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ABSTRACT

Background: Tuberculous meningitis (TBM) is the most severe form of tuberculosis, but 

di�erentiating between the diagnosis of TBM and viral meningitis (VM) is di�cult. Thus, we 

have developed machine-learning modules for di�erentiating TBM from VM.

Material and Methods: For the training data, con�rmed or probable TBM and con�rmed VM 

cases were retrospectively collected from �ve teaching hospitals in Korea between January 

2000 - July 2018. Various machine-learning algorithms were used for training. The machine-

learning algorithms were tested by the leave-one-out cross-validation. Four residents and two 

infectious disease specialists were tested using the summarized medical information.

Results: The training study comprised data from 60 patients with con�rmed or probable 

TBM and 143 patients with con�rmed VM. Older age, longer symptom duration before the 

visit, lower serum sodium, lower cerebrospinal �uid (CSF) glucose, higher CSF protein, and 

CSF adenosine deaminase were found in the TBM patients. Among the various machine-

learning algorithms, the area under the curve (AUC) of the receiver operating characteristics 

of arti�cial neural network (ANN) with ImperativeImputer for matrix completion (0.85; 95% 

con�dence interval 0.79 - 0.89) was found to be the highest. The AUC of the ANN model 

was statistically higher than those of all the residents (range 0.67 - 0.72, P <0.001) and an 

infectious disease specialist (AUC 0.76; P = 0.03).

Conclusion: The machine-learning techniques may play a role in di�erentiating between 

TBM and VM. Speci�cally, the ANN model seems to have better diagnostic performance than 

the non-expert clinician.
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INTRODUCTION

Tuberculous meningitis (TBM) is the most severe form of tuberculosis and causes 

in�ammation of the meninges. TBM accounts for approximately 1% of all cases of TB and 5% 

of all extrapulmonary disease in immunocompetent individuals [1]. More than 100,000 new 

TBM cases are estimated to occur globally yearly [1]. Patients with TBM initially complain of 

an insidious onset of malaise, lassitude, headache, and low-grade fever. Nausea, vomiting, 

and confused mental state occur as the disease progresses, thereby leading to coma, seizures, 

and neurological damage. Despite the advancements in medicine, the case-fatality ratio is 

high and early diagnosis and anti-tuberculous therapy are critical for patients with TBM [2].

However, the diagnosis of TBM is markedly challenging. In the early phase, it may be 

di�cult to di�erentiate between TBM and viral meningitis (VM) because of similar clinical 

manifestations. Additionally, the diagnostic tools for TBM and VM show low sensitivity. The 

isolation of acid-fast bacilli in the cerebrospinal �uid (CSF) as a rapid and speci�c method 

for diagnosing TBM has poor sensitivity, reported as low as 30% [3]. The CSF mycobacterial 

culture that is regarded as a de�nitive diagnostic tool for TBM also has low sensitivity and 

requires incubation of up to two months. Nucleic acid ampli�cation tests (NAATs) and Xpert 

MTB/Rif polymerase chain reaction (PCR)-based assays are also not sensitive tools for the 

diagnosis of TBM, although they are highly speci�c [4, 5]. For these reasons, the di�erential 

diagnosis of TBM and VM depends on the judgment of the clinician.

Machine-learning techniques are very useful for resolving problems of discrimination and the 

development of diagnostic modules using machine-learning is an active research topic in the 

�eld of medicine. The di�erentiation between TBM and VM is also a matter of discrimination, 

so machine-learning techniques are expected to play auxiliary roles in guiding the diagnosis 

in situations where quick judgment is required. Deep learning is especially attractive because 

of its superior performance (e.g., accuracy) compared to many existing machine-learning 

models. Nevertheless, to the best of our knowledge, there exist no studies on the diagnostic 

role of deep learning techniques to di�erentiate between TBM and VM.

Thus, we investigated various machine-learning techniques, including deep learning models, 

for di�erentiating TBM from VM and compared the results with diagnoses made by clinicians.

