

program features.

These works are only the initial steps towards develop-

ing sophisticated and highly automated BCA models/tools

through deep learning. By making the progress of developing

machine learning models and address unique challenges aris-

ing from BCA, more efforts can make a positive contribution

to building reliable deep learning systems for critical BCA

applications.

B. JOINT STATISTICAL AND FORMAL LEARNING

As mentioned in Section II, The two lines of BCA tech-

niques alone have certain fundamental limitations. 1. Pure

statistical methods rely on probabilistic inference and often

fail to guarantee complete accuracy. Any conclusions derived

from sampling the runtime program states can offer only

limited visibility and are prone to false alarms. As a result,

considerable human effort is still required to verify the results

from statistical analysis. 2. Formal methods require exhaus-

tive analysis along with all paths in the application code,

which can be prohibitively expensive in terms of time and

resources. As such, strict symbolic execution methods can be

less effective in analyzing software at-scale.

Recently, some researchers have proposed a new type

of BCA framework, which integrates statistical and formal

methods to harness the advantages of both techniques to

perform rigorous code analysis in binary executables while

maintaining scalability and swiftness. Statsym [146] explores

the use of statistical data from faulty execution runs to swiftly

identify vulnerable program paths in an application’s source

code. SIMBER [138] used statistical data from program exe-

cution runs to determine the safety of array accesses, and

eliminate array bound checks in program locations where

it is deemed redundant. We note that these joint learning

techniques were performed at source code level.

Clone-Hunter [139] develops a joint learning framework

to rapidly remove redundant array bound checks in binaries.

It utilizes clustering algorithms from machine learning to

detect binary code clones. Then, binary symbolic execution is

used to verify if the samples within an identified cluster have

redundant bound checks. If machine learning algorithms are

able to cluster identical codes efficiently, this joint learning

method enables a highly automated and scalable redundant

bound check elimination process. Clone-Slicer [140] pro-

poses a similar formal verification idea to verify if two binary

clone clones detected from a machine learning module are

true positives in terms of memory safety.

This hybrid (or joint) formal-statistical learning technique

can add another important dimension to Machine-Learning-

based BCA, potentially delivering both the effectiveness of

statistical analysis and guarantees from symbolic execution.

VIII. CONCLUSION

Binary Code Analysis techniques have given us the oppor-

tunities to analyze binary executables without access to

the source code and has notable applications in numerous

domains like code clone detection, malware detection, soft-

ware testing and so on. With the help of Machine learning

techniques, BCA has been significantly sped up that helps

better understand binary program behavior in a rapid man-

ner, secure software systems, and troubleshoot errors during

system runtime.

This article has discussed some key aspects and challenges

of BCA based on machine learning, presenting for a broad

audience the basic design principles of BCA frameworks.

We hope this comparative studywill help non-experts or other

researchers to grasp the background knowledge and related
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techniques, inspiring new novel ideas and further works in

this important direction.
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