MATERIALS AND METHODS

1. Study design & population

A retrospective cohort study was conducted at �ve teaching hospitals in the Korea (range of 

bed numbers, 642 – 2,705). The medical records of the cases between January 2000 - July 

2018 that met the following conditions were reviewed: 1) Mycobacterim tuberculosis growth 

from CSF, 2) positive nucleic acid ampli�cation tests for M. tuberculosis, 3) diagnostic code 

of tuberculous meningitis (KCD A170), and 4) positive nucleic acid ampli�cation tests for 

herpes simplex virus (HSV), varicella-zoster virus (VZV), or enterovirus. The exclusion 

criteria were incomplete medical records for review, lack of CSF �uid analysis, and patients 

younger than 18 years of age. This study was approved by the Institutional Review Board 

of Soonchunhyang University Bucheon Hospital (2018-09-026). The requirement for 

informed consent was waived because of the retrospective nature of this study, no patient 

interventions, and no additional specimen collections. All procedures involving human 
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participants were performed according to the ethical standards of the institutional and/or 

national research committees and in accordance with the 2013 Declaration of Helsinki and its 

later amendments or comparable ethical standards.

2. Definition and data collection

Meningitis was de�ned as CSF white blood cell (WBC) count >5 cells/mm3 with two or more 

of the following �ndings: headache, nausea/vomiting, photophobia, neck sti�ness, and fever 

>38oC. Patients whose clinical presentation was indicative of meningitis and with positive 

CSF PCR results for HSV, VZV, or enterovirus PCR had con�rmed viral meningitis. Patients 

whose clinical presentation was indicative of CNS infection had con�rmed TBM if the CSF 

specimens were positive for M. tuberculosis based on the culture or the PCR assay. Patients 

whose clinical presentation was indicative of CNS infection plus a culture of other body 

�uids was positive for M. Tuberculosis, and without other known etiologies of meningitis, had 

probable TBM.

Since the number of cases was not large enough, only a limited number of features known as 

useful characteristics for di�erentiating between TBM and VM were searched and included 

in the analysis because of the over�tting concern. Based on the previous studies, data on age 

[6], duration of illness from the appearance of symptoms and onset of signs to hospital visit 

[7], vomiting [7], neurologic symptoms and signs [6], serum sodium [6], CSF glucose [8], 

CSF protein[8], and CSF adenosine deaminase (ADA) [9] were collected as discriminative 

features for machine-learning. Neurologic symptoms and signs were de�ned according 

to one of the following symptoms or signs: lethargy, confusion, cranial nerve palsy, 

hemiparesis, delirium, stupor, coma, seizures, hemiplegia, or paraparesis [6].

3. Model development and validation

We conducted experiments with di�erent machine-learning models that included naïve 

Bayes (NB), logistic regression (LR), random forest (RF), support vector machine (SVM), 

and arti�cial neural network (ANN) models. The parameter settings of the machine-

learning models are summarized in Table 1. Note that the ANN model had a simple 

hierarchical structure with two layers to avoid over�tting. The ANN model is trained with 

L2 regularization with alpha 0.0001. We applied the take leave-one-out cross-validation 

(LOO-CV) to evaluate the models, wherein each data plays the role of test data, while the 

other remaining data are used for training, equivalent to 203-fold cross-validation. The 

experiments with all machine-learning models, except for the ANN, were conducted using 

the Weka tool, whereas the experiments with the ANN were performed using Tensor�ow 1.12 
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Table 1. Parameter settings of the machine-learning models

Model Setting

Random forest - Maximum number of trees: 100

Naïve Bayes - No kernel estimator, so it uses a normal distribution

Logistic regression - Ridge: 1.0 × 10−8

- Training algorithm: Broyden–Fletcher–Goldfarb–Shanno

Support vector machine - Training algorithm: Sequential minimal optimization

- C: 1.0

- Epsilon: 1.0 × 10−12

- Kernel: PolyKernel (exponent: 1.0)

Artificial neural network - Hidden layers: [20, 5]

- Activation function: ReLU

- Number of epoch: 250

- Training algorithm: Adam (initial learning rate: 0.001)

https://icjournal.org


(Google, San Francisco, CA, USA). The experiments were conducted employing a computer 

of eight CPUs of i7-7700 3.6 GHz and two NVIDIA Geforce 1080 Ti.

Besides the machine-learning models, we collected results from six human clinicians: four 

residents in their fourth year of internal medicine and two board-certi�ed infectious disease 

(ID) specialists with more than 10 years of experience. The summary of non-imputed medical 

information of each patient was shown to the the clinicians and they were asked to estimate 

the diagnosis (Supplementary Fig. 1).

4. Statistics

All statistical analyses were calculated using the SPSS Statistics version 25.0 (SPSS, Chicago, 

IL, USA) and the MedCalc version 19.3 (MedCalc So�ware Ltd., Ostend, Belgium). The 

categorical variables were compared using the Chi-squared test or the Fisher’s exact test. 

The continuous variables were analyzed using the Mann-Whitney U test. A non-signi�cant 

Little’s missing complexly at random (MCAR) test, χ2 = 27.244, df = 22, P = 0.20, indicated an 

MCAR pattern. As the number of data was small, we retained all data by applying imputation 

algorithms. When we adopt an imputation algorithm to �ll the missing values, the machine 

learning model performance (e.g., accuracy) depends on the imputation algorithm. So, we 

applied three imputation algorithms: 1) an imputing strategy of iterative round-robin fashion 

(IterativeImputer), 2) the iterative so� thresholding of Singular Vector Decomposition 

(So�Imputer), and 3) imputing by K-nearest neighbor (KnnImputer). The Delong method 

was used to calculate the area under the curve (AUC) of the receiver operator characteristic. 

The machine-learning model with the highest AUC value was chosen for comparison with 

human judgment, although the di�erence in the AUC values between machine learning 

models was statistically insigni�cant. Bootstrapping was used to compare the AUC between 

machine-learning and human judgment. Cohen’s kappa statistics were used to analyze the 

diagnostic agreement. All tests were two-tailed and di�erences were signi�cant at P <0.05.

RESULTS

As shown in Figure 1, 234 patients were excluded and a total of 60 patients with con�rmed or 

probable TBM and 143 patients with con�rmed VM were included for training. Of 39 patients 

with con�rmed TBM, the M. tuberculous complex was cultured in the CSF in only �ve patients. 

The median annual number of TBM was 3 patients (interquartile range [IQR], 1 - 7 patients). 

Of 144 VM, viral etiologies were as follows: HSV in 49 (34.0%) patients, VZV in 65 (45.1%) 

patients, and enterovirus in 29 (20.1%) patients. As shown in Table 2, the median age of 

the patients was 37 years (IQR, age 29 - 58 years), and the median duration of illness before 

the visit was �ve days (IQR, 3 - 7 days). Typically, 80% of patients complained of vomiting 

and 70% of patients had neurologic symptoms and signs. Older age, longer duration of 

illness before hospital visits, frequent neurologic symptoms and signs, lower serum sodium, 

lower CSF glucose, higher CSF protein, and higher CSF ADA were reported in TBM patients 

compared to VM patients.

The number of missing values was as follows: one for the duration of illness, one for 

vomiting, two for serum sodium, one for CSF glucose, one for protein, and 16 for CSF ADA. 

As shown in Table 3, all machine-learning models except SVM achieved the highest accuracy 

with ItrerativeImputer for matrix completion. Among the machine-learning models, the NB 

with So�Imputer had the highest sensitivity (80.0%; 95% con�dence interval [CI], 67.7 - 
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89.2%) and SVM had the highest speci�city (97.2%; 95% CI, 93.0 - 99.2%). However, ANN 

with IterativeImputer, LR with IterativeImputer, LR with KnnImputer (K = 2), and LR with 

KnnImputer (K = 3) had the highest accuracy (87.7%; 95% CI, 82.4 - 91.9%). The highest 

AUC value for di�erentiating TBM from VM was found in ANN with IterativeImputer among 

machine-learning models (0.85; 95% CI, 0.79 - 0.89).

The diagnostic performance of humans for di�erentiating TBM from VM is shown in Table 4  

and Fig. 2. The ANN with IterativeImputer model was chosen as a machine-learning model 

for the comparison with humans because it showed the highest value of AUC among the 

machine-learning models. Residents tended to diagnose less sensitively as TBM than 

ID specialists. The sensitivity of the residents was less than 53.7%, while that of the ID 
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Eligible patients

(n = 437)

Enrolled patients

(n = 203)

Excluded (n = 234)

1. Younger than 18 years old (n = 230)

2. CSF fluid analysis was not done (n = 3)

3. Incomplete medical records (n = 1)

TBM = TP

VM = FN

Machine learning

(ANN, RF, NB, LR, SVM)

Human (Four residents

and two ID specialists)

Viral meningitis (n = 143)

- All confirmed

Tuberculous meningitis (n = 60)

- Confirmed (n = 39)

- Probable (n = 21)

TBM = TP

VM = FN

TBM = FP

VM = TN

TBM = FP

VM = TN

Machine learning

(ANN, RF, NB, LR, SVM)

Human (Four residents

and two ID specialists)

Figure 1. Flow chart of the study. 

Patients whose clinical presentation was indicative of meningitis and with a positive CSF PCR result for HSV, VZV, or enterovirus PCR had confirmed viral 

meningitis. Patients whose clinical presentation was indicative of CNS infection had confirmed TBM if the CSF specimens were positive for Mycobacterim 

tuberculosis by culture or PCR assay. Patients whose clinical presentation was indicative of CNS infection plus a culture of other body fluids was positive for 

M. Tuberculosis, without other known etiologies of meningitis, had probable TBM. True positive means a correct diagnosis of tuberculous meningitis and true 

negative means a correct diagnosis of viral meningitis. 

ANN, artificial neural network; RF, random forest; NB, naïve Bayes; LR, logistic regression; SVM, support vector machine; ID, infectious diseases; TBM, 

tuberculous meningitis; TP, true positive; VM, viral meningitis; FN, false negative; FP, false positive; TN, true negative.

Table 2. Comparison of features between tuberculous and viral meningitis

Features All (N = 203) Tuberculous (N = 60) Viral (N = 143) P-value

Median age, years (IQR) 37 (29 - 58) 49 (33 - 64) 34 (29 - 55) <0.001

Median symptom duration before the visit, days (IQR) 5 (3 - 7) 9 (6 - 15) 4 (2 - 6) <0.001

Vomiting (%) 80 (39.4) 28 (46.7) 52 (36.4) 0.21

Neurologic symptoms and signs (%) 70 (34.5) 39 (65.0) 31 (21.5) <0.001

Median serum sodium, mg/dl (IQR) 137 (134 - 139) 133 (128 - 136) 138 (136 - 140) <0.001

Median CSF glucose, mg/dl (IQR) 53.3 (45.1 - 66.0) 41.6 (28.8 - 61.5) 57.6 (49.0 - 67.0) <0.001

Median CSF protein, mg/dl (IQR) 117.0 (67.9 - 169.6) 175.5 (118.7 - 317.1) 101 (56.3 - 141.3) <0.001

Median CSF ADA, IU/L (IQR) 7 (3 - 12) 14 (8 - 21) 5 (3 - 8) <0.001

IQR, interquartile range; CSF, cerebrospinal fluid; ADA, adenosine deaminase.

https://icjournal.org


specialists was more than 65%. The AUCs between the residents were not statistically 

di�erent. Also, the value of AUC was not statistically di�erent between ID specialist #1 and 

the ID specialist #2 (P = 0.38) (Supplementary Table 1). The higher AUCs of the ID specialists 

were found, although these di�erences were only statistically signi�cant between the ID 

specialist #1 and the resident #2 (P = 0.01), the ID specialist #2 and resident #1 (P = 0.02), 

the ID specialist #2 and resident #2 (P = 0.003), and the ID specialist #2 and resident #3 
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Table 3. Diagnostic performances of various machine-learning algorithms for differentiating tuberculous from viral meningitis

Machine-learning 

algorithm

Matrix completion TP FP TN FN Sensitivity  

(% [95% CI])

Specificity  

(% [95% CI])

Accuracy  

(% [95% CI])

AUC  

(95% CI)

Artificial neural 

network

IterativeImputer 46 11 132 14 76.7 (63.9 - 86.6) 92.3 (86.7 - 96.1) 87.7 (82.4 - 91.9) 0.85 (0.79 - 0.89)

SoftImputer 41 20 123 19 68.3 (55.0 - 79.7) 86.0 (79.2 - 91.2) 80.8 (74.7 - 86.0) 0.77 (0.71 - 0.83)

KnnImputer (K = 1) 43 11 132 17 71.7 (58.6 - 82.5) 92.3 (86.7 - 96.1) 86.2 (80.7 - 90.6) 0.82 (0.76 - 0.87)

KnnImputer (K = 2) 43 10 133 17 71.7 (58.6 - 82.5) 93.0 (87.5 - 96.6) 86.7 (81.2 - 91.0) 0.82 (0.76 - 0.87)

KnnImputer (K = 3) 42 12 131 18 70.0 (56.8 - 81.2) 91.6 (85.8 - 95.6) 85.2 (79.6 - 89.8) 0.81 (0.75 - 0.86)

KnnImputer (K = 4) 42 12 131 18 70.0 (56.8 - 81.2) 91.6 (85.8 - 95.6) 85.2 (79.6 - 89.8) 0.81 (0.75 - 0.86)

Random forest IterativeImputer 42 11 132 18 70.0 (56.8 - 81.2) 92.3 (86.7 - 96.1) 85.7 (80.1 - 90.2) 0.81 (0.75 - 0.86)

SoftImputer 38 9 134 22 63.3 (49.9 - 75.4) 93.7 (88.4 - 97.1) 84.7 (79.0 - 89.4) 0.79 (0.72 - 0.84)

KnnImputer (K = 1) 40 13 130 20 66.7 (53.3 - 78.3) 90.9 (85.0 - 95.1) 83.7 (77.9 - 88.5) 0.79 (0.73 - 0.84)

KnnImputer (K = 2) 41 11 132 19 67.8 (54.4 - 79.4) 91.3 (86.7 - 96.1) 85.2 (79.5 - 89.8) 0.80 (0.74 - 0.85)

KnnImputer (K = 3) 42 14 129 18 70.0 (56.8 - 81.2) 90.2 (84.1 - 94.5) 84.2 (78.5 - 89.0) 0.80 (0.74 - 0.85)

KnnImputer (K = 4) 40 11 132 20 66.7 (53.3 - 78.3) 92.3 (86.7 - 96.1) 84.7 (79.0 - 89.4) 0.80 (0.73 - 0.85)

Naïve Bayes IterativeImputer 36 11 132 24 60.0 (46.5 - 72.4) 92.3 (86.7 - 96.1) 82.8 (76.8 - 87.7) 0.76 (0.70 - 0.82)

SoftImputer 48 24 119 12 80.0 (67.7 - 89.2) 83.2 (76.1 - 88.9) 82.3 (76.3 - 87.3) 0.82 (0.76 - 0.87)

KnnImputer (K = 1) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)

KnnImputer (K = 2) 39 13 130 21 65.0 (51.6 - 76.9) 90.9 (85.0 - 95.1) 83.3 (77.4 - 88.1) 0.78 (0.72 - 0.84)

KnnImputer (K = 3) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)

KnnImputer (K = 4) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)

Logistic regression IterativeImputer 44 9 134 16 73.3 (60.3 - 83.9) 93.7 (88.4 - 97.1) 87.7 (82.4 - 91.9) 0.84 (0.78 - 0.88)

SoftImputer 43 15 128 17 71.7 (58.6 - 82.5) 89.5 (83.3 - 94.0) 84.2 (78.5 - 89.0) 0.81 (0.75 - 0.86)

KnnImputer (K = 1) 42 9 134 18 70.0 (56.8 - 81.2) 93.7 (88.4 - 97.1) 86.7 (81.2 - 91.0) 0.82 (0.76 - 0.87)

KnnImputer (K = 2) 42 7 136 18 70.0 (56.8 - 81.2) 95.1 (90.2 - 98.0) 87.7 (82.4 - 91.9) 0.83 (0.77 - 0.88)

KnnImputer (K = 3) 42 7 136 18 70.0 (56.8 - 81.2) 95.1 (90.2 - 98.0) 87.7 (82.4 - 91.9) 0.83 (0.77 - 0.88)

KnnImputer (K = 4) 41 7 136 19 68.3 (55.0 - 79.7) 95.1 (90.2 - 96.1) 87.2 (81.8 - 91.5) 0.82 (0.76 - 0.87)

Support vector 

machine

IterativeImputer 34 6 137 26 56.7 (43.2 - 69.4) 95.8 (91.1 - 98.5) 84.2 (76.5 - 89.0) 0.76 (0.70 - 0.82)

SoftImputer 45 17 126 15 75.0 (62.1 - 85.3) 88.1 (81.6 - 92.9) 84.2 (78.5 - 89.0) 0.82 (0.76 - 0.87)

KnnImputer (K = 1) 33 4 139 27 55.0 (41.6 - 67.9) 97.2 (93.0 - 99.2) 84.7 (79.0 - 89.4) 0.76 (0.70 - 0.82)

KnnImputer (K = 2) 34 8 135 26 56.7 (43.2 - 69.4) 94.4 (89.3 - 97.6) 83.3 (77.4 - 88.1) 0.76 (0.69 - 0.81)

KnnImputer (K = 3) 34 8 135 26 56.7 (43.2 - 69.4) 94.4 (89.3 - 97.6) 83.3 (77.4 - 88.1) 0.76 (0.69 - 0.81)

KnnImputer (K = 4) 35 7 136 25 58.3 (44.9 - 70.9) 95.1 (90.2 - 98.0) 84.3 (78.5 - 89.0) 0.77 (0.70 - 0.82)

Testing was conducted using the leave-one-out cross-validation.

True positive means a correct diagnosis of tuberculous meningitis and true negative means a correct diagnosis of viral meningitis.

TP, true positive; FP, false positive; TN, true negative; FN, false negative; AUC, area under the receiver operating characteristics curve; 95% CI, 95% confidence 

interval.

Table 4. Diagnostic performance of humans for differentiating tuberculous from viral meningitis

TP FP TN FN Sensitivity  

(% [95% CI])

Specificity  

(% [95% CI])

Accuracy  

(% [95% CI])

AUC  

(95% CI)

Artificial neural network 

with IterativeImputer

P1a P2b

Resident #1 32 20 123 28 53.3 (40.0 - 66.3) 86.0 (79.2 - 91.2) 76.4 (69.9 - 82.0) 0.70 (0.63 - 0.76) <0.001 0.0002

Resident #2 23 7 136 37 38.3 (26.1 - 51.8) 95.1 (90.2 - 96.0) 78.3 (72.0 - 83.8) 0.67 (0.60 - 0.73) <0.001 <0.001

Resident #3 31 20 123 29 51.7 (38.4 - 64.8) 86.0 (79.2 - 91.2) 75.9 (69.4 - 81.6) 0.69 (0.62 - 0.75) <0.001 0.0001

Resident #4 30 9 134 30 50.0 (36.8 - 63.2) 93.7 (88.4 - 97.1) 80.8 (74.7 - 86.0) 0.72 (0.65 - 0.78) <0.001 0.0004

ID specialist #1 39 18 125 21 65.0 (51.6 - 76.9) 87.4 (80.8 - 92.4) 80.8 (74.7 - 86.0) 0.76 (0.70 - 0.82) <0.001 0.03

ID specialist #2 46 26 117 14 76.7 (64.0 - 86.6) 81.8 (74.5 - 87.8) 80.3 (74.2 - 85.6) 0.79 (0.73 - 0.85) <0.001 0.16

aCohen’s kappa statistic was used to test the diagnostic agreement between machine-learning and human judgment.
bComparison of the AUC of the machine-learning with that of human judgment.

True positive means a correct diagnosis of tuberculous meningitis and true negative means a correct diagnosis of viral meningitis.

TP, true positive; FP, false positive; TN, true negative; FN, false negative; AUC, area under the receiver operating characteristics curve; 95% CI, 95% confidence 

interval; ID, infectious disease.
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(P = 0.01) (Supplementary Table 1). The AUC of the ANN model was statistically higher 

than those of all the residents. Also, the diagnostic performance of the ANN model was 

statistically higher than the ID specialist #2 (P = 0.03) and comparable to the ID specialist 

#1 (P = 0.16), although the diagnostic agreement was statistically di�erent between the 

machine-learning and ID specialists.

DISCUSSION

Our �ndings showed the potential of the machine-learning models, especially the ANN 

model, to distinguish TBM from VM. Speci�cally, the diagnostic performance of the 

machine-learning models was more accurate than that of the non-expert clinicians and was 

comparable to the judgment of the experts. To the best of our knowledge, this is the �rst 

study to di�erentiate between TBM and VM using various machine-learning models.

There have been several studies on the di�erential diagnosis between TBM and VM. In a 

retrospective study by Hristea et al. [6], symptom duration, advanced neurologic status, CSF 

glucose ratio <0.5, and CSF protein >100 mg/dl were identi�ed to be associated with TBM 

and not VM. A model using these signi�cant variables showed excellent sensitivity (92%, 

95% CI: 87 - 97), speci�city (94%, 95% CI: 92 - 97), and the AUC value (0.977, 95% CI: 0.964 

- 0.990) for the diagnosis of TBM. Lee also reported that a grade scoring system including 

the variables of hyponatremia, CSF lactate dehydrogenase >70 IU/L, CSF protein 160 mg/dl, 

cranial nerve palsy, voiding di�culty, and confusion had 89.4% sensitivity, 90.4% speci�city, 

and 0.901 accuracy (95% CI: 0.839 - 0.963) to di�erentiate TBM from VM [7]. Despite 

the excellent diagnostic performance of the previous models, there were some critical 
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Figure 2. A plot of the diagnostic performance of the machine learning and clinicians for differentiating 

tuberculous from viral meningitis. 

The area under curves (AUC) of receiver operating characteristics between the residents was not statistically 

different. Also, the value of the AUC was not statistically different between the ID specialist #1 and the ID 

specialist #2 (P = 0.38). The higher AUCs of the ID specialists were found, although the differences were only 

statistically significant between the ID specialist #1 and resident #2 (P = 0.01), the ID specialist #2 and resident 

#1 (P = 0.02), the ID specialist #2 and resident #2 (P = 0.003), and the ID specialist #2 and resident #3 (P = 

0.01). The AUC of the ANN model was statistically higher than those of all the residents. Also, the diagnostic 

performance of the ANN model was statistically higher than the ID specialist #2 (P = 0.03) and comparable to the 

ID specialist #1 (P = 0.16). 

ANN, artificial neural network; LR, logistic regression; ID, infectious diseases.
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limitations. First, there is a concern of over�tting, because the previous studies comprised of 

too many variables, despite the small number of cases. Second, the diagnostic performance of 

these models developed in one center cannot be assured in other centers. Third, almost all the 

reported studies included cases of possible TBM. Marais et al. proposed uniform de�nitions 

of probable and possible TBM [10]. However, the de�nition of possible TBM showed low 

speci�city [11]. Since the de�nition of possible TBM involves the same variables included in the 

diagnostic models, the diagnostic performance of the previous models can be overestimated. 

Thus, we included only cases with positive culture or PCR results. Our study design increased 

the reliability of our results, although the diagnostic performance was weaker compared with 

the outcomes of previous studies. Additionally, the variables included in our model were easily 

and autonomously accessible in data acquired from the electronic health records. Thus, it 

should not be di�cult to develop a program for application in clinical practice.

As shown in Table 4, the ID specialists tended to more sensitively diagnose TBM than the 

residents, although their sensitivity was not satisfactory. The higher sensitivity demonstrated 

by the ID specialists may be the result of knowledge and experience with possible TBM cases. 

Interestingly, this tendency of the ANN model was somewhat similar to the ID specialists, so 

the ANN model’s behavior can be associated with the ID specialists.

There is no statistically signi�cant di�erence in the AUC values of each machine learning 

model. Considering the cost and e�ort required for machine learning, a statistical analysis 

such as logistic regression may be more favorable than ANN. Statistical analysis is a good 

method of research, but it is markedly di�erent from the studies of the machine learning 

�eld. As described in the report by Bradley A. Fritz [12], the statistical analysis may be 

practically limited because it renders the knowledge to clinicians but is not suitable for 

developing real-world applications (e.g., forecasting outcomes). As the purpose of this study 

was to investigate the feasibility of machine learning models for 'classi�cation' between TBM 

and VM, we chose the method of ‘machine-learning’.

This study had limitations because of the small number of data used for learning. This limited 

the number of features for the analysis and accuracy of the models. It was found that deeper 

structures usually have better performance (e.g., accuracy), but it does not mean that deeper 

structures are 'always' better. It depends on the data size and complexity of the problem. 

We found that the ANN with 2 layers is enough to solve our problem. Also, the validation 

data set was not separated, although the LOOCV must be preferable if it is computationally 

feasible in the machine learning �elds [13, 14]. Because of the unbalanced sample size, it is 

not di�cult to achieve 70% accuracy. Previous studies also included only small numbers of 

con�rmed cases, as well as probable or possible cases that were variously de�ned, because 

only a few con�rmed cases can be collected from a center over a decade. To collect maximal 

cases possible, the probable TBM was included in our study. It is unlikely that VM will develop 

simultaneously with the onset of another site of tuberculosis. It will be not easy to reproduce 

similar studies by collecting more con�rmed cases, although probable TBM was included 

in our study. Using a cloud-based system for globally sharing the data from experts may be 

a solution to these limitations. Additionally, further information such as medical records of 

present illness and brain radiologic �ndings was provided to the clinicians. Nevertheless, the 

machine-learning had a similar diagnostic performance with the ID specialists. Also, only 

a limited number of clinicians participated in the study. In future research, a proper study 

design is necessary to provide the same data to humans and machines.
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In conclusion, there is a possibility that machine-learning could play a role in di�erentiating 

TBM from VM. Further studies should be conducted to improve the performance of the 

machine-learning algorithms and to assess their safety and usefulness in real clinical practice.
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